HYDROGEOCHEMISTRY OF THE TUNKILLIA GOLD PROSPECT, SOUTH AUSTRALIA

David J. Gray and Mark C. Pirlo

CRC LEME OPEN FILE REPORT 194 / CSIRO EM REPORT P2005/326

ISBN 1 921039 31 0

August 2005

© CRC LEME 2005

C R C L E M E CSIRO Division of Exploration and Mining Australian Resources Research Centre P.O. Box 1130 Bentley, Western Australia, Australia 6102

© CRC LEME

The Tunkillia (Central Gawler) Project is providing a new knowledge base and developing methodologies for improved mineral exploration in areas of regolith cover in the central Gawler Craton, SA. This integrated project has a multidisciplinary team with skills in regolith geology, geomorphology, bedrock geology, geochemistry, hydrogeochemistry and soil science, working to understand the processes and controls on element dispersion in a variable regolith terrain. This report is specifically on groundwater investigations in the Tunkillia area.

Copies of this publication can be obtained from:

The Publications Officer, CRC LEME, c/- CSIRO Exploration & Mining, PO Box 1130, Bentley WA 6102, Australia. Information on other publications in this series may be obtained from the above, or from http://crcleme.org.au

Cataloguing-in-Publication:

Gray, David J and Pirlo, Mark C.
Hydrogeochemistry of the Tunkillia Gold Prospect, South Australia
ISBN 1 921039 31 0
1. Regolith – South Australia
2. Hydrogeochemistry – South Australia
3. Exploration Geochemistry – South Australia
I. Gray, David J and Pirlo, Mark C.
II. Hydrogeochemistry of the Tunkillia Gold Prospect, South Australia
CRC LEME Open File Report 194.
ISSN 1329-4768

Addresses and affiliations of authors:

David J. Gray

Cooperative Research Centre for Landscape Environments and Mineral Exploration c/- CSIRO Exploration and Mining PO Box 1130 Bentley WA 6102

Mark C. Pirlo

Cooperative Research Centre for Landscape Environments and Mineral Exploration c/- CSIRO Exploration and Mining PO Box 1130 Bentley WA 6102

© Cooperative Research Centre for Landscape Environments and Mineral Exploration, 2004

ABSTRACT

The hydrogeochemistry of the Tunkillia gold prospect in the Gawler Craton of South Australia has been examined as part of a broader regolith and airborne electromagnetic study. Ninety four groundwater samples were collected from exploration drill holes using a bailer system. Field measurements included pH, Eh, EC and temperature. Separate, field preserved sub-samples were collected for cation, anion and alkalinity analyses. A 1 L sub-sample sample, filtered to 0.1 μ m, was also collected for determination of Au content. Gold determination was based on pre-concentration onto a 1 g sachet of activated carbon, followed by Neutron Activation Analysis.

The hydrogeochemistry at Tunkillia is generally found to be comparable to that in the Kalgoorlie and Eastern regions of the Yilgarn Craton, with groundwaters dominantly saline and neutral to moderately acid. Groundwater salinity tends to be close to, or slightly below, that of seawater. However, in contrast to Yilgarn groundwaters, Tunkillia groundwaters exhibit a fairly homogeneous salinity. Another characteristic of Tunkillia groundwaters is their relatively high dissolved concentrations of base metals (Mn, Cu, Zn), REE and Y when compared with groundwaters from the Yilgarn.

A Ca enrichment and correlating K depletion is observed in Tunkillia groundwaters, and this may reflect the hydrolysis of Ca feldspars. The dominant lithologies in the area are thought to be felsic, an interpretation supported by minor element compositions (Li, Al, Si, U) when pH effects have been taken into account.

The main mineralised zone (Area 223), exhibits lower groundwater Au concentrations than observed in a secondary mineralised zone (Area 191 North). This might suggest that kinetic barriers are affecting Au dissolution in some parts of the study area. Low groundwater flow rates (ponding) could explain the low variation in groundwater salinity. Furthermore, the mineralisation at various zones in the study area may include different assemblages of sulphide and/or accessory minerals, resulting in differing availability for groundwater dissolution. For example, the Area 191 North mineralisation zone exhibits a clear enrichment in the SO_4/Cl ratio, interpreted as representing SO_4 release via sulphide oxidation. Dissolved Te, V and the saturation indices of Fe oxide minerals all show correlations with mineralised zones.

Interpretation and use of hydrogeochemical data for exploration programs must consider the role that groundwater flow rates are playing on groundwater residence time and in turn the contact time with fresh or weathered rocks.

TABLE OF CONTENTS

1.	INTRC	DUCTION	.1
2.	SITE C	HARACTERISTICS	.1
3.	SAMP	LING AND ANALYSIS	.4
4.	RESUI	.TS	6
	4.1	Compilation of results and comparison with other sites	6
	4.2	Salinity effects and major element hydrogeochemistry	.6
	4.3	Acidity and oxidation potential	.8
	4.4	Gold chemistry	11
	4.5	Minor element hydrogeochemistry	12
5.	HYDR	OGEOCHEMICAL MAPPING	15
6.	DISCU	SSION AND CONCLUSIONS	18
REFE	RENCE	ES	20
Apper	ndix 1:	Analytical Results	22
Appen	ndix 2: I	Element/ion concentrations for groundwaters	48
Apper	ndix 3:	Saturation indices for groundwaters	70
Apper	ndix 4: I	Element/ion distribution maps for groundwaters.	89

LIST OF FIGURES

Figure 1: Geology of the Gawler Craton (courtesy PIRSA) with position of Tunkillia shown	2
Figure 2: Drilling, calcrete Au and mineralisation for Area 223.	3
Figure 3: Cross section 111350mN, Area 223.	3
Figure 4: Location of water samples, overlain on conductance map	5
Figure 5: Dissolved Na vs. TDS for groundwaters from Tunkillia and other sites	8
Figure 6: pH vs. TDS for groundwaters from Tunkillia and other sites.	8
Figure 7: Dissolved Ca vs. TDS for groundwaters from Tunkillia and other sites	8
Figure 8: Dissolved K vs Ca at Tunkillia, differentiated by area.	8
Figure 9: Eh vs pH for Tunkillia groundwaters, differentiated by area.	9
Figure 10: Eh vs pH for Tunkillia and other South and Western Australian groundwaters	9
Figure 11: Distribution of groundwaters pH values, Tunkillia	10
Figure 12: Dissolved Al vs. pH for groundwaters from Tunkillia and other sites	10
Figure 13: Dissolved Si vs. pH for groundwaters from Tunkillia and other sites	10
Figure 14: Tunkillia groundwater activity data overlain on a Al-Si-H ₂ O equilibrium activity diagram	11
Figure 15: Tunkillia groundwater activity data overlain on a K-Al-Si-H ₂ O equilibrium activity diagram	11
Figure 16: Dissolved Au vs Eh at Tunkillia, differentiated by area	12
Figure 17: Dissolved Au vs Fe at Tunkillia, differentiated by area.	12
Figure 18: Dissolved Fe vs. pH for groundwaters from Tunkillia and other sites	12
Figure 19: Dissolved Mn vs. pH for groundwaters from Tunkillia and other sites.	12
Figure 20: Dissolved Cu vs. pH for groundwaters from Tunkillia and other sites.	13
Figure 21: Dissolved Zn vs. pH for groundwaters from Tunkillia and other sites.	13
Figure 22: Dissolved Mo vs. pH for groundwaters from Tunkillia and other sites.	13
Figure 23: Dissolved Sb vs. pH for groundwaters from Tunkillia and other sites	13
Figure 24: Dissolved La vs. pH for groundwaters from Tunkillia and other sites	13
Figure 25: Dissolved Eu vs. pH for groundwaters from Tunkillia and other sites.	13
Figure 26: Dissolved Yb vs. pH for groundwaters from Tunkillia and other sites	14
Figure 27: Distribution of median U concentration vs pH for Tunkillia and other sites.	14
Figure 28: Distribution of pH/Eh groundwater groups at Tunkillia.	15
Figure 29: Distribution of the SO ₄ /Cl groundwater ratio at Tunkillia.	15
Figure 30: Distribution of dissolved Fe at Tunkillia.	16
Figure 31: Distribution of SI values for Fe ₃ (OH) ₈ at Tunkillia	16
Figure 32: Distribution of dissolved Au at Tunkillia.	16
Figure 33: Distribution of dissolved V at Tunkillia.	16
Figure 34: Distribution of dissolved Te at Tunkillia	17
Figure 35: Distribution of dissolved Sb at Tunkillia	17
Figure 36: Dissolved Te vs pH at Tunkillia, differentiated by area.	17
Figure 37: Dissolved Sb vs pH at Tunkillia, differentiated by area.	17

1. INTRODUCTION

A primary justification for the use of hydrogeochemistry in mineral exploration is that groundwater anomalies may be broader and more regular than the mineralisation and secondary dispersion halo in the regolith, thus enhancing the geochemical footprint. In addition, areas of high chemical permeability and reactivity, such as faults and shear zones, may have distinct hydrogeochemical signatures even where they are unremarkable in terms of elemental abundances, and where a petrographic study is difficult. However, such effects may also be counter-productive, as interpretation may become complicated.

Hydrogeochemical studies also provide information on how various materials are weathering. Understanding of active dispersion processes is enhanced, assisting in the development of weathering and geochemical models, considered essential for effective exploration in regolith-dominated terrain. The scope of this investigation includes the effect of underlying lithology on the observed water chemistry, thermodynamic modelling, mapping of the data and comparison with results from Western Australian sites.

2. SITE CHARACTERISTICS

The Tunkillia gold deposit is part of the Lake Everard Gold Project, 700 km NW of Adelaide in the Gawler Craton (Anon, 2003). Helix Resources acquired the Project in 1996 to explore for gold in Mesoproterozoic geological settings in the Gawler Craton. The Tunkillia discovery was announced in late 1996, and the 20 km² gold-in-calcrete anomaly remains the largest in the region.

Tunkillia is located within the central part of the Gawler Craton along the western margin of the Gawler Range Volcanic Province (Figure 1). Basement rocks within the Lake Everard tenement rarely outcrop; they have been intensely weathered and are overlain by a thin veneer of sediments (Anon, 2003). The main resource is located in Area 223 (Figure 2) within the western demagnetised zone, with Area 191 in the eastern demagnetised zone also identified as a prospective site (Anon, 2003). Mineralisation at Area 223 comprises a broad, flat lying supergene blanket at 50 metres depth overlying a series of up to six steeply dipping primary ore shoots trending sub-parallel to the regional shear trend (Figure 3). Mineralisation is contained within three main zones along strike for 1.6 kilometres, but has only been drilled in detail over the central 400-metre zone (Anon, 2003). Recent resource estimation indicates Area 223 to contain 10.5 Mt at 2.2 g/t Au (1.0 g/t cut-off) and 5.6 g/t Ag, for approximately 730,000 oz Au and 1,900,000 oz Ag (Anon, 2004).

Figure 1: Geology of the Gawler Craton (courtesy PIRSA) with position of Tunkillia shown.

Figure 2: Drilling, calcrete Au and mineralisation for Area 223 (from Anon, 2003). The blue box represents the hydrogeochemical sampling area (Figure 4).

Figure 3: Cross section 111350mN, Area 223 (from Anon, 2003).

3. SAMPLING AND ANALYSIS

Groundwater sampling was conducted as part of a large Fieldwork Program (Worrall, 2003) conducted between the 4th and 22nd of May 2003. Drill holes were relocated and reopened by Helix Resources, and probed for groundwater by CSIRO staff. If groundwater was present and the holes not contaminated with diesel or other petroleum products such as drillers grease, the depth to water was recorded and water samples collected by bailer, and classified by the sampling area (Figure 4). Water samples were collected from 94 holes (Worrall, 2003), usually several metres below the water surface. Samples were analysed for pH and oxidation potential (Eh) on-site, with an aliquot collected for HCO_3^- analysis by alkalinity titration. About 1.5 L of water was filtered through a 0.1 μ m membrane filter; about 200 mL then acidified [0.1 mL 15 moles/litre (M) nitric acid (HNO₃)], and analysed for:

- (i) Al, B, Ba, Be, Ca, Cr, Cu, Fe, K, Li, Mg, Mn, Na, P, SO₄ (measured as S), Si, Sr, Ti, V and Zn by Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) at CSIRO Laboratories, Sydney;
- (ii) Bi, Cd, Ce, Co, Cs, Dy, Eu, Er, Ga, Gd, Ge, Ho, In, La, Lu, Mo, Nd, Ni, Pb, Pr, Rb, Sb, Sm, Tb, Te, Th, Tl, Tm, U, Y and Yb by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) at CSIRO Laboratories, Sydney.

Chloride, bromide, sulphate, nitrate, phosphate and iodide were analysed on an un-acidified, filtered sub-sample by suppressed ion chromatography on a Metrohm modular IC using an acid re-generated suppressor, MetroSep A Supp5 column, a carbonate/bicarbonate eluent (32 mM Na₂CO₃ and 10 mM NaHCO₃) and a conductivity detector.

A 1 L sub-sample of the filtered water was acidified with 1 mL 15 M HNO_3 and a 1 g sachet of activated carbon plus 30 g sodium chloride added. The bottle was rolled for eight days in the laboratory and the water discarded. The carbon was then analysed for Au by Instrumental Neutron Activation Analysis (INAA) at Becquerel Laboratories, Lucas Heights. The method has been previously tested by shaking Au standards of varying concentrations, and in varying salinities, with activated carbon (Gray, unpublished data).

Equilibrium activity diagrams were derived using The Geochemist's Workbench (GWB; Bethke, 1996). The solution species and degree of mineral saturation were computed from the solution compositions using the program PHREEOE (Parkhurst et al., 1980; described in detail in Gray, 1990) and Gray, 1991), which determines the chemical speciation of many of the major and trace elements. To obtain highly accurate speciation data on a limited suite of the major elements (Na, K, Mg, Ca, Cl, HCO_3 , SO_4 , Sr and Ba), the specific ion interaction model known as the Pitzer equations was applied, using the program PHRQPITZ (Plummer and Parkhurst, 1990). These programs calculate the saturation indices (SI) for each water sample for various minerals. If the SI for a mineral equals zero (empirically from -0.2 to 0.2 for the major element minerals, and -1 to 1 for the minor element minerals), the water is in equilibrium with that mineral, under the conditions specified. Where the SI is less than zero, the solution is under-saturated with respect to that mineral, so that, if present, the phase may dissolve. If the SI is greater than zero the solution is over-saturated with respect to this mineral, which can potentially precipitate from solution. Note that this analysis only specifies possible reactions, as kinetic constraints may rule out reactions that are thermodynamically allowed. Thus, for example, waters are commonly in equilibrium with calcite, but may become over-saturated with respect to dolomite, due to the slow rate of solution equilibration and precipitation of this mineral (Drever, 1982).

The determinations are important in understanding solution processes at a site. They have particular value in determining whether the spatial distribution of an element is correlated with geological phenomena such as lithology or mineralisation, or whether they are related to weathering or environmental effects. Thus, if Ca distribution is controlled by equilibrium with gypsum in all

samples, then the spatial distribution of dissolved Ca will reflect SO_4 concentration alone and have no direct exploration significance.

Figure 4: Location of water samples, overlain on conductance map (Lane and Worrall, 2002)

4. RESULTS

4.1 Compilation of results and comparison with other sites

Median concentrations of various ions at Tunkillia and at selected sites from Western Australia are given in Table 1 (Appendix 1), with comparative plots versus TDS, pH or Eh in Appendix 2, Figures A2.1-2.44. The sea water data (Weast, 1983) are used to derive the line of possible values if sea water were diluted with freshwater or concentrated by evaporation (denoted as the sea water line) in TDS plots. The sea water concentration is also shown in the pH plots. Where the line is not observed, this is because the concentration in sea water is very low, relative to the concentration of the element in groundwaters, and the line effectively lies on the x-axis. The results from Tunkillia can be compared with those from areas in WA, which are grouped as follows (Gray, 2001):

- (i) *Northern groundwaters* (N Yilgarn and margins) -Groundwaters are fresh and neutral, trending more saline in the valley floors.
- (ii) Central groundwaters (close to and north of the Menzies line) -Neutral and brackish (commonly < 1% TDS) to saline (about 3% TDS), trending to hypersaline (10 - 30% TDS) at the salt lakes, with common increases in salinity with depth.
- (iii) Kalgoorlie groundwaters -Commonly acid (pH 3 - 5), except where buffered by ultramafic rocks, and saline within the top part of the groundwater mass, trending to more neutral (pH 5 - 7) and hypersaline at depth and when within a few kilometres of various salt lakes in the region.
- (iv) Eastern groundwaters (SE Yilgarn and margins) -Saline to hypersaline and neutral to acid. The major ion chemistry is similar to that of the Kalgoorlie region, but the dissolved concentration of many other ions may be low, due to the common presence of lignites in the channel sediments
- (v) East Alford (SE Gawler) -Saline and neutral to moderately acid. Similar to Kalgoorlie and Eastern regions of the Yilgarn Craton, but the dissolved base metal concentration is commonly high, consistent with ubiquitous Cu / Zn mineralization in the Moonta and Walleroo areas.

Saturation index (SI; Section 3) values for varying minerals are plotted in Appendix 3, Figures A3.1 – A3.36. The equilibrium point is shown as the line at SI = 0. The two horizontal lines parallel to zero denotes the zone in which waters may be in equilibrium with that mineral. Note that where a mineral has a very broad zone, this indicates significant uncertainty in the thermodynamic data for this mineral or calculation problems - *i.e.*, samples within that zone are not necessarily at equilibrium, though samples above or below the zone are out of equilibrium.

4.2 Salinity effects and major element hydrogeochemistry

Most Tunkillia groundwaters have salinities (Figure 5) close to or slightly below sea water (salinity of 3.5%) and Na (Figure 5), Mg, Cl and SO₄ are correlated with total salinity and are close to the sea water dilution/evaporation line. With the exception of a few fresher samples (possibly representing fresher water from rainfall or perched aquifers), the variation in salinity is low relative to other sites (Figure 6). However, unlike other sites, there is a marked enrichment in Ca (Figure 7), which correlates with K depletion (Figure 8). This Ca enrichment / K depletion shows a weak trend with pH (being greater at higher pH), indicating that the common reason for K depletion in the southern Yilgarn, alunite precipitation in acid Al-rich waters (Gray, 2000) is unlikely to be the cause here. One possible cause is the hydrolysis of Ca feldspars to secondary clay minerals:

$$\begin{array}{c} 4\text{CaAl}_{2}\text{Si}_{2}\text{O}_{8} + 2\text{SiO}_{2} + 1\frac{1}{2}\text{H}_{2}\text{O} + 7\text{H}^{+} + \text{K}^{+} \rightarrow \\ \text{(Anorthite)} \quad (\text{Quartz}) \\ & 2\text{K}_{0.5}\text{Al}_{2.5}\text{Si}_{3.5}\text{O}_{10}(\text{OH})_{2} + 1\frac{1}{2}\text{Al}_{2}\text{Si}_{2}\text{O}_{5}(\text{OH})_{4} + 4\text{Ca}^{2+} \\ \text{(Illite)} \\ & (\text{Kaolinite}) \end{array}$$

	Tunkillia	Kalgoorlie	Eastern	Central	Northern	Sea water
pН	5.7 ± 1.1	5.6 ± 1.3	6.4 ± 1.1	6.9 ± 0.6	7.3 ± 0.3	-
Eh (mV)	436 ± 147	398 ± 152	288 ± 183	290 ± 94	303 ± 64	-
HCO ₃	32 ± 84	36 ± 140	45 ± 181	170 ± 191	108 ± 44	142
TDS (%)	3.0 ± 0.5	5.6 ± 3.5	10.6 ± 10.5	2.0 ± 3.1	0.1 ± 0.5	3.5
Na*	0.312 ± 0.013	0.312±0.014	0.304±0.014	0.328±0.024	0.209 ± 0.082	0.307
Mg*	0.030 ± 0.004	0.037 ± 0.008	0.041±0.010	0.029 ± 0.008	0.059 ± 0.019	0.037
Ca*	0.027 ± 0.007	0.007 ± 0.004	0.005 ± 0.010	0.009 ± 0.011	0.087 ± 0.034	0.012
K*	0.009 ± 0.002	0.003 ± 0.005	0.004 ± 0.003	0.010±0.003	0.024 ± 0.012	0.011
Cl*	0.525 ± 0.011	0.568±0.033	0.558±0.027	0.524±0.042	0.314±0.134	0.552
SO_4*	0.091 ± 0.008	0.070±0.023	0.085 ± 0.027	0.083±0.032	0.168 ± 0.052	0.077
Sr	3.2 ± 3.2	6.1 ± 4.8	8.2 ± 3.3	2.8 ± 2.8	0.4 ± 0.7	7.9
Br	52 ± 9	49 ± 26	23 ± 39	16 ± 26	1.1 ± 2.4	67
Ι	0.0 ± 1.1	2.9 ± 2.5	0.1 ± 3.6	5.1 ± 4.2	0.4 ± 0.6	0.06
F	3 ± 5	1.6 ± 2.2	nd	nd	nd	1.3
В	6.5 ± 1.3	6.9 ± 2.3	3.3 ± 1.4	4.3 ± 0.7	0.8 ± 0.5	4.44
Li	0.54 ± 0.18	0.17 ± 0.42	0.51 ± 0.21	0.00 ± 0.08	0.00 ± 0.02	0.18
Rb	0.067 ± 0.032	0.047 ± 0.027	0.037 ± 0.020	0.051±0.013	0.013 ± 0.011	0.12
Cs	0.004 ± 0.008	0.004 ± 0.013	0.001 ± 0.004	0.001±0.003	0.000 ± 0.001	0.0003
Ва	0.003 ± 0.024	0.028 ± 0.039	0.032 ± 0.029	0.020±0.093	0.038 ± 0.032	0.013
Be	0.004 ± 0.034	0.001 ± 0.005	0.003 ± 0.884	0.003 ± 0.000	0.001 ± 0.000	0.000
Al	0.4 ± 31.4	0 ± 27	0 ± 20	0.0 ± 1.5	0.003 ± 0.021	0.002
Si	15 ± 13	18 ± 14	4 ± 10	27 ± 11	26 ± 10	2.2
V	< 0.005	< 0.005	< 0.005	< 0.005	0.008 ± 0.010	< 0.005
Mn	6.5 ± 6.0	2 ± 6	2 ± 3	0.1 ± 2.3	0.0 ± 0.4	0.0002
Fe	0.2 ± 2.7	0.2 ± 3.4	0.2 ± 31.0	0.0 ± 6.9	0.01 ± 0.08	0.002
Cr	0.003 ± 0.002	0.003 ± 0.060	0.001 ± 0.010	0.003 ± 0.007	0.009 ± 0.045	0.0003
Co	0.04 ± 0.09	0.10 ± 0.21	0.01 ± 0.04	0.00 ± 0.03	0.00 ± 0.04	0.00002
Ni	0.05 ± 0.08	0.14 ± 0.27	0.02 ± 0.11	0.00 ± 0.04	0.002 ± 0.008	0.0006
Cu	0.03 ± 0.13	0.04 ± 0.12	0.02 ± 0.18	0.00 ± 0.03	0.003 ± 0.002	0.0003
Zn	0.24 ± 0.48	0.05 ± 3.37	0.08 ± 0.16	0.00 ± 0.10	0.005 ± 0.010	0.005
Ga	0.001 ± 0.002	0.001±0.011	0.000 ± 0.004	0.003±0.001	0.001±0.001	0.00003
Ge	0.001 ± 0.004	0.023 ± 0.029	0.018±0.013	0.003±0.001	0.000 ± 0.001	0.00005
Y	0.06 ± 0.28	0.008±0.173	0.001±0.058	0.0005±0.0002	0.0001±0.0003	0.00001
La	0.01 ± 0.08	0.003 ± 0.252	0.001 ± 0.080	0.0005 ± 0.0008	0.0001 ± 0.0002	0.000003
Ce	0.03 ± 0.22	0.006 ± 0.477	0.001±0.137	0.0005±0.0003	0.0001 ± 0.0002	0.000001
Мо	0.002 ± 0.015	0.005 ± 0.007	0.001±0.003	0.009±0.020	0.003±0.031	0.01
Cd	0.002 ± 0.004	0.0025 ± 0.0041	0.0010±0.0012	0.0010±0.0021	0.0005 ± 0.0003	0.0001
Sb	0.0002 ± 0.0002	0.0005 ± 0.0010	0.0005 ± 0.0015	0.0005 ± 0.0500	0.0001 ± 0.0005	0.0002
Tl	0.0002 ± 0.0003	0.0014±0.0016	0.0007 ± 0.0003	0.0005 ± 0.0078	0.0001 ± 0.0008	0.00002
Pb	0.005 ± 0.046	0.022 ± 0.228	0.026±0.584	0.001±0.166	0.0005 ± 0.0012	0.00003
Bi	0.0001 ± 0.0001	0.0005 ± 0.0004	0.0003 ± 0.0004	0.0005±0.0063	0.0001 ± 0.0002	0.00002
Th	0.0001 ± 0.0008	0.0005 ± 0.0004	0.0003±0.0004	0.0005±0.0006	0.0001 ± 0.0002	0.000001
U	0.024 ± 0.036	0.0034 ± 0.0528	0.0011±0.0107	0.0018±0.0023	0.0006 ± 0.0089	0.0032
Au (ppb)	0.012 ± 0.308	0.040 ± 0.492	0.003 ± 0.047	0.030 ± 0.186	0.004 ± 4.724	0.004

Table 1: Median compositions of Tunkillia and W.A. groundwaters.

 \pm standard deviation;

* ratio to total salinity;

nd: not determined;

All parameters in mg/L unless otherwise noted

Figure 5: Dissolved Na vs TDS for groundwaters from Tunkillia and other sites.

Figure 6: pH vs TDS for groundwaters from Tunkillia and other sites.

Figure 7: Dissolved Ca vs TDS for groundwaters from Tunkillia and other sites.

Figure 8: Dissolved K vs Ca at Tunkillia, differentiated by area (Figure 4). The four lowest and three highest salinity waters are removed for clarity.

4.3 Acidity and oxidation potential

An Eh-pH plot of Tunkillia groundwaters differentiated by area (Figure 4) is shown in Figure 9. Most Tunkillia groundwaters appear to be controlled by similar Eh/pH couples as other South and Western

Australian groundwaters (Gray, 2001). Some of these waters have been plotted in Figure 10 for reference. Those groundwaters within the "Fe" domain (Figure 9) generally have moderate to high concentrations of Fe, with soluble Fe possibly originating from the dissolution of Fe-containing minerals such as pyrite:

$$2\text{FeS}_2 + 7\text{O}_2 + 2\text{H}_2\text{O} \implies 2\text{Fe}^{2+} + 4\text{SO}_4^{2-} + 4\text{H}^+$$

(pyrite)

The released acidity may well be involved in other weathering (such as feldspar dissolution; Section 4.2), leading to buffering at neutral pH. Closer to the surface, this Fe^{2+} may oxidise:

$$2Fe^{2+} + \frac{1}{2}O_2 + 5H_2O \implies 2Fe(OH)_3 + 4H^+$$

(ferrihydrite)

The resultant proton release may cause greater pH reduction, due to the lack of buffering minerals. This could result in higher Eh, lower pH groundwaters within this Fe controlled domain.

As pH is reduced, a limit is reached whereby pH is maintained above 3, by dissolution of aluminosilicates such as kaolinite, with dissolution of Al (the "Al" domain in Figure 9). The "HO" group represents near neutral groundwaters with low Fe concentrations and weak control of Eh. This group of waters has lower activity than other groundwaters, and commonly has lower trace element concentrations (Gray, 2001). These various controls result in a bimodal pH distribution (Figure 11), with 31% of groundwaters between pH 3.5 and 4.5 and 32% between pH 6 and 6.5.

Figure 9: Eh vs pH for Tunkillia groundwaters, differentiated by area (Figure 4). The dashed line is the lower Eh limit at which Au has a solubility of 0.2 μg/L relative to Au metal. Eh/pH controls are discussed in the text.

Figure 10: Eh vs pH for Tunkillia and other South and Western Australian groundwaters. In addition to the usual water stability line $[P(O_2)=1]$, the lines for O₂ pressures of 10⁻⁵ and 10⁻¹⁰ atm are also shown.

Figure 11: Distribution of groundwaters pH values, Tunkillia.

In contrast to these previously identified Eh/pH groupings (Gray, 2001), some of the groundwaters in the mineralised zone at Area 223 (*i.e.*, 223 central in Figure 9) appear to be different from other Tunkillia (and indeed other Western and South Australian; Figure 10) groundwaters. The high Eh even at neutral pH indicates a higher O_2 fugacity than usual, which has consequences for Au mobility.

Major elements such as Al and Si are strongly effected by pH (Figure 12 and Figure 13), indicating enhanced dissolution of feldspars or other Al and Si containing minerals under acid conditions. At pH values below 4, Tunkillia groundwaters are at kaolinite and amorphous silica saturation (Figure 14). This is consistent with either kaolinite itself being attacked under these very acid conditions, or being precipitated where other more soluble alumino-silicates are present. Amorphous silica acts as the sink for any excess released Si. Conversely, in near neutral conditions the high dissolved K and moderate Si means that feldspars are stable relative to kaolinite (Figure 15). Thus, in present day conditions feldspars are stable in the water saturated regolith where pH remains above 5.

Figure 12: Dissolved Al vs. pH for groundwaters from Tunkillia and other sites.

Figure 13: Dissolved Si vs. pH for groundwaters from Tunkillia and other sites.

Muscovite K-feldspar 'og a K⁺/H⁺ 3 Gibbsite pН 3 - 4 0 4 - 5 Kaolinite 5 - 6 \bigcirc 6 eidellite 0⊾ –6 -5 _4 -3 -2 log a SiO₂ (aq)

Figure 14: Tunkillia groundwater activity data (from PHREEQE), colour-coded by pH, overlain on a Al-Si-H₂O equilibrium activity diagram (GWB; $25^{\circ}C / 1$ atm). All SiO₂ phases except amorphous silica suppressed.

Figure 15: Tunkillia groundwater activity data (from PHREEQE), colour-coded by pH, overlain on a K-Al-Si-H₂O equilibrium activity diagram (GWB; 25°C / 1 atm). Pyrophyllite suppressed.

4.4 Gold chemistry

The relatively high salinity of the Tunkillia groundwaters means that the dominant mechanism for the mobilization of Au in the southern Yilgarn, namely as the chloride complex $(AuCl_2)$ is expected to be significant for those groundwaters that are both acid and oxidising:

$$2Au_{(S)} + 4Cl + \frac{1}{2}O_2 + 2H^+ \implies 2AuCl_2 + H_2O_2$$

Thermodynamically, the neutral and oxidising groundwaters in the main mineralised zone at Area 223 should also be effective at dissolving Au. However, these groundwaters have surprisingly low Au concentrations (Figure 16), suggesting kinetic barriers to Au dissolution. Highest Au solubilities (up to 2.5 μ g/L) were observed for the 191 north area (Figure 4), with only moderate Eh (Figure 16). These Au-rich groundwaters also had observable dissolved Fe (Figure 17), despite the fact that dissolved Fe will reduce AuCl₂⁻ at these Eh levels:

$$\operatorname{AuCl}_2 + \operatorname{Fe}^{2+} + \operatorname{3H}_2 O \Longrightarrow \operatorname{Au}_{(S)} + \operatorname{Fe}(OH)_3 + 2\operatorname{Cl}^2 + \operatorname{3H}^2$$

Possible Au complexes that would not be reduced by Fe are with thiosulfate $[Au(S_2O_3)_2^{3-}]$, although this is unlikely to be stable at the pH values of these Au-rich groundwaters (pH < 4.2). The iodide complex (AuI₂⁻), would be expected to be stable, although there is little evidence for high I concentrations in Area 191. Further research would be required to determine the form of the dissolved Au in these groundwaters.

Although not fully understood, the differing properties of these groundwaters appear to cause a subdued dissolved Au response around mineralisation in Area 223 and enhanced dissolved Au in Area 191.

differentiated by area (Figure 4).

Figure 17: Dissolved Au vs Fe at Tunkillia, differentiated by area (Figure 4).

4.5 Minor element hydrogeochemistry

The concentrations of the minor elements (Table 1; Figure 18 - Figure 26) show some similarities to Kalgoorlie groundwaters, as expected for an acid/saline environment (Gray, 2001). In particular, base metals (Figure 19 - Figure 21) have higher dissolved concentrations than the neutral central and northern groundwaters. This effect is also strong for the REE (Figure 24 - Figure 26), particularly for heavy REE and Y (not plotted), indicating higher relative dissolution of heavy REE at Tunkillia. In contrast, anionic chalcophile elements such as Sb (Figure 23) have low concentrations, although Mo does have some very high dissolved concentrations (Figure 22). Comparison with other sites is enhanced by calculating median concentrations at half pH intervals (*e.g.*, Figure 27). On the basis of these comparisons (Table 2), groundwaters at Tunkillia appear to dominantly represent felsic lithologies.

Figure 18: Dissolved Fe vs pH for groundwaters from Tunkillia and other sites.

Figure 19: Dissolved Mn vs pH for groundwaters from Tunkillia and other sites.

Figure 20: Dissolved Cu vs pH for groundwaters from Tunkillia and other sites.

Figure 21: Dissolved Zn vs pH for groundwaters from Tunkillia and other sites.

Figure 22: Dissolved Mo vs pH for groundwaters from Tunkillia and other sites.

Figure 24: Dissolved La vs pH for groundwaters from Tunkillia and other sites.

Figure 23: Dissolved Sb vs pH for groundwaters from Tunkillia and other sites.

Figure 25: Dissolved Eu vs pH for groundwaters from Tunkillia and other sites.

Figure 27: Distribution of median U concentration vs pH for Tunkillia and other sites.

Table 2: Relative concentration of selected elements and of acidity at Tunkillia (compared with primarily greenstone terrains, Western Australia and corrected for pH effects; e.g. Figure 27)

Low	Medium	High
		Acidity
Mg	Na	Ca
Cl		SO_4
Ba	В	F
		Li
Мо		Al
Sb		Si
Au	Cu	Be
	Fe	Mn
Ni	Co	Zn
Pb	Light REE	Y, heavy REE
		U

5. HYDROGEOCHEMICAL MAPPING

Data for all elements is in the Appendix, with selective plots given below. The spatial distribution of elemental concentrations further distinguishes the particular hydrogeochemical controls at Tunkillia. Additionally, various dissolved elements may be effective pathfinders for mineralization. This has been indicated for dissolved Au and chalcophiles such as As or Mo in Yilgarn Craton groundwaters (Gray, 2001). For Tunkillia groundwaters, some of the most significant spatial variations are in pH/Eh (Figure 28), as discussed in Section 4.3. In particular the "unusual" neutral and highly oxidised groundwaters (Purple circles) are uniquely located in the 223 central area. Conversely, high SO_4/Cl ratios are located in the 191 north area (Figure 29). Further work is required, but it is postulated that these effects are due to the weathering of specific sulphide assemblages. However, this is not reflected by especially high dissolved Fe concentrations (Figure 30), possibly because of the complex pH, Eh and ligand controls on Fe solubility. When the solution saturation with respect to secondary Fe minerals (*e.g.*, Fe₃(OH)₈; Figure 31) is used to "normalise" for these effects, there is a high correlation of Fe₃(OH)₈ saturation at 223 central, and possibly at 191 north.

As expected, dissolved Au is highly anomalous, with concentrations greater than 50 ng/L (0.05 μ g/L) commonly observed (Figure 32). This suggests that Au mineralisation (though not necessarily economic) occurs throughout the Tunkillia area. Highest dissolved Au concentrations occur in the 223 Central zone (and upgradient / south), and particularly within the 191 North zone. Though both sites are clearly highly anomalous, it is not known whether the higher Au response in 191 North groundwaters is due to as yet undiscovered mineralisation or differing groundwater conditions (Sections 4.3 and 4.4). Dissolved V (Figure 33) is anomalous hundreds of metres around the main mineralised zone at 223 Central and possibly in the 191 North zone. This could be related to mica alteration. The dissolved Te anomaly (Figure 34) in the 223 Central zone is marked, with a 5 – 10 fold increase over background (Figure 36). In contrast, the Te anomaly at 191 North is subdued. Dissolved Sb values tend to be raised upgradient (Figure 35) of the 223 mineralisation, with only a 2:1 anomaly-to-background (Figure 37). No other elements showed any clear anomaly associated with known mineralisation.

476000 477000 478000 479000 480000 Figure 28: Distribution of pH/Eh groundwater groups at Tunkillia.

476000 477000 478000 479000 480000 Figure 29: Distribution of the SO₄/Cl groundwater ratio at Tunkillia.

Figure 32: Distribution of dissolved Au at Tunkillia.

Figure 33: Distribution of dissolved V at Tunkillia.

Figure 34: Distribution of dissolved Te at Tunkillia.

Figure 35: Distribution of dissolved Sb at Tunkillia.

Figure 36: Dissolved Te vs pH at Tunkillia, differentiated by area (Figure 4).

Figure 37: Dissolved Sb vs pH at Tunkillia, differentiated by area (Figure 4).

6. DISCUSSION AND CONCLUSIONS

The Tunkillia groundwater survey offered an extensive study of an entire Au exploration site within the Gawler Craton, with 94 samples analysed. Although the site shows many similarities to sites in the Yilgarn Craton, some distinct differences are observed. These findings have implications for the use of hydrogeochemistry for exploration, and possibly for the supergene dispersion patterns in this region. The homogeneous salinity of the area (Section 4.2) differs from the marked variation in salinity at most of the Yilgarn sites, suggesting differing flow patterns. At the Yilgarn, saline groundwater flow is commonly strongly affected by evaporative playas at the valley floors, through which groundwaters flow, albeit slowly, eastward to the Eucla Basin, and by density driven convection (Gray, 2001; Carey and McPhail, 2002). This results in major lateral and depth differences in salinity. In contrast, the uniformity of salinity at Tunkillia implies little directional flow, and a generally "ponded" situation. Such a lack of flow would imply that groundwater anomalies would spatially closely match results in the fresh or weathered rock.

Possibly, as a result of longer contact times, or because the uniformity of salinities enables variation from the sea water norm to be readily identified, specific major element enrichments and depletions are observed at Tunkillia. The common Ca enrichment / K depletion (Section 4.2) may be the result of Ca feldspar hydrolysis (Na and K feldspar commonly being stable in these groundwaters, except for pH below 5). This suggests groundwaters are interacting with fresh rock or weakly weathered regolith, again indicating that groundwater should mirror the geology at this site. Clear differentiations in the SO₄/Cl ratio, in particular the SO₄ enriched at 191 North (Figure 29), suggest S release via oxidation of sulfide minerals.

Groundwater pH values show a bimodal distribution, with highest numbers centred around pH 4 and pH 6 (Section 4.3). Interpretation of results should take this into account, as the more acid groundwaters are expected to have higher base metal, and low anion (including As, Sb, Mo and Te) contents. When pH effects are taken into account, Tunkillia groundwaters are enriched in a felsic suite of elements (*e.g.*, Li, Al, Si, U; Table 2), relative to Yilgarn greenstone sites.

Assessing Eh in conjunction with pH (Figure 9), indicates specific Eh/pH groups, considered to be controlled by dissolved Fe (Fe), Al dissolution (Al), and neutral and poorly poised (HO), which is very similar to the situation for Yilgarn groundwaters (Figure 10). In addition, a group of six groundwaters have high Eh (≥ 600 mV), even though pH is greater than 5. These high O₂ fugacity groundwaters (Figure 10) differ from Yilgarn groundwaters, and are all found within the 223 central area, close to the identified mineralisation (Figure 28). Though the genesis of these specific Eh/pH conditions is not known, it may reflect subtleties in sulfide oxidation in this area. This effect may explain the only moderate dissolved Au content around the identified mineralisation at Area 223, in contrast with the major response at 191 North (Figure 32). Other elements with potential as groundwater pathfinders are V (Figure 33) and Te (Figure 34). Dissolved Fe (possibly related to sulfide dissolution) gives a patchy distribution (Figure 30), possibly due to the complex effect of pH and Eh on solubility. When this effect is "normalised" by calculating groundwater saturation to secondary Fe oxides such as Fe₃(OH)₈, a strong anomaly around the 223 mineralisation is observed (Figure 31).

The Tunkillia site demonstrates subtle but important differences from Yilgarn groundwaters, possibly related to a number of factors:

- 1. Tunkillia is primarily composed of felsic rocks;
- 2. Tunkillia groundwater appear to be more "ponded" than in the Yilgarn, potentially causing longer contact times;
- 3. Mineralisation at 223 Central and 191 North may include differing accessory and/or sulfide minerals, leading to differing releases to groundwater.

Various dissolved elements (Au, V, Te) have potential value for exploration. Dissolved Au is anomalous throughout most of the Tunkillia area, with particularly high dissolved concentrations

around the mineralised area at Area 223 and at 191 North. Dissolved V and Te, Eh/pH classes and "normalised" Fe all appear to correlate with mineralised sites. The results discussed in this report demonstrate the capability for groundwater geochemistry to reflect flow characteristics, lithology and mineralisation in the Tunkillia region.

ACKNOWLEDGEMENTS

The authors would like to thank staff of Helix Resources Ltd for their assistance and support throughout the research. Dale Longman is acknowledged for field and laboratory technical support. Staff of Geoscience Australia, particularly Lisa Worrall, gave advice and field support. Financial support was supplied by the Co-operative Research Centre for Landscape Environment and Mineral Exploration (CRCLEME).

REFERENCES

- Anon, 2003. Helix Resources Limited, Annual Report 2003. West Perth, Western Australia 6872
- Anon, 2004. Helix Resources Limited, Quarterly Report for quarter ending March 2004. West Perth, Western Australia 6872.
- Carey, M. and McPhail, D.C. (2002) The influence of playa lake related convective flow on groundwater element distributions around gold orebodies: Planning effective hydrogeochemical surveys. In Preiss, V.P. (editor), 2002. Geoscience 2002: Expanding Horizons. Abstracts of the 16th Australian Geological Convention, Adelaide Convention Centre, Adelaide, SA, Australia, July 1-5, No. 67, p.304.
- Drever, J.I., 1982. The Geochemistry of Natural Waters. Prentice-Hall, Inc., Englewood Cliffs, N.J. U.S.A. 388 p.
- Gray, D.J., 1990. Hydrogeochemistry of the Panglo Gold Deposit. CSIRO Division of Exploration Geoscience Restricted Report 125R, Perth, Australia. 74pp.
- Gray, D.J., 1991. Hydrogeochemistry in the Mount Gibson Gold District. CSIRO Division of Exploration Geoscience Restricted Report 120R, Perth, Australia. 80pp.
- Gray, D.J., 1992a. Hydrogeochemistry of sulphide weathering at Boags Pit, Bottle Creek, Western Australia. CSIRO Division of Exploration Geoscience Restricted Report 237R, Perth, Australia. 13pp.
- Gray, D.J., 1992b. Geochemical and hydrogeochemical investigations of alluvium at Mulgarrie, Western Australia. CSIRO Division of Exploration Geoscience Restricted Report 339R, Perth, Australia. 66pp.
- Gray, D.J., 1993a. Investigation of the hydrogeochemical dispersion of gold and other elements from mineralized zones at the Granny Smith Gold Deposit, Western Australia. CSIRO Division of Exploration Geoscience Restricted Report 383R, Perth, Australia. Vols I and II. 93pp.
- Gray, D.J., 1993b. Investigation of the hydrogeochemical dispersion of gold and other elements in the Wollubar Palaeodrainage, Western Australia. CSIRO Division of Exploration Geoscience Restricted Report 387R, Perth, Australia. Vols I and II. 133pp.
- Gray, D.J., 1994. Investigation of the hydrogeochemical dispersion of gold and other elements at Lawlers, Western Australia. CSIRO Division of Exploration and Mining Restricted Report 26R, Perth, Australia. Vols. I and II. 151 pp.
- Gray, D.J., 1995. Hydrogeochemical dispersion of gold and other elements at Baxter, Western Australia. CSIRO Division of Exploration and Mining Restricted Report 169R, Perth, Australia. 85 pp.
- Gray, D.J., 1996. Hydrogeochemistry in the Yilgarn Craton. CSIRO Division of Exploration and Mining Restricted Report 312R, Perth, Australia. 75pp.
- Gray, D.J., 1998. Characteristics of gold distribution and hydrogeochemistry at the Carosue Dam Prospect, Western Australia: Preliminary Report. CSIRO Division of Exploration and Mining Restricted Report 550R, Perth, Australia. 90pp.
- Gray, D.J., 2001. Hydrogeochemistry in the Yilgarn Craton. *Geochemistry: Exploration, Environment, Analysis*, 1: 253-264.
- Lane, R. and Worrall, L., 2002. Interpretation of airborne electromagnetic data: Summary Report on the Tunkillia workshop. Geoscience Australia Restricted Report.
- Lintern, M.J., and Gray, D.J., 1995a. Progress Statement for the Kalgoorlie Study Area Steinway Prospect, Western Australia. CSIRO Division of Exploration and Mining Restricted Report 95R, Perth, Australia. 121 pp.
- Lintern, M.J., and Gray, D.J., 1995b. Progress Statement for the Kalgoorlie Study Area Argo Deposit, Western Australia. CSIRO Division of Exploration and Mining Restricted Report 96R, Perth, Australia. 153 pp.
- Murphy, J. and Riley, J.P., 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27: 31-36.
- Parkhurst, D.L., Thorstenson, D.C. and Plummer, L.N., 1980. PHREEQE, a computer program for geochemical calculations. U.S. Geological Survey Water Resources Investigations 80-96, 210p.

- Plummer, L.N., and Parkhurst, D.L., 1990, Application of the Pitzer Equations to the PHREEQE geochemical model, in Melchior, D.C., and Bassett, R.L., eds., Chemical modeling of aqueous systems II: American Chemical Society Symposium Series 416, Washington, D.C., American Chemical Society, p. 128-137.
- Weast, R.C., Astle, M.J. and Beyer, W.H. (1984). "CRC Handbook of Chemistry and Physics." F-154 Elements in Sea Water. (64th Edition; CRC Press Inc., Florida, USA).
- Worrall, L., 2003. Tunkillia Fieldwork Program May 2003: Completion Report. Geoscience Australia Restricted Report.
- Zall, D.M., Fisher, D. and Garner, M.D., 1956. Photometric determination of chlorides in water. Analytical Chemistry, 28:1665.

Appendix 1: Analytical Results

1a: Sampling details

Drill	Easting	Northing	RL	Azi-	Dip	Depth	CSIRO	То	То
Hole	(AGD84)	(AGD84)	(mASL)	muth	-	(m)	sample	water	base
LRC001	478648.64	6547854.03	1192.51	218.0	-60	180	TK90	31	36
LRC004	478758.66	6547955.66	1191.36	218.0	-60	180	TK89	29	34
LRC007	477496.34	6545297.14	1198.60	218.0	-60	180	TK18	36	41
LRC026	478548.26	6547885.79	1193.85	38.0	-60	171	TK91	33	38
LRC031	477659.39	6545176.23	1200.52	218.0	-60	228	TK15	39	44
LRC033	477599.27	6545096.83	1202.13	218.0	-60	228	TK14	40	45
LRC036	477448.38	6545394.23	1199.68	218.0	-60	228	TK19	37	42
LRC041	477639.62	6544980.37	1205.50	218.0	-60	228	TK8	42	52
LRC044	477461.15	6545579.50	1199.50	218.0	-60	228	TK20	38.5	43.5
LRC057	477268.82	6545564.67	1201.27	53.0	-60	204	TK22	38.5	43.5
LRC058	477342.23	6545619.97	1197.52	53.0	-60	204	TK21	35	40
LRC059	477089.67	6545574.50	1196.50	53.0	-60	204	TK24	32.5	37.5
LRC068	477620.54	6544733.06	1208.26	53.0	-60	204	TK6	46	56
LRC070	477780.45	6544824.47	1209.66	53.0	-60	204	TK7	49.5	59
LRC071	477755.84	6544577.42	1206.93	53.0	-60	204	TK5	53	63
LRC077	477430.09	6545206.87	1200.94	38.0	-60	150	TK16	38	43
LRC078	477439.53	6545219.42	1202.40	38.0	-60	120	TK17	42	47
LRC083	476894.74	6546278.58	1192.06	53.0	-60	162	TK62	36	36
LRC084	476868.76	6546263.78	1192.40	53.0	-60	162	TK61	36	41
LRC087	476791.71	6546217.51	1197.79	53.0	-60	156	TK63	38	43
LRC094	476616.82	6546580.00	1190.10	53.0	-60	162	TK64	28	33
LRC096	476566.71	6546549.08	1189.70	53.0	-60	150	TK65	28	33
LRC100	477108.12	6545588.80	1197.70	53.0	-60	159	TK23	34.5	39.5
LRC109	476313.19	6546748.07	1188.20	53.0	-60	162	TK66	27	32
LRC110	476287.33	6546732.31	1187.58	52.5	-60	162	TK67A	26	28
LRC113	476211.88	6546684.78	1185.96	53.0	-60	162	TK67	24	29
LRC114	476186.09	6546668.70	1185.74	53.0	-60	162	TK68	24	29
LRC116	475735.01	6547444.77	1185.77	53.0	-60	159	TK76	29	34
LRC123	476156.59	6547006.63	1187.61	53.0	-60	162	TK75	29	34
LRC130	475969.86	6546894.88	1184.81	53.0	-60	162	TK74	27	32
LRC134	475865.22	6546834.35	1184.70	53.0	-60	162	TK73	25	30
LRC138	476150.65	6546750.82	1186.86	53.0	-60	162	TK72	27	32
LRC139	476123.96	6546735.84	1186.02	53.0	-60	162	TK71	25	30
LRC140	476097.93	6546720.55	1185.22	53.0	-60	162	TK70	24	29
LRC141	476071.69	6546707.13	1184.74	53.0	-60	162	TK69	23	28
LRC147	477221.59	6545780.57	1197.74	53.0	-60	162	TK25	35.5	40.5
LRC166	476998.79	6545988.21	1197.71	53.0	-60	162	TK60	35	40
LRC176	480036.58	6546788.49	1190.16	53.0	-60	160	TK47	29	34
LRC179	477976.88	6544004.91	1213.71	53.0	-60	162	TK32	50	55
LRC180	477949.64	6543990.68	1214.12	55.0	-60	162	TK33	51	56
LRC183	477909.84	6544210.16	1211.13	53.0	-60	162	TK29	49	54
LRC184	477885.05	6544192.48	1210.65	53.0	-60	158	TK30	50	
LRC185	477859.15	6544176.93	1210.51	53.0	-60	162	TK31	49	55
LRC189	477811.25	6544372.20	1209.64	53.0	-60	162	TK26	46.5	
LRC192	478867.41	6547823.55	1191.18	53.0	-60	162	TK87	30	35
LRC201	478632.14	6547691.86	1194.46	53.0	-60	162	TK88	33	38
LRC204	478820.23	6547686.80	1193.49	53.0	-60	162	TK85	33	38
LRC205	478793.36	6547670.48	1193.82	53.0	-60	156	TK86	33	38

App. 1a: Sampling details (cont.)

Drill	Easting	Northing	RL	Azi-	Dip	Depth	CSIRO	То	То
Hole	(AGD84)	(AGD84)	(mASL)	muth	-	(m)	sample	water	base
LRC215	478542.99	6547987.42	1193.05	53.0	-60	162	TK92	31	36
LRC216	478517.72	6547971.74	1192.25	53.0	-60	162	TK93	31	36
LRC223	478546.19	6548097.60	1189.63	53.0	-60	162	TK94	28	33
LRC227	478414.35	6548143.68	1189.56	53.0	-60	162	TK95	27	32
LRC228	478389.14	6548128.69	1189.65	53.0	-60	162	TK96	27	32
LRC229	478363.20	6548114.14	1190.58	53.0	-60	162	TK97	28	33
LRC235	477470.71	6545049.34	1199.82	53.0	-60	150	TK13	37	42
LRC238	477410.74	6545014.07	1200.14	53.0	-60	246	TK12	37	42
LRC254	480449.70	6545635.42	1197.37	53.0	-58	220	TK56	40	45
LRC259	480191.09	6545480.45	1198.78	53.0	-60	216	TK59	36	41
LRC263	479984.63	6545353.02	1200.31	48.0	-60	222	TK57	39	44
LRC264	479937.08	6545320.59	1200.47	53.0	-60	203	TK58	38	43
LRC270	476821.18	6549977.33	1189.45	53.0	-60	162	TK84	40	45
LRC271	476796.74	6549962.58	1189.00	53.0	-60	198	TK83	40	45
LRC277	477900.32	6544318.09	1212.46	53.0	-60	180	TK27	51.5	56.5
LRC279	477850.20	6544290.37	1216.69	52.0	-60	180	TK28	56	61
LRC281	478320.07	6543865.54	1218.61	53.0	-60	180	TK36	55	60
LRC282	478293.21	6543849.94	1218.17	53.0	-60	180	TK35	49	54
LRC283	478266.14	6543836.12	1219.92	55.0	-60	180	TK34	110	115
LRC286	478191.08	6543788.60	1219.68	53.0	-60	180	TK37	55	60
LRC287	478163.95	6543772.83	1219.32	53.0	-60	180	TK38	55	60
LRC288	478139.32	6543758.01	1219.70	53.0	-60	180	TK39	51	56
LRC291	479223.32	6546290.99	1195.67	52.0	-60	204	TK43	36	41
LRC295	479052.10	6546192.43	1200.32	53.0	-60	200	TK42		
LRC300	477522.12	6545018.40	1201.09	53.0	-60	96	TK9	40.5	45.5
LRC301	477507.13	6545010.05	1201.43	53.0	-61	138	TK10	38	43
LRC305	477447.52	6544966.37	1204.67	53.0	-60	240	TK11	42.5	47.5
LRC322	479722.01	6546598.20	1200.00	53.5	-60	148	TK46	29	34
LRC323	479687.84	6546577.37	1200.00	52.5	-60	148	TK45	29	34
LRC326	479585.34	6546514.87	1200.00	53.0	-60	148	TK44	30	35
LRC327	479586.18	6546398.21	1200.00	53.0	-60	148	TK49	30	35
LRC329	479517.85	6546356.54	1200.00	53.0	-60	148	TK48	32	37
LRC333	479484.51	6546219.05	1200.00	53.0	-60	136	TK41	31	36
LRC334	479450.35	6546198.22	1200.00	53.5	-60	148	TK40	32	37
LRC337	479564.72	6545799.27	1200.00	53.0	-60	148	TK51	34	39
LRC343	479359.73	6545674.28	1200.00	54.5	-60	190	TK52	38	43
LRC345	479463.89	6545503.45	1200.00	53.0	-60	148	TK55	37	42
LRC346	479429.73	6545482.62	1200.00	53.0	-60	148	TK53	39	44
LRC347	479395.56	6545461.78	1200.00	54.0	-60	154	TK54	40	45
LRC351	478793.91	6548024.20	1200.00	53.0	-60	148	TK98	27	32
LRC354	479722.85	6546481.54	1200.00	53.0	-60	118	TK50	28	33
LRC365	475527.36	6548961.66	1200.00	53.0	-60	150	TK78	26	31
LRC368	475552.98	6548977.29	1200.00	53.0	-60	150	TK79	25	30
LRC371	475399.23	6548883.54	1200.00	53.0	-60	150	TK80	27	32
LRC373	475206.22	6548883.02	1200.00	53.0	-60	150	TK81	27	32
LRC374	475240.39	6548903.85	1200.00	53.0	-60	150	TK82	27	32
LRC378	475579.44	6548876.25	1200.00	53.0	-60	132	TK77	24	29

Appendix 1b: Tabulated Geochemistry

								НСО		
No.	Location	Easting	Northing	pН	Eh	TDS	Fe	3	Br	CI
		M 47700	m 654400		mv 50	mg/I	mg/i	mg/i	mg/i	mg/i
TK7	223 - Central	47790	6 6	4.03	50 7	29418	0.26	0	51.7	15404
TK8	223 - Central	4///6	654515 2	6.36	23 0	29311	4.7	114	52.9	15409
TK9	223 - Central	47765	654519 0	3.96	52 7	29530	0.05	0	51.6	15496
TK10	223 - Central	47763 6	654518 2	6.34	28 9	30418	0.47	276	47.6	15815
TK11	223 - Central	47757 6	654513 8	5.40	72 2	29605	<0.01	28	49.0	15405
TK12	223 - Central	47753 9	654518 6	3.50	57 7	29947	0.21	0	50.1	15686
TK13	223 - Central	47759 9	654522 1	4.13	54 7	31827	0.20	0	54.7	16945
TK14	223 - Central	47772 8	654526 9	6.13	60 7	29081	<0.01	103	48.5	15122
TK15	223 - Central	47778 8	654534 8	6.47	26 7	26460	2.5	148	43.9	13732
TK16	223 - Central	47755 9	654537 9	6.08	27 5	30102	1.2	45	50.7	15833
TK17	223 - Central	47756 8	654539 1	6.58	22 2	28052	2.0	112	46.8	14785
TK18	223 - Central	47762 5	654546 9	6.66	29 7	30572	0.47	173	51.2	16071
TK19	223 - Central	47757 7	654556 6	6.76	35 7	30437	<0.01	166	51.2	16011
TK20	223 - Central	47759 0	654575 1	6.39	30 5	29809	0.50	192	50.4	15571
TK21	223 - Central	47747	654579 2	4.85	60 7	30264	< 0.01	4	49.2	16041
TK22	223 - Central	47739 7	654573 6	6.00	27 7	32602	7	87	56.8	17126
TK23	223 - Central	47723 7	654576 0	4.96	70 70	20186	0.01	7	53.2	15014
TK24	223 - Central	47721	654574	4.30 6.11	22	25100	15	57	44.2	12106
TK24	223 - Central	47735	654595	6.20	35	209079	0.02	160	44.Z	1000
1625	223 - Central	47794	654454	0.38	43	30978	0.03	163	53.6	16050
TK26	223 - Central	0 47802	4 654449	5.78	2 31	30512	0.06	44	50.4	15623
TK27	223 - Central	9 47797	0 654446	6.36	7 39	30797	0.33	252	51.5	15856
TK28	223 - Central	9 47803	2 654438	6.08	7 37	30559	0.18	78	51.8	15759
TK29	223 - Central	8 47801	2 654436	6.21	7 72	30929	0.12	160	52.6	16117
TK30	223 - Central	4 47798	4 654434	5.96	7 43	30311	<0.01	98	51.0	15672
TK31	223 - Central	8 47810	9 654417	6.55	5 40	30314	<0.01	166	50.7	15626
TK32	223 - Central	6 47807	7 654416	6.65	7 50	31385	<0.01	158	53.4	16548
TK33	223 - Central	8 47839	2 654400	4.15	7 38	31117	1.4	0	53.2	16238
TK34	223 - South	5	8	6.45	7	28606	0.02	204	50.3	15303
TK35	223 - South	47842	654402	6.25	28	30975	0.70	299	51.5	15507

		2	2		7					
		47844	654403		37					
TK36	223 - South	9	7	6.42	2	32454	<0.01	304	54.0	16730
		47832	654396		40					
TK37	223 - South	0	0	6.48	7	26113	0.01	301	44.5	13278
		47829	654394		19					
TK38	223 - South	3	5	6.73	7	30386	4.1	266	50.8	15707
		47826	654393		38					
TK39	223 - South	8	0	6.66	7	29789	0.02	260	49.5	15211
		47957	654637		39					
TK40	191 - South	9	0	6.62	7	30952	0.01	108	52.5	16018
		47961	654639		51			_		
TK41	191 - South	3	1	4.36	7	32235	0.67	0	56.1	16912
-		47918	654636		60		- · -			
TK42	191 - South	1	4	3.51	1	29773	0.15	0	52.5	15800
TI (40		47935	654646	0.4.4	29	00000	0 70	04	50.0	40400
TK43	191 - South	2	3	6.14	1	30660	0.70	91	53.0	16180
TIZ 4 4	404 0 1	4/9/1	654668	F 77	30	0500	1 0	22	11.0	2020
1K44	191 - South	47004	1	5.77	1	6568	1.8	32	11.9	3629
TIZAE	404 0	47981	654674	C 44	40	05007	0.01	E 4	40.0	10100
1645	191 - South	0 47095	9	6.11	1	25637	<0.01	51	43.8	13100
TKAG		47900	004077	6.04	44	26507	0.01	22	15 6	12700
1140	191 - South	19016	654606	0.04	60	20097	0.01	33	45.0	13790
	101 South	40010	054090	2 77	7	20020	0.15	0	516	15560
111147	191 - 30001	17961	65/652	3.77	52	29929	0.15	0	51.0	15569
TK48	101 - South	+/ 304 6	00 4 002 8	3 99	7	32661	13	0	51 9	17148
11140	191 - 30000	47971	654657	0.00	50	52001	1.0	0	01.0	17140
TK49	191 - South	5	00-007	4 31	7	30682	0 41	0	56.0	15878
11010		47985	654665	1.01	45	00002	0.11	Ŭ	00.0	10010
TK50	191 - South	1	3	5 13	2	25147	0.28	10	44 9	12738
1100		47969	654597	0.10	42	20117	0.20	10	11.0	12/00
TK51	191 - South	3	1	5.81	7	32522	0.01	64	53.3	17292
		47948	654584		55			•		
TK52	191 - South	8	6	4.05	7	27775	0.07	0	51.8	14743
	-	47955	654565		50	-		-	-	-
TK53	191 - South	8	4	4.46	7	26639	0.54	0	48.9	14134

								HCO		
No.	Location	Easting	Northing	pН	Eh	TDS	Fe	3	Br	CI
		m	m	•	mV	ma/l	ma/l	ma/l	ma/l	ma/l
		47952	654563		53	ing/i	iiig/i	iiig/i	ing/i	iiig/i
TK54	191 - South	4/002	3	3 97	7	26478	0.84	0	44 1	14333
		47959	654567	0.07	48	20110	0.01	U		11000
TK55	191 - South	3	5	4.78	7	28234	0.10	0	52.1	14956
		48057	654580	_	34			-	-	
TK56	191 - South	8	7	5.57	7	31519	4.4	32	55.9	16665
		48011	654552		43					
TK57	191 - South	3	5	5.12	7	30782	0.04	25	54.7	16147
		48006	654549		38					
TK58	191 - South	6	2	6.19	7	29027	0.01	112	52.0	15373
		48032	654565		67					
TK59	191 - South	0	2	3.66	7	31901	0.30	0	57.3	16909
		47712	654616		77					
TK60	223 - North	7	0	3.34	7	30441	0.05	0	57.3	16481
		47699	654643		28					
TK61	223 - North	7	5	6.21	7	29592	0.74	141	54.2	15851
		47702	654645		62					
TK62	223 - North	3	0	3.29	7	29566	0.20	0	49.6	16216
		47692	654638		28					
TK63	223 - North	0	9	6.07	7	29381	1.5	106	54.9	15660
		47674	654675		68					
TK64	223 - North	5	2	3.70	7	30257	0.06	0	50.4	16563
		47669	654672		60			-		
TK65	223 - North	5	1	3.78	7	30536	0.04	0	56.2	16082
		47644	654692		27					
IK66	223 - North	2	0	4.42	2	34754	14	0	65.7	18847
T 1/07		47641	654690	4	45	00040	0.07		70 5	00500
1667	223 - North	6	4	4.57	(38048	0.07	4	70.5	20523
TVCO		47631	654684	0.05	25	04700	0.4	450	50 F	47044
1408	223 - North	5 47000	0	6.05	50	31766	3.1	153	58.5	17011
TKCO		47620	654687	2 02	52	20744	2.0	0	E 4 C	10400
1409	223 - North	47600	9	3.03	22	30711	2.9	0	54.0	10400
	000 North	47022	004009	5 17	23	2/112	6	70	16.0	12006
11/10	223 - NORT	17625	654600	5.17	/	24113	0	19	40.0	13090
TK71	222 North	47020	004090	1 53	41	30735	7	0	7/1	21253
	223 - NOITH	47627	65/692	4.55	11	39735	1	0	74.1	21555
TK72	223 - North	4/02/ Q	3	4 28	7	30344	10	0	72 7	21203
11(12	223 - North	47599	654700	4.20	, 54	00044	10	0	12.1	21200
TK73	223 - North	4/000	6	4 12	7	29053	0 29	0	54 2	15367
110/0	220 110101	47609	654706	1.12	, 56	20000	0.20	U	01.2	10001
TK74	223 - North	9	7	3.59	7	35885	0.35	0	67.6	19069
	220 110101	47628	654717	0.00	47		0.00	Ū.	00	
TK75	223 - North	5	8	4.61	7	30719	0.77	0	56.5	16230
		47586	654761		16			-		
TK76	223 - North	4	6	6.20	7	30841	8	99	56.1	16198
		47570	654904		58					
TK77	Northwest	8	8	3.85	7	28786	0.81	0	52.8	14958
		47565	654913		76					
TK78	Northwest	6	3	3.69	7	29268	0.02	0	53.8	15303
		47568	654914		74					
TK79	Northwest	2	9	3.54	2	29239	0.04	0	47.1	15304
		47552	654905		60					
TK80	Northwest	8	5	4.19	7	29660	0.04	0	48.7	15543
		47533	654905		44					
TK81	Northwest	5	5	6.10	7	35812	< 0.01	164	66.5	18507

App. 1b: Tabulated Geochemistry (cont.)

		47536	654907		40					
TK82	Northwest	9	6	6.24	7	28866	<0.01	97	52.5	15138
		47692	655013		48					
TK83	Northern	5	4	4.49	7	29754	0.22	0	52.5	15669
		47695	655014		44					
TK84	Northern	0	9	5.39	7	28412	<0.01	18	50.4	15042
T 1 (0 T		47894	654785		43					
TK85	191 - North	9	8	5.03	(29633	2.6	1	53.0	15443
TIZOC		47892	654784	F 40	30	0005	0.00	05	40 5	4040
1680	191 - North	2 17000	۲ 654700	5.40	1	8825	0.38	25	16.5	4618
	101 North	47099	004799 5	2 07	40	20672	0.25	0	57.0	15150
1101	191 - North	0 17976	0 654796	3.97	22	29072	0.25	0	57.2	10400
TK88	101 - North	47070	004700 A	5 98	32 7	29526	0 19	80	53.0	15535
1100	191 - North	47888	654812	0.00	27	20020	0.15	00	00.0	10000
TK89	191 - North	7	7	5.94	7	30417	2.3	88	48.0	15864
		47877	654802	0.0.	26					
TK90	191 - North	7	6	6.04	7	29934	3.3	66	48.0	15846
		47867	654805		22					
TK91	191 - North	7	7	6.43	7	25847	4.5	92	40.9	13321
		47867	654815		40					
TK92	191 - North	2	9	5.94	7	31017	0.02	27	55.8	15993
		47864	654814		55					
TK93	191 - North	6	3	4.11	7	30787	0.08	0	56.5	16116
TICOL		47867	654826	0.00	42	40070			<u> </u>	0005
IK94	191 - North	5	9	6.02	2	13679	<0.01	66	22.4	6805
TKOF	404 Marth	47854	654831	C 40	26	47550	1.0	100	20.7	0004
1695	191 - North	3 17951	C 654920	0.18	1	17553	1.0	109	30.7	8804
TKOG	101 North	47001 g	004000	5.04	45	20877	0.53	0	37 1	10712
1130	191 - North	47849	654828	5.04	52	20077	0.55	0	57.1	10712
TK97	191 - North	2	6	4 18	7	20810	0 19	0	36.8	10491
11(07		47892	654819		40	20010	0.10	Ũ	00.0	10101
TK98	191 - North	3	6	5.94	7	26140	< 0.01	49	46.1	13317
		47788	654474		72					
TK101	223 - Central	4	9	6.22	7	29483	<0.01	129	51.9	15665
		47774	654490		57					
TK102	223 - Central	9	5	3.54	1	28008	0.15	0	51.0	15180

No.	F	NO ₃	SO4	Na	K	Mg	Ca	Au	AI	Si	В	Ва	Be
	mg/l	mg/l		mg/l	mg/l	mg/l	mg/l	µg/L	mg/l	mg/l	mg/l	mg/l	mg/l
TK7	5.0	16.6	204 4 267	9200	261	841	795 118	0.001	14	10	6.1	0.019	0.026
TK8	1.3	17.4	0 258	8899	199	825	3	0.001	0.041	8	5.1	<0.005	0.001
TK9	2.3	71.2	7 263	9546	270	793	713	0.905	8	24	5.7	0.009	0.016
TK10	1.1	21.3	7 267	9768	292	844	858	0.006	0.008	14	6.2	0.009	0.001
TK11	0.7	25.3	9 270	9600	297	802	733	0.099	0.329	22	6.1	<0.005	0.061
TK12	4.5	17.0	3 260	9785 1024	286	761	655	0.067	101	27	6.2	< 0.005	0.030
TK13	2.5	109.5	4 265	0	276	829	767	0.047	53	36	6.2	0.054	0.050
TK14	2.0	19.4	2 233	9296	284	832	774	0.206	0.098	14	6.3	<0.005	0.005
TK15	2.1	11.4	5 253	8334	214	806	909	0.011	0.240	8	5.2	< 0.005	0.003
TK16	0.6	14.5	4 245	9790	272	827	757	0.008	0.202	25	6.2	0.011	0.010
TK17	0.4	14.4	1 264	8874	254	781	791	0.011	0.013	24	5.4	0.123	0.001
TK18	1.3	34.6	6 262	9734	277	847	827	0.003	0.006	15	6.4	< 0.005	0.001
TK19	1.4	23.2	9 264	9676	272	839	852	0.004	0.008	10	6.2	<0.005	0.001
TK20	3.0	20.5	3 261	9208	286	947	987	0.014	0.012	15	6.1	<0.005	0.006
TK21	3.5	19.7	1 269	9481 1050	292	943	821	0.039	6	28	6.1	<0.005	0.033
TK22	2.0	14.4	3 264	9	301	985	872	0.005	0.035	12	6.3	0.023	0.001
TK23	2.0	28.6	8 229	9559	283	870	724	0.033	1.6	27	6.0	<0.005	0.037
TK24	1.8	46.9	9 265	8598	251	797	687 104	0.011	0.027	11	5.5	0.021	0.002
TK25	2.4	38.9	1 272	9955 1019	197	910	1	0.006	0.018	9	6.3	<0.005	0.001
TK26	1.3	76.6	0 290	3	288	811	726 101	0.158	0.342	17	6.6	<0.005	0.018
TK27	0.3	15.4	0 272	9620 1012	259	953	8	0.004	0.045	8	6.6	<0.005	0.001
TK28	1.5	19.1	1 284	8	292	805	743	0.009	0.277	17	6.6	<0.005	0.016
TK29	1.4	29.2	4 270	9910	285	867	744	0.003	0.029	8	7.0	<0.005	0.001
TK30	1.4	16.0	6 257	9991 1007	286	828	711	0.228	0.040	10	7.0	<0.005	0.002
TK31	1.3	37.0	5 297	0	288	799	785 121	0.014	0.006	9	6.8	<0.005	0.001
TK32	2.0	54.1	7 285	9332 1007	136	994	1	0.001	0.010	6	5.4	< 0.005	0.001
TK33	3.6	19.7	4 267	1	285	944 136	649 148	0.081	16	19	8.3	0.005	0.006
TK34	0.1	38.8	0 311	7458	135	5 116	6 118	0.009	0.028	5	3.1	< 0.005	0.001
TK35	0.1	19.6	3	9535	254	8	0	0.004	0.013	7	4.6	< 0.005	0.001

App. 1b: Tabulated Geochemistry (cont.)

28

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				277	1055									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	TK36	2.3	45.8	8 247	4	325	973	843	0.001	0.037	7	6.1	0.011	0.002
TK380.835.84943526110.0120.36385.50.0930.001TK390.820.30943528219230.0010.00895.90.0930.001TK403.817.72967126493280.0100.04287.6<0.005	TK37	1.0	35.7	 7 268	8050	306	944 106	830 102	0.008	0.033	8	5.8	< 0.005	0.001
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TK38	0.8	35.8	200 4 270	9435	261	100	1	0.012	0.363	8	5.5	0.093	0.001
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TK39	0.8	20.3	270 0 281	9435	282	1	923 112	0.001	0.008	9	5.9	0.093	0.001
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TK40	3.8	17.7	201 2 302	9671	264	932 100	8	0.010	0.042	8	7.6	< 0.005	0.001
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TK41	14.6	33.7	8 276	9898	394	6	892	0.013	37	26	7.7	0.020	0.068
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TK42	10.4	26.9	291	8952	384	985	800 115	0.082	58	45	7.2	< 0.005	0.085
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	TK43	2.9	26.2	6	9110	253	917	7	0.005	0.041	10	7.5	<0.005	0.001
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TK44	0.8	5.5	587 267	1930	70	159	159	0.004	0.808	14	1.5	0.071	0.003
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TK45	1.4	78.8	3 272	7798	339	901	677	0.054	0.007	23	7.2	0.011	0.001
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TK46	0.9	67.5	0 273	7904	335	999	711 110	0.047	0.011	26	7.2	0.007	0.001
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TK47	4.1	26.5	5 315	9249 1003	234	950 100	8	0.018	46	16	6.7	<0.005	0.017
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TK48	16.3	89.5	5 291	3	405	6	756	0.039	96	29	8.7	0.017	0.084
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TK49	10.4	43.7	0 283	9663	380	984	758	0.049	27	31	8.6	0.009	0.073
TK51 2.7 29.6 2 9462 312 0 8 0.028 0.126 13 6.8 <0.005	TK50	5.7	199.7	0 303	7538	345	831 101	609 129	0.015	4.4	26	8.1	0.022	0.025
268 104 TK52 10.3 43.6 0 8002 356 4 845 0.061 21 44 5.8 <0.005	TK51	2.7	29.6	2	9462	312	0	8	0.028	0.126	13	6.8	<0.005	0.002
TK52 10.3 43.6 0 8002 356 4 845 0.061 21 44 5.8 <0.005 0.096 256 103				268			104							
TK53 9.3 43.1 1 7619 330 6 858 0.025 16 44 5.4 0.008 0.113	TK52	10.3	43.6	0 256	8002	356	4 103	845	0.061	21	44	5.8	< 0.005	0.096
	 TK53	9.3	43.1	1	7619	330	6	858	0.025	16	44	5.4	0.008	0.113

No.	F	NO3	SO4	Na	K	Mg	Ca	Au	AI	Si	В	Ва	Be
	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	µg/L	mg/l	mg/l	mg/l	mg/l	mg/l
TK54	7.4	52.3	253 3 274	7316	310	973 105	908	0.012	23	44	5.1	<0.005	0.058
TK55	6.3	32.4	6 294	8105	342	5	938 129	0.032	7	30	5.8	<0.005	0.063
TK56	0.9	39.9	234 5 275	9366	194	941	5	0.001	0.228	8	6.6	< 0.005	0.002
TK57	10.9	35.3	273 0 252	9786	358	860	768 116	0.126	5.3	28	7.0	0.007	0.143
TK58	3.2	14.1	202 9 295	8754 1011	251	836	1	0.001	0.064	8	6.0	<0.005	0.001
TK59	15.2	126.7	200 5 246	7	379	803	538	0.096	120	45	7.9	0.026	0.107
TK60	0.7	22.1	210 6 251	9511	282	887	734 104	0.089	35	42	5.9	<0.005	0.008
TK61	2.2	35.6	201 1 233	8949	187	886	7	0.014	0.036	10	6.1	<0.005	0.001
TK62	3.1	48.5	9 254	9282	248	829	551	0.043	96	39	6.0	0.009	0.017
TK63	2.4	37.4	6 238	8902	267	892	966	0.001	0.069	9	5.9	<0.005	0.001
TK64	6.0	35.2	268 268	9425	261	898	630	0.091	93	26	6.3	0.010	0.016
TK65	0.9	19.4	9 301	9638 1039	291	958 108	801	0.001	17	29	6.3	<0.005	0.005
TK66	2.2	41.5	0 334	8 1127	308	6 125	995 118	0.023	13	10	6.3	<0.005	0.004
TK67	0.7	50.0	7	7	338	4	6	0.196	3.9	6	6.3	< 0.005	0.001
TK68	3.8	39.0	281 0 210	9451	280	100 9 102	102 9	0.001	0.039	8	6.3	<0.005	0.001
TK69	16.4	89.0	519 7 170	9102	396	4	334	0.020	130	38	8.9	0.055	0.027
TK70	4.3	15.5	7	7493	317	728	578	0.001	2.6	7	4.9	0.080	0.003
TK71	10.5	63.7	2 356	1172	412	129 1 125	8	0.001	29	4	7.1	<0.005	0.012
TK72	15.8	10.9	330 8 276	8	399	125 8 106	978	0.054	51	9	7.1	< 0.005	0.015
TK73	4.6	11.3	3 310	8807 1097	316	100 5 149	665	0.014	19	42	7.5	0.010	0.027
TK74	12.4	19.0	5 259	8	363	4	777	0.008	97	45	7.5	0.091	0.032
TK75	3.0	14.1	200 6 268	9884	283	938 105	714	0.012	7	13	6.7	0.024	0.004
TK76	4.2	7.2	200 1 274	9526	287	2	980	0.001	0.028	11	7.1	0.006	0.001
TK77	16.2	13.5	- 9 302	9300	305	864	527	0.001	51	47	8.0	0.006	0.075
TK78	16.1	11.9	4 292	9073	323	900	564	0.073	38	43	7.8	0.013	0.079
TK79	20.2	8.7	6 291	9211	321	919	481	0.070	79	44	8.3	0.034	0.073
TK80	18.8	18.2	7 352	9303 1135	336	880 103	594	0.013	28	31	8.1	0.025	0.072
TK81 TK82	5.5 2.6	11.0 14.7	2 274	1 8843	369 234	4 849	865 937	0.017 0.001	0.089 0.016	8 6	8.8 7.2	0.014 0.020	0.001 0.001

App. 1b: Tabulated Geochemistry (cont.)

			7										
			271				101						
TK83	7.4	14.5	9 250	9269	166	837	9 124	0.001	20	18	7.4	< 0.005	0.026
TK84	2.9	15.6	230	8591	113	834	8	0.001	1.7	11	6.7	< 0.005	0.009
			304				103						
TK85	3.3	14.7	6	8909	162	966	6	0.001	6	15	8.1	0.010	0.021
TK86	0.6	2.6	872 299	2712	63	272	256	0.001	0.141	6	2.1	0.058	0.001
TK87	7.3	21.9	7	9402	235	820	674 160	2.530	86	40	8.7	0.023	0.044
TK88	2.7	11.2	290 5	8330	64	980	5	0.008	0.049	9	6.8	< 0.005	0.001
			306				106						
TK89	4.1	12.2	4 307	9120	212	984	5 145	0.001	0.172	11	7.4	0.006	0.003
TK90	2.8	5.8	3	8397	100	979	0	0.001	0.016	10	6.9	< 0.005	0.001
			282										
TK91	2.6	8.3	4 335	7844	178	745	838	0.001	0.015	13	6.6	<0.005	0.001
TK92	5.5	41.9	335 5	9458	301	948	847	0.152	1.7	23	8.0	<0.005	0.125
			323										
TK93	11.6	30.9	3	9329	291	942	778	0.657	53	44	8.2	< 0.005	0.081
TKOA	0.2	222.0	133	4400	156	205	222	0.069	0.000	25	2.0	0.025	0.001
1894	0.3	323.9	9 197	4402	100	295	222	0.000	0.020	25	3.9	0.025	0.001
TK95	0.8	1.5	4	5709	161	414	405	0.001	0.008	18	6.3	0.026	0.001
			224										
TK96	4.2	46.7	2	6521	227	552	535	0.001	7	24	6.5	0.033	0.040
T 1/07			204		074			4 070		~~~	o -	0 007	
1K97	5.8	33.3	2	6822	271	597	509	1.270	17	32	6.7	0.027	0.066
TK98	1.3	12.2	2/0	8272	224	807	676	0.015	0.027	11	6.8	< 0.005	0.001
			256										
TK101	1.2	8.2	0	9229	273	832	800	0.093	0.009	12	6.2	< 0.005	0.001
-	. .	• •	235						-				
TK102	6.1	8.9	4	8787	277	762	583	0.140	70	32	6.3	0.010	0.100
App. 1b: Tabulated Geochemistry (cont.)

No.	Cr	Cu	Li	Mn	Sr	Ti	V	Zn	Co	Ni	Ga	Ge
	mg/l	mg/l	mg/l	mg/l	mg/l	mg/I	mg/I	mg/l	mg/I	mg/l	mg/l	mg/l
TK7	<0.005	0.236	0.45	12.95	4.6	<0.005	0.006	1.10	0.108	0.064	0.003	0.012 6 0.004
TK8	<0.005	0.042	0.80	4.62	12	<0.005	<0.005	0.21	0.032	0.053	0.000 9 0.002	8 0.005
TK9	<0.005	0.282	0.57	23.95	2.1	<0.005	0.007	0.79	0.232	0.158	9 0.000	7 0.000
TK10	0.005	0.019	0.61	5.11	2.8	<0.005	<0.005	<0.05	0.003	0.012	3 0.000	2 0.000
TK11	0.008	0.021	0.56	6.98	1.3	<0.005	<0.005	0.22	0.060	0.128	6 0.006	0 0.011
TK12	<0.005	0.101	0.54	11.61	2.0	<0.005	0.005	0.48	0.113	0.098	2 0.004	5 0.007
TK13	<0.005	0.102	0.64	16.83	3.1	<0.005	0.007	0.37	0.137	0.091	8 0.000	8 0.000
TK14	0.010	0.013	0.42	0.43	4.4	<0.005	<0.005	0.24	0.007	0.039	1 0.000	0 0.000
TK15	0.006	0.043	0.45	4.00	7.9	< 0.005	< 0.005	0.27	0.025	0.035	6 0.001	0.000
TK17	<0.007	<0.005	0.55	5 55	2.0	<0.005	<0.005	0.14	0.001	0.092	0.000	0.000
ТК18	<0.005	0.056	0.58	10 74	2.4	< 0.005	<0.005	< 0.05	0.012	0.021	0.000 7	0.000
TK19	0.006	0.035	0.60	6.05	3.4	< 0.005	< 0.005	0.07	0.006	0.013	0.000 4	0.000 0
TK20	0.005	<0.005	0.47	3.28	5.4	<0.005	<0.005	0.08	0.008	0.036	0.000 6	0.000 0
TK21	0.014	0.100	0.51	3.82	3.0	<0.005	<0.005	0.50	0.056	0.096	0.001 0	0.000 0
TK22	<0.005	<0.005	0.52	5.12	3.1	<0.005	0.005	<0.05	0.075	0.077	0.000 0	0.000 0
TK23	<0.005	0.066	0.61	6.27	1.3	<0.005	<0.005	0.28	0.076	0.144	0.000	0.000
TK24	<0.005	<0.005	0.68	7.33	1.5	<0.005	<0.005	3.78	0.058	0.097	0.000	0.000
TK25	<0.005	<0.005	0.57	4.36	5.7	<0.005	<0.005	<0.05	0.005	0.012	0.000	0.000
TK26	0.009	0.021	0.48	1.95	3.3	<0.005	<0.005	0.17	0.026	0.053	4 0.000	2 0.001
TK27	<0.005	0.007	0.48	4.74	8.2	<0.005	<0.005	<0.05	0.002	0.013	5 0.000	2 0.001
TK28	<0.005	0.017	0.51	7.22	2.5	<0.005	<0.005	0.31	0.089	0.110	6 0.000	3 0.000
TK29	<0.005	0.006	0.45	7.20	3.9	<0.005	0.006	0.24	0.076	0.076	6 0.000	0 0.000
TK30	<0.005	0.021	0.45	2.24	3.3	<0.005	< 0.005	0.06	0.016	0.040	3 0.000	0 0.000
1K31	< 0.005	0.021	0.59	3.29	4.0	< 0.005	< 0.005	< 0.05	0.008	0.024	3 0.000	0 0.000
TK32	0.007	0.018	0.59	3.20	13	<0.005	<0.005	0.09	0.003	0.013	ז 0.001 2	0.002
TK21	CUU.U	0.324	0.43	3.30 1 87	0.1 15	<0.005	<0.005	0.53	0.020	0.035	с 0.000 6	פ 0.001 ג
TK35	< 0.005	0.041	0.41	4.42	11	< 0.005	< 0.005	0.20	0.009	0.022	0.000 5	0.001 4

											0.001	0.001
TK36	<0.005	0.040	0.38	15.76	4.3	< 0.005	<0.005	0.15	0.012	0.016	2	7
					-						0.000	0.000
TK37	< 0.005	0.058	0.21	2.22	9.0	< 0.005	< 0.005	0.10	0.005	0.016	2	0
			•								0.000	0.001
TK38	< 0.005	0.006	0.46	5.88	11	< 0.005	< 0.005	< 0.05	0.006	0.029	9	6
											0.000	0.000
TK39	<0.005	0.014	0.30	0.98	9.5	<0.005	<0.005	<0.05	0.002	0.014	3	7
											0.000	0.001
TK40	<0.005	0 021	0.61	8 70	70	<0.005	<0.005	0 14	0.015	0.017	7	2
		0.02.	0.0.	00				••••	0.0.0	0.0.1	0.007	0.016
TK41	< 0.005	0.214	0.70	16.13	4.6	< 0.005	< 0.005	0.60	0.204	0.155	2	7
		0	0.1.0					0.00	0.20	01.00	0.004	0.012
TK42	<0.005	0.186	0.75	9.38	2.9	<0.005	<0.005	0.57	0.218	0.205	8	1
			0.1.0	0.00			10.000	0.0.	0.2.0	0.200	0.000	0.001
TK43	< 0.005	0.047	0.54	5.38	9.0	< 0.005	< 0.005	< 0.05	0.013	0.024	6	3
		0.0	0.0.	0.00	0.0				0.0.0	0.02.	0.000	0.000
TK44	< 0.005	< 0.005	0.11	1.63	0.8	< 0.005	< 0.005	< 0.05	0.013	0.014	3	9
			••••								0.000	0.000
TK45	< 0.005	< 0.005	0.39	0.68	5.8	< 0.005	< 0.005	< 0.05	0.006	0.027	0	0
											0.000	-
TK46	< 0.005	0.006	0.46	1.55	6.3	< 0.005	< 0.005	< 0.05	0.050	0.031	0	0.0000
											0.001	0.004
TK47	< 0.005	0.028	0.40	4.51	8.6	< 0.005	< 0.005	0.31	0.040	0.126	3	2
			••••								0.007	0.015
TK48	< 0.005	0.137	0.67	19.72	4.3	< 0.005	< 0.005	0.42	0.298	0.214	3	5
											0.003	0.005
TK49	<0.005	0.069	0.69	12.00	2.7	<0.005	<0.005	0.36	0.208	0.199	2	9
											0.004	0.010
TK50	<0.005	0.045	0.52	4.58	3.5	<0.005	<0.005	0.20	0.112	0.097	0	7
											0.000	0.000
TK51	<0.005	0.008	0.69	12.73	5.1	< 0.005	0.006	0.14	0.085	0.076	9	0
											0.003	0.004
TK52	<0.005	0.058	0.70	7.80	2.6	< 0.005	<0.005	0.63	0.293	0.321	3	6
											0.001	0.000
TK53	0.008	0.057	0.62	6.99	2.1	<0.005	<0.005	0.53	0.258	0.294	0	3
	-			-				-	-		_	

App. 1b: Tabulated Geochemistry (cont.)

No.	Cr	Cu	Li	Mn	Sr	Ti	V	Zn	Со	Ni	Ga	Ge
	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
TK54	0.007	0.068	0.57	4.66	1.0	<0.005	<0.005	0.55	0.177	0.216	0.000 6 0.001	0.000
TK55	<0.005	0.019	0.56	4.94	5.0	<0.005	<0.005	0.24	0.124	0.159	3 0.000	0.00 <u>2</u> 1 0.001
TK56	<0.005	<0.005	0.47	9.33	5.1	<0.005	<0.005	0.07	0.018	0.051	7 0.002	0 0.001
TK57	0.009	0.030	0.87	23.51	1.8	<0.005	0.006	0.54	0.355	0.505	0 0.001	5 0.000
TK58	<0.005	<0.005	0.67	11.72	5.9	<0.005	<0.005	0.10	0.007	0.025	2 0.002	1 0.002
TK59	0.011	0.210	0.78	14.25	0.4	<0.005	<0.005	0.83	0.298	0.274	7 0.001	7 0.001
TK60	<0.005	0.084	0.54	5.66	2.7	<0.005	<0.005	0.31	0.028	0.050	9 0.000	9 0.001
TK61	<0.005	0.007	0.52	4.67	5.8	<0.005	<0.005	<0.05	0.006	0.013	1 0.001	4 0.002
TK62	< 0.005	0.129	0.52	5.20	3.0	< 0.005	< 0.005	0.45	0.081	0.110	9 0.000	9 0.000
TK63	< 0.005	0.010	0.67	4.41	4.5	< 0.005	< 0.005	< 0.05	0.003	0.015	0.003	0 800.0
1604	<0.005	0.291	0.60	14.01	2.0	<0.005	<0.005	1.20	0.149	0.130	0.001	2 0.003
TK65	<0.005	0.046	0.63	7.97	1.4	< 0.005	< 0.005	0.24	0.047	0.065	1 0.001	1 0.002
1K66	< 0.005	0.009	0.44	7.94	1.5	< 0.005	< 0.005	0.49	0.063	0.085	1 0.000	4 0.001
	<0.005	0.012	0.28	8.53	1.8	<0.005	<0.005	0.07	0.035	0.035	5 0.000	4 0.000
TKGO	< 0.005	0.000	0.72	4.43	3.4 7.5	< 0.005	< 0.005	1.04	0.005	0.010	0.002	0.007
	0.012	0.001	0.05	1.44	7.5	<0.003	<0.005	1.54	0.033	0.070	0.000	0.002
TK70	<0.005	<0.005	0.19	3.63	2.8	<0.005	<0.005	0.45	0.026	0.026	4 0.004	2 0.014
TK71	<0.005	0.017	0.55	11.46	3.6	<0.005	<0.005	0.56	0.136	0.130	6 0.004	0 0.015
TK72	< 0.005	0.012	0.63	8.73	2.3	<0.005	<0.005	0.35	0.131	0.142	0 0.001	2 0.005
TK73	<0.005	0.106	0.94	4.53	3.8	<0.005	<0.005	0.26	0.082	0.075	4 0.003	3 0.016
TK74	<0.005	0.132	0.86	4.67	3.6	<0.005	<0.005	0.51	0.130	0.134	9 0.000	8 0.000
TK75	<0.005	0.335	0.66	6.73	0.7	<0.005	<0.005	0.72	0.039	0.055	4 0.000	5 0.000
TK76	<0.005	0.013	0.71	4.17	3.2	<0.005	<0.005	<0.05	0.005	0.019	1 0.002	7 0.007
TK77	<0.005	0.100	0.92	14.78	1.1	<0.005	0.005	0.57	0.273	0.199	2 0.001	5 0.006
TK78	<0.005	0.098	0.96	19.81	1.1	<0.005	0.006	0.73	0.278	0.207	8 0.003	0 0.010
TK79	<0.005	0.073	1.16	12.14	2.7	<0.005	<0.005	0.58	0.260	0.191	7 0.002	8 0.005
TK80	<0.005	0.052	1.00	10.40	0.9	<0.005	<0.005	0.46	0.218	0.179	0 0.000	7 0.000
TK81	<0.005	0.014	0.59	9.46	1.9	<0.005	<0.005	0.16	0.093	0.069	3 0.000	6 0.000
TK82	<0.005	0.006	0.56	2.80	4.2	<0.005	<0.005	0.07	0.002	0.008	1	3

											0.000	0.000
TK83	<0.005	0.035	0.34	9.67	5.2	<0.005	0.005	0.46	0.066	0.071	2	6
											0.000	0.000
TK84	<0.005	0.013	0.31	7.23	7.2	<0.005	< 0.005	0.26	0.030	0.030	1	7
											0.000	0.002
TK85	< 0.005	0.129	0.46	6.92	7.9	<0.005	< 0.005	0.27	0.039	0.044	9	3
											0.000	0.001
TK86	< 0.005	< 0.005	0.14	2.84	2.1	<0.005	< 0.005	0.06	0.019	0.022	4	2
											0.002	0.006
TK87	<0.005	0.283	0.42	5.82	2.4	<0.005	<0.005	0.50	0.078	0.074	1	6
											0.000	0.000
TK88	<0.005	<0.005	0.43	3.10	15	<0.005	< 0.005	< 0.05	0.002	0.008	1	4
											0.000	0.000
TK89	<0.005	0.016	0.51	11.77	2.7	< 0.005	0.006	0.07	0.015	0.024	4	8
											0.000	0.001
TK90	<0.005	0.020	0.43	5.83	10	<0.005	<0.005	0.09	0.008	0.026	2	2
											0.000	0.001
TK91	<0.005	<0.005	0.45	7.10	2.0	<0.005	<0.005	<0.05	0.015	0.019	3	7
											0.000	0.001
TK92	<0.005	0.036	0.65	20.22	0.4	<0.005	0.006	0.31	0.201	0.132	6	8
											0.001	0.004
TK93	<0.005	0.944	0.53	12.79	0.4	<0.005	0.005	1.00	0.168	0.108	1	0
			- · -					- · -			0.000	0.000
TK94	<0.005	0.033	0.17	0.33	2.1	<0.005	<0.005	0.17	0.002	0.004	1	9
TICOF			0.05	0.07			0.007				0.000	0.001
1K95	<0.005	<0.005	0.35	8.37	1.4	<0.005	0.007	<0.05	0.003	0.009	3	2
TKOO	0.005	0 4 4 0	0.40	40.44	~ 1	0.005	0.005	0.04	0.450	0.000	0.002	0.006
1696	<0.005	0.149	0.46	10.44	Z.1	<0.005	<0.005	0.31	0.150	0.060	0	3
TKOZ	0.005	0 500	0.47	45.05	<u> </u>	0.005	0.007	0.05	0 000	0.074	0.002	0.005
1697	<0.005	0.560	0.47	15.85	Z.Z	<0.005	0.007	0.65	0.292	0.074	4	9
TLOO	0.005	0.005	0.42	7 40	2 F		0.005	0.06	0 000	0.010	0.000	0.002
11790	<0.005	0.005	0.43	7.49	2.3	<0.005	<0.005	0.00	0.009	0.010	4	0.004
TK101	0.006	0.006	0.49	2.04	2 F	0.005	0.005	0.16	0.015	0.044	0.000 e	0.004
INIUI	0.000	0.000	0.40	2.04	3.3	<0.005	<0.005	0.10	0.015	0.044	0 004	0 012
TK102	<0.005	0 105	0.60	37 37	22	<0.005	0.012	0.41	0 226	0 130	0.004 1	0.012
11/102	<0.000	0.190	0.09	51.51	۷.۷	<0.000	0.012	0.41	0.220	0.130	4	5

App. 1b: Tabulated Geochemistry (cont.)

No.	Rb	Мо	Cd	In	Sb	Те	Cs	Y	La	Се	Pr
_	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
		0.000	0.003		0.0003	0.001					0.043
TK7	0.104	3	4	<0.00005	9	4	0.005	0.559	0.083	0.273	5
TKO	0 4 0 7	0.002	0.002	0.00005	0.0002	0.002	0.004	0.405	0.004	0.000	0.001
IK8	0.107	5	3	<0.00005	5	1	0.024	0.185	0.001	0.006	/
тка	0 049	0.004	0.008	0.0001	0.0004	0.004 9	0 000	0 347	0.023	0 102	0.010
113	0.040	0.002	0 000	0 0001	0 0002	0 001	0.000	0.047	0.020	0.102	0 000
TK10	0.050	5	5	1	2	0	0.006	0.008	0.000	0.001	2
-		0.001	0.006		0.0002	0.002					0.000
TK11	0.055	3	4	<0.00005	9	9	0.001	0.007	0.000	0.000	1
		0.000	0.004	0.0005	0.0001	0.001					0.113
TK12	0.072	5	9	2	2	5	0.001	0.533	0.266	0.855	7
T 1/10		0.001	0.008	0.0001	0.0002	0.002	0.004	0.404		0 400	0.075
TK13	0.088	3	3	9	3	1	0.001	0.421	0.149	0.482	3
TK14	0.062	0.006	0.015	0.0001	0.0002	0.002	0.002	0.052	0.000	0 000	0.000
11/14	0.003	0 002	0 002	∠ 0.0001	0 0001	0 002	0.002	0.052	0.000	0.000	0.003
TK15	0 1 1 0	0.002	6.002	0.0001	8	0.002	0.032	0.050	0 0 1 0	0 028	0.000
intro	0.110	0.000	0.000	Ū	0.0002	0.003	0.002	0.000	0.010	0.020	0.004
TK16	0.056	7	6	<0.00005	2	4	0.002	0.094	0.010	0.035	8
		0.003	0.000		0.0000	0.002					0.000
TK17	0.041	6	8	<0.00005	2	9	0.001	0.002	0.000	0.000	0
		0.002	0.000		0.0003	0.000					0.000
TK18	0.054	4	6	<0.00005	3	6	0.011	0.001	0.000	0.000	0
T 1/40	0.007	0.005	0.000	0.00005	0.0001	0.001	0.004	0.000	0.000	0.004	0.000
TK19	0.087	8	6	<0.00005	4	8	0.031	0.002	0.000	0.001	1
TK20	0.071	0.002	0.001	0.0001	0.0002	0.003	0.007	0 003	0.001	0.001	0.000
11/20	0.071	0 000	0 008	0	0 0000	0 001	0.007	0.005	0.001	0.001	0 021
TK21	0.062	6.000	9	<0.00005	0.0000	9	0.001	0.213	0.037	0.125	0.021
	0.002	0.004	0.000		0.0000	0.001		0.2.0	0.000	00	0.000
TK22	0.071	5	4	<0.00005	4	7	0.002	0.053	0.003	0.005	8
		0.001	0.004		0.0002	0.001					0.001
TK23	0.043	7	2	<0.00005	6	5	0.001	0.033	0.002	0.008	6
T 1/0 /		0.012	0.033	0.0000	0.0000	0.002					0.000
TK24	0.062	0	1	5	2	7	0.005	0.001	0.000	0.000	0
TKOF	0.062	0.003	0.000		0.0000	0.001	0 0 2 0	0.001	0.000	0 000	0.000
1620	0.063	4			د ۵ ۵۵۵۵	0 002	0.030	0.001	0.000	0.000	0 003
TK26	0.066	0.001	0.003	0.0001	0.0003	0.002	0 002	0 042	0.011	0.026	0.003
	0.000	0.002	0.000	0.0000	•	0.003	0.002	0.0.2	0.011	0.020	0.000
TK27	0.110	5	2	6	< 0.00003	8	0.012	0.007	0.002	0.004	6
		0.002	0.012	0.0000	0.0001	0.002					0.004
TK28	0.068	4	5	8	9	1	0.003	0.085	0.016	0.036	5
		0.009	0.001		0.0000	0.002					0.002
TK29	0.083	3	0	<0.00005	3	5	0.008	0.034	0.007	0.018	2
TKOO	0.000	0.003	0.013	0.00005	0.0001	0.001	0.004	0.004	0.000	0.000	0.001
1K30	0.060	8	8 0.006	<0.00005	0.0001	/	0.004	0.034	0.003	0.008	5
TK31	0.071	0.004	0.000	<0.00005	0.0001	0.001	0 008	0.004	0.001	0 002	0.000
1131	0.071	0.005	0 003	<0.00000	0 0000 0	9 0 001	0.000	0.004	0.001	0.002	0_00_
TK32	0 107	4	2	<0.00005	0.0000	6	0 028	0.002	0 001	0.001	0.000
	0.101	0.001	0.011		0.0002	0.001	0.020	0.002	0.001	0.001	0.027
TK33	0.127	7	5	<0.00005	7	5	0.007	0.215	0.055	0.181	7
		0.057	0.012	0.0001	0.0011	0.002					0.000
TK34	0.180	1	5	2	3	3	0.023	0.003	0.001	0.002	2
		0.022	0.005	0.0000	0.0006	0.002					0.000
TK35	0.188	4	3	3	1	1	0.023	0.003	0.001	0.001	1

		0.013	0.003	0.0001	0.0005	0.002					0.000
TK36	0.166	5	1	0	0	6	0.020	0.001	0.001	0.001	1
		0.018	0.002		0.0005	0.002					0.000
TK37	0.118	7	9	<0.00005	1	1	0.015	0.002	0.001	0.001	2
		0.014	0.003		0.0004	0.003					0.000
TK38	0.154	9	4	<0.00005	0	5	0.014	0.007	0.002	0.005	9
		0.021	0.002		0.0004	0.001					0.000
TK39	0.155	6	0	<0.00005	5	4	0.022	0.001	0.001	0.001	1
		0.016	0.004		0.0002	0.001					0.000
TK40	0.075	4	5	<0.00005	6	9	0.019	0.006	0.003	0.004	4
		0.000	0.001	0.0005	0.0002	0.001					0.135
TK41	0.078	7	6	1	8	3	0.010	0.953	0.407	0.991	4
		0.000	0.002	0.0008	0.0006	0.000					0.085
TK42	0.053	6	3	4	6	1	0.001	0.783	0.178	0.549	5
		0.007	0.000	0.0000	0.0002	0.000					0.001
TK43	0.061	8	0	7	3	4	0.013	0.013	0.004	0.007	0
		0.001	0.000		0.0000	0.000					0.003
TK44	0.024	0	2	<0.00005	9	3	0.001	0.014	0.011	0.027	1
		0.003	0.001		0.0001	0.000					0.000
TK45	0.081	5	1	<0.00005	5	6	0.001	0.001	0.002	0.002	3
		0.002	0.001		0.0002	0.000					0.000
TK46	0.075	2	7	< 0.00005	1	9	0.001	0.016	0.002	0.003	6
		0.000	0.002	0.0001	0.0002	0.000					0.022
1K47	0.069	1	3	2	3)	0.015	0.107	0.084	0.184	(
T 1(40		0.002	0.004	0.0007	0.0002	0.001	0 005	4 4 9 9	0.070	o 77 0	0.120
1K48	0.121	9	3	2	5	6	0.005	1.166	0.276	0.778	5
TI (40	0.077	0.001	0.003	0.0001	0.0002	0.001	0.000	0.407	0.070	0.040	0.038
1K49	0.077	5	1	4	3	4	0.006	0.437	0.076	0.243	/
TKEO	0.000	0.002	0.001	0.0001	0.0002	0.000	0.004	0 400	0 4 7 4	0 555	0.087
1650	0.099	0.001	2 0.002	2	9	9	0.001	0.433	0.174	0.555	0.005
TKEA	0.050	0.001	0.003	0.0000	0.0001	0.001	0.005	0.004	0 000	0.040	0.005
ICAI	0.059	1	0.002	0	4	4	0.005	0.061	0.022	0.042	5 0.052
TKEO	0.072	0.001	0.002	0.0002	0.0002	0.001	0.004	0 070	0 1 1 F	0.251	0.033
I NOZ	0.073	4	C 000	0	0 0001	ے م م م	0.001	0.073	0.145	0.351	4
TKEO	0.076	0.001	0.002	0.0001	0.0001 F	0.000	0.004	0 400	0.020	0.069	0.012
1103	0.070	U	9	8	5	1	0.001	0.423	0.020	0.008	4

App. 1b: Tabulated Geochemistry (cont.)

No.	Rb	Мо	Cd	In	Sb	Те	Cs	Y	La	Се	Pr
-	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
		0.000	0.003	0.0001	0.0001	0.000					0.008
TK54	0.044	2	4	7	0	9	0.000	0.264	0.017	0.056	8
TVEE	0.062	0.003	0.002	0.0001	0.0002	0.001	0.004	0 0 4 0	0.061	0.460	0.023
1600	0.063	С 0.031	0 000 0	0 0000	د ۱ ۵۵۵۵	4	0.004	0.243	0.061	0.162	0 002
TK56	0.086	4	2	0.0000	0.0002	2	0.013	0.027	0.008	0.017	2
		0.001	0.004	-	0.0000	0.000					0.008
TK57	0.074	4	9	<0.00005	7	9	0.006	0.368	0.042	0.065	4
		0.125	0.000		0.0002	0.000					0.000
TK58	0.077	9	3	< 0.00005	6	9	0.008	0.004	0.001	0.002	3
TKEO	0.070	0.002	0.001	0.0008	0.0003	0.001	0.004	0 770	0.004	0 4 4 7	0.022
1639	0.079	0 000	1 0.003			C 000 0	0.001	0.776	0.031	0.117	4
TK60	0 074	0.000	0.003	0.0000	0.0000	0.000	0 002	0 097	0.061	0 181	0.027
1100	0.07 1	0.004	0.000	0.0000	0.0002	0.000	0.002	0.007	0.001	0.101	0.000
TK61	0.056	0	1	5	6	8	0.032	0.003	0.001	0.001	1
		0.000	0.001	0.0001	0.0002	0.000					0.037
TK62	0.115	9	7	2	1	5	0.002	0.150	0.090	0.266	4
-		0.004	0.000	0.0000	0.0001	0.000					0.000
TK63	0.051	2	0	3	1	4	0.008	0.001	0.000	0.001	1
TKGA	0 068	0.001	0.004	0.0003	0.0001	-0.0001	0 002	0 333	0 136	0 474	0.072
1104	0.000	0 002	0.005	0 0001	0 0001	<0.0001	0.002	0.552	0.150	0.474	0.018
TK65	0.042	6.002	0.000	0.0001	5	2	0.001	0.105	0.029	0.105	4
		0.000	0.001	0.0000	0.0001	0.001					0.019
TK66	0.070	7	7	7	2	2	0.006	0.127	0.047	0.138	6
		0.001	0.002	0.0000	0.0000	0.001					0.010
TK67	0.053	1	5	8	4	4	0.002	0.059	0.024	0.068	2
TKCO	0.050	0.002	0.000	0.00005	0.0001	0.001	0.007	0.004	0 000	0.004	0.000
1400	0.056	0 001	0 000			4	0.007	0.001	0.000	0.001	0.064
TK69	0.085	0.001	0.000	0.0003	0.0002	0.000	0 002	0 408	0 154	0 444	0.004
1100	0.000	0.006	0.000	0.0000	0.0001	0.000	0.002	0.100	0.101	0.111	0.008
TK70	0.056	9	0	5	8	1	0.001	0.066	0.030	0.068	7
		0.001	0.002	0.0001	0.0000						0.097
TK71	0.106	4	8	4	5	<0.0001	0.015	0.643	0.246	0.668	4
-		0.001	0.005	0.0002	0.0002	0.002					0.095
IK/2	0.099	2	6	1	1	5	0.017	0.503	0.254	0.677	6
TK73	0 071	0.000	0.002	0.0001	0.0001	0.000	0.001	0 305	0.051	0 183	0.031
11(75	0.071	0 000	0 003	0 0002	4	0 000	0.001	0.303	0.051	0.105	0 093
TK74	0.087	2	2	8	< 0.00003	4	0.002	0.744	0.107	0.490	3
		0.001	0.001	-	0.0000			-			0.007
TK75	0.039	1	0	<0.00005	9	< 0.0001	0.003	0.080	0.020	0.053	9
		0.011	0.000		0.0000						0.000
TK76	0.043	6	0	< 0.00005	1	< 0.0001	0.009	0.000	0.000	0.000	0
T 1/77	0.040	0.000	0.001	0.0005	0.0002	0.000	0.004	0.004	0.057	0.050	0.047
IK//	0.046	9	3	0 0002	1	4	0.001	0.824	0.057	0.258	1
TK78	0.057	0.001	0.001	0.0003	<0.00003	0.000	0.001	0 877	0.052	0 185	0.032
11(70	0.037	0 000	0 000	0 0005	<0.00003	0 000	0.001	0.077	0.052	0.105	0 070
TK79	0.063	3	9	6	< 0.00003	7	0.001	0.747	0.101	0.422	8
		0.000	0.000	0.0001	5.00000	0.000					0.041
TK80	0.066	4	7	6	< 0.00003	5	0.003	0.511	0.138	0.328	1
		0.002	0.000		0.0001	0.000					0.001
TK81	0.092	1	5	<0.00005	3	7	0.006	0.020	0.007	0.012	4
TKOO	0.000	0.008	0.000	0 00007	0.0000	0.000	0.044	0.004	0.000	0.004	0.000
1K82	0.096	5	0	<0.00005	4	5	0.014	0.001	0.000	0.001	1

		0.001	0.000	0.0000		0.000					0.001
TK83	0.048	2	6	6	< 0.00003	2	0.004	0.220	0.003	0.007	3
		0.002	0.000		0.0001	0.001					0.000
TK84	0.051	4	0	<0.00005	1	4	0.004	0.085	0.001	0.003	4
		0.001	0.001	0.0000	0.0002	0.001					0.018
TK85	0.057	4	3	6	2	9	0.005	0.113	0.055	0.137	4
		0.001	0.000		0.0002	0.000					0.004
TK86	0.027	6	2	<0.00005	1	7	0.001	0.019	0.014	0.035	6
		0.000	0.001	0.0002	0.0001	0.001					0.047
TK87	0.049	7	0	6	9	3	0.001	0.449	0.106	0.325	9
		0.006	0.000		0.0002	0.002					0.000
TK88	0.049	9	0	<0.00005	8	0	0.007	0.001	0.001	0.001	2
		0.002	0.000		0.0001	0.001					0.000
TK89	0.050	8	5	<0.00005	0	1	0.012	0.009	0.001	0.003	5
		0.002	0.000		0.0001	0.000					0.000
TK90	0.060	6	3	<0.00005	9	8	0.007	0.003	0.001	0.001	2
		0.001	0.000		0.0001	0.001					0.000
TK91	0.043	2	7	<0.00005	7	8	0.003	0.001	0.000	0.001	1
		0.001	0.001	0.0000	0.0001	0.002					0.001
TK92	0.057	6	5	5	8	1	0.004	0.056	0.005	0.011	6
		0.001	0.001	0.0002	0.0005	0.000					0.015
TK93	0.046	6	3	7	8	0	0.001	0.588	0.022	0.095	2
		0.001	0.000		0.0002	0.000					0.000
TK94	0.027	3	5	<0.00005	0	0	0.000	0.001	0.000	0.000	0
T 1 (0 T		0.000	0.000		0.0001	0.000					0.000
TK95	0.028	6	5	<0.00005	4	0	0.000	0.026	0.001	0.001	1
TICOO	0.070	0.000	0.001		0.0002	0.000	0.004	0.004	0.004		0.034
1K96	0.072	3	3	<0.00005	6	/	0.001	0.361	0.081	0.220	3
TKOZ	0.077	0.000	0.001	0.0001	0.0001	0.000	0.004	0.404	0.074	0.000	0.039
1K97	0.077	1	5	6	6	0	0.001	0.431	0.074	0.239	1
TKOO	0.000	0.002	0.000	0.0000	0.0002	0.001	0 000	0.005	0 000	0.004	0.000
1698	0.039	4	8	9	1	4	0.002	0.005	0.000	0.001	2
TKAOA	0.050	0.003	0.006	0.0001	0.0004	0.001	0.004	0.004	0.004	0.000	0.000
INTUT	0.053			0 0005	1 0.000 <i>E</i>	4	0.004	0.004	0.001	0.002	3 0.067
TKAOO	0.005	0.000	0.003	0.0005	0.0005	0.003	0.004	0.000	0 4 4 7	0 450	0.007
1K102	0.065	5	1	8	4	1	0.004	0.366	0.117	0.452	9

App. 1b: Tabulated Geochemistry (cont.)

No.	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
TK7	0 221	0.060	0.017	0.063	0.012	0.071	0.015	0.041	0.005	0.034	0.005
	0.221	0.006	0.001	0.011	0.002	0.016	0.003	0.009	0.000	0.005	0.000
TK8	0.013	3	7	6	3	3	7	2	9	7	7
тио	0 4 0 0	0.035	0.008	0.048	0.007	0.047	0.009	0.026	0.003	0.021	0.003
169	0.108		∠ 0.000	∠ 0.000	0 000	0 000	0 000	4	0 000	4	0 000 0
TK10	0.000	2	2	7	0.000	8	2	0.001	2	9	3
		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
TK11	0.001	8	1	5	1	4	1	4	0	1	1
TK12	0 402	0.096	0.020	0.115	0.014	0.079	0.016	0.046	0.005 8	0.035	0.005
INIZ	0.492	0.083	0.019	0.095	0.013	0.071	0.013	0.032	0.003	0.021	0.003
TK13	0.352	7	0	2	4	7	2	3	8	8	5
		0.001	0.000	0.003	0.000	0.005	0.001	0.003	0.000	0.001	0.000
TK14	0.001	1	7	8	8	0	1	2	4	6	3
TK15	0.016	0.002 Q	0.000 Q	0.005	0.000	0.004	0.001	0.003	0.000	0.001 Q	0.000
IIIII	0.010	0.006	0.001	0.011	, 0.001	0.009	0.001	0.004	0.000	0.002	0.000
TK16	0.025	5	8	5	7	9	9	9	5	6	5
T 1/17		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
IK17	0.000	0	0	2	0	3	0	4	1	1	1
TK18	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
TK19	0.001	0	1	1	0	1	0	1	0	0	0
TKOO	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1620	0.000	0 026	0	0 034	0 005	∠ 0.031	0	0 017	0.002	∠ 0.013	0.002
TK21	0.104	0.020	9	9	3	3	6	0.017	0.002	3	0.002
		0.000	0.000	0.003	0.000	0.003	0.000	0.002	0.000	0.001	0.000
TK22	0.005	9	5	2	4	4	8	3	3	4	2
TK22	0.000	0.002	0.000	0.005	0.000	0.005	0.000	0.002	0.000	0.001	0.000
11/23	0.009	0 000	0 000	0 000	0 000	0 000	0 000	0 000	0 000	0 000	0 000
TK24	0.000	0	0	1	0	2	0	0	0	0	0
		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
TK25	0.000	0	0	0	0	1	0	0	0	1	0
TK26	0.018	0.003	0.001	0.005	0.000 9	0.005	0.001	0.002	0.000	0.001	0.000
11120	0.010	0.001	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.001	0.000
TK27	0.002	2	0	0	1	8	2	8	1	0	2
TVOO	0.000	0.004	0.001	0.009	0.001	0.008	0.001	0.004	0.000	0.002	0.000
1K28	0.022	0 002	0.000	0 004	0 000	0.002	0 000	0 0 001	5	5 0.001	5
TK29	0.010	0.002	6	2	6	0.002	6	5	0.000	0.001	0.000
		0.002	0.000	0.004	0.000	0.003	0.000	0.001	0.000	0.001	0.000
TK30	0.010	9	6	5	6	5	7	8	2	2	2
TKOA	0.004	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1631	0.001	0 000	0 000 0	0 000	0 000 0	∠ 0.000	0 000 0	0 000	0 000 0	0 000	0 000 0
TK32	0.000	0.000	0.000	1	0.000	0.000	0.000	2	0.000	0.000	0.000
		0.030	0.006	0.034	0.005	0.030	0.006	0.016	0.002	0.013	0.002
TK33	0.126	8	9	4	2	0	1	7	2	8	2
TK34	0.001	0.000 כ	0.000	0.000 د	0.000 1	0.000 כ	0.000 1	0.000 כ	0.000 1	0.000	0.000 1
11.04	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
TK35	0.001	1	1	1	1	2	1	3	0	1	1
					10						

		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
TK36	0.001	1	0	1	0	2	0	2	0	1	1
		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
TK37	0.001	2	0	1	1	1	1	3	0	1	0
		0.000	0.000	0.001	0.000	0.001	0.000	0.000	0.000	0.000	0.000
TK38	0.004	9	2	0	2	1	1	5	1	4	0
		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
TK39	0.000	1	0	1	0	1	1	1	0	1	1
		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
TK40	0.002	7	1	5	1	4	1	4	1	2	0
		0.117	0.031	0.159	0.022	0.136	0.027	0.075	0.009	0.056	0.008
TK41	0.576	4	3	0	5	5	3	0	4	5	9
		0.091	0.023	0.125	0.019	0.116	0.023	0.062	0.008	0.049	0.007
TK42	0.396	6	2	9	8	9	9	0	1	2	5
		0.000	0.000	0.001	0.000	0.001	0.000	0.001	0.000	0.001	0.000
TK43	0.004	8	2	3	1	0	4	1	2	3	3
		0.002	0.000	0.002	0.000	0.001	0.000	0.000	0.000	0.000	0.000
TK44	0.012	1	5	6	3	8	4	9	1	7	1
		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
TK45	0.001	1	1	1	0	1	0	0	0	1	0
		0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000
TK46	0.004	9	2	6	2	9	2	3	1	2	0
		0.019	0.003	0.020	0.002	0.016	0.003	0.008	0.001	0.007	0.000
TK47	0.093	3	5	8	9	4	1	8	2	0	9
		0.134	0.035	0.178	0.027	0.163	0.032	0.088	0.010	0.061	0.010
TK48	0.549	0	0	7	5	3	8	1	7	1	0
		0.044	0.011	0.061	0.009	0.054	0.011	0.028	0.003	0.019	0.003
TK49	0.188	1	4	6	3	1	0	9	5	7	1
		0.085	0.018	0.099	0.012	0.062	0.012	0.030	0.003	0.020	0.003
TK50	0.430	7	6	4	2	4	1	9	6	1	2
		0.004	0.001	0.007	0.000	0.005	0.001	0.002	0.000	0.001	0.000
TK51	0.025	2	1	0	8	4	2	7	4	5	3
_ .,		0.053	0.014	0.099	0.014	0.093	0.021	0.060	0.007	0.039	0.006
TK52	0.244	1	8	3	9	3	1	1	2	4	6
_ .,		0.018	0.005	0.035	0.006	0.043	0.009	0.027	0.003	0.020	0.003
TK53	0.069	5	9	7	3	0	5	8	8	3	3

App. 1b: Tabulated Geochemistry (cont.)

No.	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
	0.045	0.011	0.003	0.022	0.003	0.024	0.006	0.018	0.002	0.013	0.002
11.54	0.045	0.022	0.006	0.032	0.005	0.029	0.006	0.017	0.002	0.014	0.002
TK55	0.104	8	2	4	0	9	7	1	4	3	1
TKEC	0.010	0.001	0.000	0.003	0.000	0.001	0.000	0.001	0.000	0.001	0.000
1720	0.010	0.010	0 003	8 0 030	5 0.005	0 034	/ ۵ ۵۵۸	0 021	0 002	0 011	4
TK57	0.040	1	3	0.000	0.000	9	2	6	5	0.011	8
		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
TK58	0.001	4	0	3	1	4	1	2	1	1	1
TK50	0 133	0.047	0.014 1	0.081	0.014	0.093	0.020	0.059	0.007 8	0.050 1	0.007
1133	0.155	0.026	0.005	0.026	0.003	0.015	0.003	0.008	0.001	0.005	0.001
TK60	0.124	6	3	1	4	9	1	0	0	9	0
		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
TK61	0.000	0	0	2	1	1	1	2	1	1	1
TK62	0 158	0.034	0.008	0.038	0.005	0.026	0.005	0.013	0.001	0.010	0.001
11(02	0.100	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
TK63	0.000	0	0	0	0	1	1	0	0	0	1
T 1/0 /		0.072	0.017	0.074	0.010	0.058	0.010	0.029	0.003	0.023	0.003
IK64	0.325	/	5	6	6	/	9	/	9	/	4
TK65	0.086	0.020	0.003	0.021	0.003	0.016	0.003	0.008	0.001	0.008	0.000
	0.000	0.018	0.003	0.023	0.003	0.018	0.003	0.009	0.001	0.006	0.001
TK66	0.084	4	8	1	3	5	8	2	3	5	2
TVOT	0.044	0.009	0.002	0.011	0.001	0.008	0.001	0.004	0.000	0.003	0.000
1667	0.044	0,000	0	9	/	5	/	0,000	0 000 0	4	5
TK68	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0.000	0.058	0.012	0.075	0.010	0.062	0.012	0.035	0.004	0.029	0.004
TK69	0.281	6	0	0	4	1	8	0	4	2	3
T 1/70	0.000	0.006	0.001	0.009	0.001	0.006	0.001	0.004	0.000	0.003	0.000
1670	0.036	5 0 091	0 020	0 118	2 0.017	د ۱۹۵۵ م	0 020	0 054	с 2000	0.039	a 200 0
TK71	0.429	0.001	1	3	2	2	0.020	0.004 7	5	0.000	0.000
		0.086	0.018	0.108	0.014	0.081	0.016	0.043	0.005	0.032	0.005
TK72	0.417	5	6	5	9	2	5	0	3	2	2
TK73	0 1/0	0.037	0.008 S	0.049	0.007	0.044	0.009	0.025	0.003	0.018	0.002 Q
11(75	0.149	0.110	0.027	0.137	0.020	0.109	0.022	0.058	0.007	0.046	0.006
TK74	0.475	2	4	8	0	1	4	9	9	6	8
		0.007	0.002	0.011	0.001	0.010	0.002	0.005	0.000	0.004	0.000
TK75	0.037	7	3	7	7	8	3	8	7	3	6
TK76	0 000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
11(70	0.000	0.083	0.024	0.118	0.019	0.119	0.024	0.067	0.008	0.056	0.008
TK77	0.276	0	6	3	3	0	4	7	9	0	7
— : /— -		0.072	0.024	0.135	0.020	0.130	0.025	0.069	0.008	0.051	0.008
TK78	0.189	6	4	1	8	1	4	8	8	8	0
TK79	0.379	0.101	0.027	0.120	0.019	0.117	0.023	0.063	0.008	0.052	0.008
110	0.070	0.044	0.011	0.070	0.010	0.065	0.013	0.038	0.004	0.028	0.004
TK80	0.186	9	7	5	4	6	7	4	9	1	5
TVO	0.000	0.001	0.000	0.001	0.000	0.001	0.000	0.001	0.000	0.000	0.000
1K81	0.006	2	3	8 000 0	2	5	4 0 000	0	1 0 000	6 0 0 0	1 0 000
TK82	0.000	2	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		_	2	2	10	•	2	2	2	2	2

42

		0.004	0.001	0.011	0.002	0.017	0.004	0.014	0.002	0.014	0.002
TK83	0.010	7	8	2	3	6	6	6	2	3	6
		0.001	0.000	0.004	0.000	0.007	0.001	0.004	0.000	0.004	0.000
TK84	0.003	8	6	3	7	1	8	9	7	2	7
		0.014	0.003	0.018	0.002	0.014	0.003	0.007	0.001	0.006	0.001
TK85	0.078	2	6	2	6	0	0	3	1	1	0
		0.003	0.000	0.003	0.000	0.002	0.000	0.001	0.000	0.000	0.000
TK86	0.019	3	7	6	4	2	5	2	2	7	1
		0.051	0.014	0.064	0.010	0.060	0.012	0.037	0.005	0.030	0.004
TK87	0.214	0	0	5	4	5	6	3	0	7	9
		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
TK88	0.001	1	0	1	0	1	0	1	0	1	0
		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
TK89	0.002	5	1	8	2	9	2	5	1	6	0
		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
TK90	0.001	1	0	2	1	3	1	3	1	1	0
		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
TK91	0.001	2	0	3	0	1	0	2	0	1	0
		0.001	0.000	0.004	0.000	0.005	0.001	0.003	0.000	0.001	0.000
TK92	0.007	5	6	8	8	3	2	1	4	8	3
		0.022	0.006	0.046	0.008	0.055	0.013	0.037	0.005	0.029	0.004
TK93	0.080	2	2	2	2	6	0	2	2	8	9
		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
TK94	0.000	1	0	0	0	0	0	1	0	1	0
		0.000	0.000	0.000	0.000	0.002	0.000	0.003	0.000	0.003	0.000
TK95	0.001	2	1	7	2	2	9	4	6	8	7
		0.039	0.010	0.055	0.008	0.046	0.009	0.026	0.003	0.018	0.003
TK96	0.162	4	2	3	1	7	8	0	3	1	0
		0.050	0.013	0.068	0.010	0.060	0.012	0.031	0.003	0.022	0.003
TK97	0.195	1	4	2	6	5	5	0	9	0	5
		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
TK98	0.001	5	2	4	1	6	1	5	0	3	1
		0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
TK101	0.002	1	2	7	2	6	2	4	1	4	2
		0.075	0.016	0.084	0.012	0.067	0.012	0.029	0.003	0.021	0.003
TK102	0.314	4	8	2	9	2	0	9	7	4	3

No.	TI	Pb	Bi	Th	U
	mg/l	mg/l	mg/l	mg/l	mg/l
	0.000			0.000	
TK7	2	0.016	<0.00005	2	0.033
TK8	< 0.0001	0.004	<0.00005	<0.0001	0.006
TVO	0.000	0.040	0 00005	0.0004	0.000
TK9	2	0.018	<0.00005	<0.0001	0.028
TK10	0.000	0.001	0.0000	0.000	0 042
intro	0.000	0.001	0.0000	0.000	0.012
TK11	3	0.002	5	3	0.002
	0.000			0.000	
TK12	1	0.007	<0.00005	3	0.116
TKAO	0.000	0.040	0.0001	0.002	0.070
TK13	4	0.016	0 0000	9	0.076
TK14	0.000	0 002	0.0000	<0.0001	0 040
11(14	0.000	0.002	0.0001	<0.0001	0.040
TK15	1	0.004	5	<0.0001	0.013
	0.000		0.0000		
TK16	2	0.005	5	<0.0001	0.023
	0.000				
IK17	1	0.001	< 0.00005	< 0.0001	0.004
	0.000	0 002	0.0000	0.000	0.006
INIO	I	0.002	0 0001	0 000 0	0.000
TK19	<0.0001	0.006	0.0001	3	0.007
	0.0001	0.000	0.0001	0.000	0.001
TK20	<0.0001	0.003	2	2	0.029
	0.000		0.0000	0.000	
TK21	3	0.008	7	1	0.083
TKOO	0.0001	0.005	0.0001	0.000	0.007
I NZZ	<0.0001	0.005	0 0000	Ĩ	0.007
TK23	0.000	0 0 1 9	0.0000	<0.0001	0 007
TK24	<0.0001	0.005	<0.00005	<0.0001	0.004
TK25	<0.0001	0.000		<0.0001	0.006
1125	0.0001	0.002	0.00003	0.0001	0.000
TK26	3	0.004	3	9	0.035
	0.000		0.0000	0.000	
TK27	1	0.001	9	3	0.039
T 1/0.0	0.000		0.0000	0.000	
TK28	6	0.012	8	1	0.060
TK20	0.000	0.003	0.0000	0.000	0.040
11/29	0 000	0.003	0 0000	I	0.049
TK30	1	0.005	9	<0.0001	0.029
			0.0000		
TK31	< 0.0001	0.011	7	< 0.0001	0.047
			0.0000		
TK32	<0.0001	0.003	7	<0.0001	0.007
TK33	< 0.0001	0.027	< 0.00005	< 0.0001	0.063
TKOA	0.000	0.004	0.0001	0.001	0.000
1K34	/	0.081	9 0 0001	2	0.069
TK35	0.000 ⊿	0.052	0.0001	0.000 ⊿	0 077
1135	0.000	0.002	0.0001	0.000	0.077
TK36	2	0.011	6	3	0.036
TK37	0.000	0.008	0.0000	0.000	0.093

App. 1b: Tabulated Geochemistry (cont.)

	2		7	1	
			0.0001	0.000	
TK38	< 0.0001	0.064	1	2	0.029
	0.000		0.0001	0.000	
TK39	1	0.002	0	1	0.068
TK40	<0.0001	0.006	<0.00005	<0.0001	0.019
	0.000			0.000	
TK41	4	0.259	<0.00005	1	0.094
	0.000		0.0002	0.002	
TK42	8	0.011	3	6	0.140
	0.000		0.0001	0.000	
TK43	1	0.003	0	4	0.005
	0.000			0.000	
TK44	1	0.001	<0.00005	1	0.001
	0.000		0.0000	0.000	
TK45	1	0.001	5	1	0.001
	0.000		0.0000		
TK46	1	0.003	7	<0.0001	0.001
	0.000			0.000	
TK47	6	0.079	<0.00005	2	0.021
	0.001		0.0002	0.000	
TK48	3	0.334	8	6	0.129
	0.001		0.0001	0.000	
TK49	9	0.077	8	1	0.043
	0.000		0.0002	0.001	
TK50	4	0.002	5	0	0.025
	0.000		0.0002	0.000	
TK51	3	0.005	8	3	0.026
	0.000		0.0001	0.000	
TK52	2	0.100	6	4	0.037
	0.000		0.0001	0.000	
TK53	5	0.011	4	1	0.015

No.	TI	Pb	Bi	Th	U
	mg/l	mg/l	mg/l	mg/l	mg/l
	0.000		0.0000		
TK54	1	0.008	7	< 0.0001	0.009
	0.000	0.045	0.0001	0.000	0.018
1100	0 000	0.045	0 0001	I	0.018
TK56	1	0.003	4	<0.0001	0.012
	0.001		0.0001		
TK57	4	0.005	2	<0.0001	0.025
			0.0000		/
TK58	< 0.0001	0.004	7	< 0.0001	0.021
	0.001	0 022	0.0000	0.001	0.000
1109	0 000	0.022	0 0001	∠ 0 000	0.099
TK60	0.000	0.013	5	2	0.031
	0.000		0.0003	0.000	
TK61	1	0.001	2	3	0.001
	0.000		0.0002	0.004	
TK62	2	0.009	2	6	0.058
TKOO	0.0001	0.004	0.0001	0.000	0.000
1603	<0.0001	0.001	0 0001	1	0.002
TK64	0.000	0.007	0.0001	0.001	0.085
1104	0.000	0.007	0.0001	0.000	0.000
TK65	2	0.006	8	3	0.025
	0.000		0.0001		
TK66	2	0.003	3	< 0.0001	0.007
	0.000		0.0001	0.000	
TK67	2	0.002	4	1	0.012
TKCO	.0.0001	0.002	0.0002	.0.0001	0.002
1 1 1 0 0	<0.0001	0.003		<0.0001	0.003
TK69	0.000	0.016	9	6.002	0.099
	0.000		0.0001	0.000	
TK70	1	<0.001	2	1	0.001
	0.001		0.0000	0.000	
TK71	2	0.033	2	1	0.038
T1/70	0.001	0.004	0.0001	0.000	0.045
INZ		0.064		0 000	0.045
TK73	0.000	0 008	0.0000	0.000	0 054
	0.000	0.000	0.0000	0.000	0.001
TK74	3	0.020	6	5	0.075
	0.000				
TK75	1	0.060	<0.00005	<0.0001	0.008
TK76	<0.0001	<0.001	<0.00005	< 0.0001	0.001
T 1/33	0.000	0.040	0.0001	0.000	
IK//	5	0.010	0	6	0.126
TK 78	0.000	0 002	0.0001 S	0.000	0.085
11(70	0 000	0.002	0 0000	0 000	0.005
TK79	2	0.002	7	4	0.127
	0.000	0.001	0.0000	0.000	•••=•
TK80	2	0.013	9	1	0.030
	0.000		0.0001		
TK81	2	0.001	4	<0.0001	0.020
TVOO	0.0001	0.001	0.0000	0.0001	0.004
1682	<0.000 ⁻ l	<0.001	5	<0.0001	0.004

App. 1b: Tabulated Geochemistry (cont.)

	0.000		0.0000		
TK83	1	0.017	9	<0.0001	0.017
	0.000		-		
TK84	1	0.005	<0.00005	<0.0001	0.009
	0 000	0.000	0.0001	0.000	0.000
TK85	1	0.050	9	4	0.016
11100	•	0.000	0	0 000	0.010
TK86	<0.0001	0.001	<0.00005	2	0.002
	0.000	01001	0.0001	0 000	0.002
TK87	4	0.006	4	8	0.069
TLOO	.0.0001	.0.001	-0.0000E	.0.0001	0.006
1100	<0.0001	<0.001	<0.00005	<0.0001	0.000
TKOO	0.000	0.001	0.0000	0.0001	0.005
1109	I	<0.001	0,0000	<0.0001	0.005
TKOO	0.0001	0.001	0.0000	0.0001	0 000
1K90	<0.0001	<0.001	/	<0.0001	0.002
TICOA	0.000	0.004	0.00005	0.000	0.000
1K91	1	<0.001	<0.00005	1	0.002
TICOO	0.000	0.007		0.000	0.004
TK92	3	0.007	< 0.00005	1	0.004
	0.000		0.0002	0.003	
TK93	4	0.008	3	4	0.039
			0.0000		
TK94	<0.0001	<0.001	6	<0.0001	0.001
			0.0000		
TK95	<0.0001	0.001	9	<0.0001	0.000
	0.000		0.0000	0.000	
TK96	1	0.012	7	1	0.017
	0.000		0.0000	0.000	
TK97	2	0.012	7	1	0.036
	0.000		0.0001		
TK98	1	0.001	7	<0.0001	0.002
	0.000		0.0002	0.000	
TK101	2	0.012	1	1	0.016
	0.000		0.0002	0.002	
TK102	5	0.027	6	7	0.127

Appendix 2: Element/ion concentrations for groundwaters

Figure A2.1: pH vs. TDS for groundwaters from Tunkillia and Western Australia.

Figure A2.2: Na vs. TDS for groundwaters from Tunkillia and Western Australia.

Figure A2.3: K vs. TDS for groundwaters from Tunkillia and Western Australia.

Figure A2.4: Mg vs. TDS for groundwaters from Tunkillia and Western Australia.

Figure A2.5: Ca vs. TDS for groundwaters from Tunkillia and Western Australia.

Figure A2.6: Sr vs. TDS for groundwaters from Tunkillia and Western Australia.

Figure A2.7: Rb vs. TDS for groundwaters from Tunkillia and Western Australia.

Figure A2.8: Cl vs. TDS for groundwaters from Tunkillia and Western Australia.

Figure A2.9: SO₄ vs. TDS for groundwaters from Tunkillia and Western Australia.

Figure A2.10: Br vs. TDS for groundwaters from Tunkillia and Western Australia.

Figure A2.11: B vs. TDS for groundwaters from Tunkillia and Western Australia.

Figure A2.12: HCO₃ vs. TDS for groundwaters from Tunkillia and Western Australia.

Figure A2.13: F vs. TDS for groundwaters from Tunkillia and Western Australia.

Figure A2.14: Au vs. TDS for groundwaters from Tunkillia and Western Australia.

Figure A2.15: Au vs. Eh for groundwaters from Tunkillia and Western Australia.

Figure A2.16: Au vs. Fe for groundwaters from Tunkillia and Western Australia.

Figure A2.17: Al vs. pH for groundwaters from Tunkillia and Western Australia.

Figure A2.18: Si vs. pH for groundwaters from Tunkillia and Western Australia.

Figure A2.19: Be vs. pH for groundwaters from Tunkillia and Western Australia.

Figure A2.20: Cr vs. pH for groundwaters from Tunkillia and Western Australia.

Figure A2.21: Cu vs. pH for groundwaters from Tunkillia and Western Australia.

Figure A2.22: Fe vs. pH for groundwaters from Tunkillia and Western Australia.

Figure A2.23: Li vs. pH for groundwaters from Tunkillia and Western Australia.

Figure A2.24: Mn vs. pH for groundwaters from Tunkillia and Western Australia.

Figure A2.25: V vs. pH for groundwaters from Tunkillia and Western Australia.

Figure A2.26: Zn vs. pH for groundwaters from Tunkillia and Western Australia.

Figure A2.27: Co vs. pH for groundwaters from Tunkillia and Western Australia.

Figure A2.28: Ni vs. pH for groundwaters from Tunkillia and Western Australia.

Figure A2.29: Ga vs. pH for groundwaters from Tunkillia and Western Australia.

Figure A2.30: Ge vs. pH for groundwaters from Tunkillia and Western Australia.

Figure A2.31: Mo vs. pH for groundwaters from Tunkillia and Western Australia.

Figure A2.32: Cd vs. pH for groundwaters from Tunkillia and Western Australia.

Figure A2.33: Sb vs. pH for groundwaters from Tunkillia and Western Australia.

Figure A2.34: Cs vs. pH for groundwaters from Tunkillia and Western Australia.

Figure A2.35: Y vs. pH for groundwaters from Tunkillia and Western Australia.

Figure A2.36: La vs. pH for groundwaters from Tunkillia and Western Australia.

Figure A2.37: Ce vs. pH for groundwaters from Tunkillia and Western Australia.

Figure A2.38: Pr vs. pH for groundwaters from Tunkillia and Western Australia.

Figure A2.39: Eu vs. pH for groundwaters from Tunkillia and Western Australia.

Figure A2.40: Ho vs. pH for groundwaters from Tunkillia and Western Australia.

Figure A2.41: Yb vs. pH for groundwaters from Tunkillia and Western Australia.

Figure A2.42: Lu vs. pH for groundwaters from Tunkillia and Western Australia.

Figure A2.43: Pb vs. pH for groundwaters from Tunkillia and Western Australia.

Figure A2.44: U vs. pH for groundwaters from Tunkillia and Western Australia.

Appendix 3: Saturation indices for groundwaters

Figure A3.1: SI for gypsum for groundwaters from Tunkillia and Western Australia.

Figure A3.2: SI for celestine for groundwaters from Tunkillia and Western Australia.

Figure A3.3: SI for barite for groundwaters from Tunkillia and Western Australia.

Figure A3.4: SI for calcite for groundwaters from Tunkillia and Western Australia.

Figure A3.5: SI for dolomite for groundwaters from Tunkillia and Western Australia.

Figure A3.6: SI for magnesite for groundwaters from Tunkillia and Western Australia.

Figure A3.7: SI for rhodochrosite for groundwaters from Tunkillia and Western Australia.

Figure A3. 8: SI for siderite for groundwaters from Tunkillia and Western Australia.

Figure A3.9: SI for fluorite for groundwaters from Tunkillia and Western Australia.

Figure A3.10: SI for alumina for groundwaters from Tunkillia and Western Australia.

Figure A3.11: SI for alunite for groundwaters from Tunkillia and Western Australia.

Figure A3.12: SI for Au metal for groundwaters from Tunkillia and Western Australia.

Figure A3.13: SI for CaMoO₄ for groundwaters from Tunkillia and Western Australia.

Figure A3.14: SI for FeMoO₄ for groundwaters from Tunkillia and Western Australia.

Figure A3.15: SI for $Sb(OH)_3$ for groundwaters from Tunkillia and Western Australia.

Figure A3.16: SI for BiOCl for groundwaters from Tunkillia and Western Australia.

Figure A3.17: SI for carnotite for groundwaters from Tunkillia and Western Australia.

Figure A3.18: SI for eskaloite for groundwaters from Tunkillia and Western Australia.

Figure A3.19: SI for ferrihydrite for groundwaters from Tunkillia and Western Australia.

Figure A3.20: SI for jurbanite for groundwaters from Tunkillia and Western Australia.

Figure A3.21: SI for kaolinite for groundwaters from Tunkillia and Western Australia.

Figure A3.22: SI for otavite for groundwaters from Tunkillia and Western Australia.

Figure A3.23: SI for sepiolite for groundwaters from Tunkillia and Western Australia.

Figure A3.24: SI for silica for groundwaters from Tunkillia and Western Australia.

Figure A3.25: SI for sphaerocobatite for groundwaters from Tunkillia and Western Australia.

Figure A3.26: SI for tenorite for groundwaters from Tunkillia and Western Australia.

Figure A3.27: SI for theophrasite for groundwaters from Tunkillia and Western Australia.

Figure A3.28: SI for cerusssite for groundwaters from Tunkillia and Western Australia.

Figure A3.29: SI for Fe vanadate for groundwaters from Tunkillia and Western Australia.

Figure A3.30: SI for analbite for groundwaters from various areas at Tunkillia.

Figure A3.31: SI for microcline for groundwaters from various areas at Tunkillia.

Figure A3.32: SI for anorthite for groundwaters from various areas at Tunkillia.

Figure A3.33: SI for chlorite for groundwaters from various areas at Tunkillia.

Figure A3.34: SI for annite for groundwaters from various areas at Tunkillia.

Figure A3.35: SI for muscovite for groundwaters from various areas at Tunkillia.

Figure A3.36: SI for kaolinite for groundwaters from various areas at Tunkillia.

Figure A3.37: SI for montmorillonite for groundwaters from various areas at Tunkillia.

Figure A4.1: Salinity distribution at Tunkillia

Figure A4.2: pH distribution at Tunkillia

Figure A4.3: Oxidation potential distribution at Tunkillia

Figure A4.4: O₂ partial pressure distribution at Tunkillia

Figure A4.5: pH/Eh groups at Tunkillia

476000 477000 478000 479000 480000 Figure A4.6: HCO₃ distribution at Tunkillia

Figure A4.7: CO₂ partial pressure distribution at Tunkillia

476000 477000 478000 479000 480000 Figure A4.8: Ca distribution at Tunkillia

476000 477000 478000 479000 480000 Figure A4.9: SO₄/Cl distribution at Tunkillia

476000 477000 478000 479000 480000 Figure A4.10: Na/Mg distribution at Tunkillia

Figure A4.11: Na/K distribution at Tunkillia

Figure A4.12: NO_3 distribution at Tunkillia

Figure A4.13: Al distribution at Tunkillia

476000 477000 478000 479000 480000 Figure A4.14: Au distribution at Tunkillia

476000 477000 478000 479000 480000 Figure A4.16: Ba distribution at Tunkillia

Figure A4.17: Be distribution at Tunkillia

476000 477000 478000 479000 480000 Figure A4.18: Bi distribution at Tunkillia

Figure A4.19: Cd distribution at Tunkillia

476000 477000 478000 479000 480000 Figure A4.20: Ce distribution at Tunkillia

Figure A4.21: Co distribution at Tunkillia

476000 477000 478000 479000 480000 Figure A4.22: Cr distribution at Tunkillia

Figure A4.23: Cs distribution at Tunkillia

476000 477000 478000 479000 480000 Figure A4.24: Cu distribution at Tunkillia

Figure A4.25: F distribution at Tunkillia

476000 477000 478000 479000 480000 Figure A4.26: Fe distribution at Tunkillia

Figure A4.27: Ga distribution at Tunkillia

Figure A4.29: I distribution at Tunkillia

476000 477000 478000 479000 480000 Figure A4.30: In distribution at Tunkillia

Figure A4.31: Li distribution at Tunkillia

476000 477000 478000 479000 480000 Figure A4.32: Mn distribution at Tunkillia

Figure A4.33: Mo distribution at Tunkillia

476000 477000 478000 479000 480000 Figure A4.34: Ni distribution at Tunkillia

Figure A4.35: Pb distribution at Tunkillia

476000 477000 478000 479000 480000 Figure A4.36: Rb distribution at Tunkillia

Figure A4.37: Sb distribution at Tunkillia

476000 477000 478000 479000 480000 Figure A4.38: Si distribution at Tunkillia

Figure A4.39: Sr distribution at Tunkillia

476000 477000 478000 479000 480000 Figure A4.40: Te distribution at Tunkillia

Figure A4.41: Tl distribution at Tunkillia

476000 477000 478000 479000 480000 Figure A4.42: Th distribution at Tunkillia

Figure A4.43: U distribution at Tunkillia

476000 477000 478000 479000 480000 Figure A4.44: V distribution at Tunkillia

Figure A4.45: Y distribution at Tunkillia

Figure A4.46: Zn distribution at Tunkillia

Figure A4.47: Alumina SI distribution at Tunkillia Figure A4.48: Alunite SI distribution at

476000 477000 478000 479000 480000 Figure A4.48: Alunite SI distribution at Tunkillia

Figure A4.49: Annite SI distribution at Tunkillia

Figure A4.50: Barite SI distribution at Tunkillia

Figure A4.51: Calcite SI distribution at Tunkillia

476000 477000 478000 479000 480000 Figure A4.52: CaMoO₄ SI distribution at Tunkillia

Figure A4.53: Carnotite SI distribution at Tunkillia

476000 477000 478000 479000 480000 Figure A4.54: Chlorite SI distribution at Tunkillia

Figure A4.55: Dolomite SI distribution at Tunkillia

476000 477000 478000 479000 480000Figure A4.56: Fe₃(OH)₈ SI distribution at Tunkillia

Figure A4.57: FeMoO₄ SI distribution at Tunkillia Figure A4.58: Ferrihydrite SI distribution at

Tunkillia

Figure A4.59: Gypsum SI distribution at Tunkillia Figure A4.60: Jurbanite SI distribution at

Tunkillia

Figure A4.61: Kaolinite SI distribution at Tunkillia

Figure A4.62: Magnesite SI distribution at Tunkillia

Figure A4.63: Rhodocrosite SI distribution at Tunkillia

476000 477000 478000 479000 480000 Figure A4.64: Silica SI distribution at Tunkillia