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ABSTRACT

This paper summarizes a systematic approach to analyzing the geochemical data collected over lateritic terrains
in the Yilgarn Block of Western Australia.

Critical steps in the sequence of data analysis are:

1) preliminary data analysis,
2) exploratory multivariate data analysis, and
3) specific multivariate data analysis and modelled multivariate analysis.

For the evaluation of geochemical data in laterites of the Yilgarn Block the following sequence of

investigation is recommended:

1) Preliminary Data Analysis

The use of histograms, box & whisker plots, Q-Q plots, scatter plot matrix, data ranking;
Preparation of summary statistical tables;

Maps of elements with each sample ranked into percentile ranges;

Elimination of gross outliers;

Investigate outliers for each element: analytical error or atypical abundance;

Adjust data for censored values;

Transformation of data based upon samples below the 95th-98th percentile;

Scatterplot matrix for transformed data;

Threshold selection after transformation.

2) Exploratory Multivariate Data Analysis

Robust estimates to compute means and covariances to enhance the detection of outliers;

Application of dimension reducing techniques such as principal components analysis;

The use of methods to delineate structure in the data (cluster analysis, multidimensional scaling, non-
linear mapping, and projection pursuit);

The use of %2 plots applied to transformed data to isolate outliers based upon all of the elements of
interest; maps of large Mahalanobis distances (>95th percentile) may identify anomalous areas.

3) Specific Multivariate Data Analysis and Modelled Multivariate Analysis

Calculation of empirical indices specifically tailored to areas in which multi-element associations are
understood.

Multiple regression applied to areas where a linear model of the multi-element association can be
computed with good results (i.e. high R2 coefficients). Residuals can be examined for the potential of
being associated with mineral deposits.

The establishment of background and target groups that characterized the geochemical variation of the

.regional geochemistry and the mineral deposits.

Analysis of variance and canonical variate analysis to test the statistical uniqueness of the groups.
The use of all possible subsets to compare reference groups with each other and determine which group of
elements enhance the group separations.
The application of allocation/typicality procedures to test unknown samples from a regional exploration
programme. Each samples is assigned a probability of belonging to one of the reference groups. Maps of
typicality or posterior probability can be made to indicate group membership.

This approach of systematically analyzing the laterite geochemistry forms the basis of an effective

exploration programme strategy in geochemistry.
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Geochemical Data Interpretation 1

1.0 STATISTICAL DESCRIPTION OF DATA

1.1 Introduction
The objective of these notes is to review strategies and methodologies that can be used for the evaluation and
interpretation of geochemical data. The general outline of these notes is subdivided by two main strategies.

Exploratory Data Analysis of Geochemical Data (Sections 3 and 4) is concerned with analysing
geochemical data for the purpose of recognizing and enhancing trends or structures in the data that are not
immediately obvious. These trends/structures/patterns provide insight into the geochemical/geological processes
that have occurred. There are a great many methods and procedures that can be carried out on geochemical data
which enable the investigator to discover patterns in the data.

Modelled Investigations of Geochemical Data (Section 5) are based upon the knowledge that certain
geochemical patterns reflect particular geological processes (i.e. ore deposits) as recognized through exploratory
data analysis. Through orientation studies, geochemical characteristics can be obtained for specific geological
environments which through interpretation can be used as models. This information can lead to the definition of
background and target groups, which can then be used as the models with which unknown samples can be
compared using a variety of statistical methods. Background groups are composed of data that represent
regional background variation. Target groups are composed of data that characterize the geochemistry around
selected mineral deposits.

Both strategies can be important for a successful exploration programme and they are commonly
carried out in parallel. However, the interpretation of the results of these strategies must be based upon a
thorough understanding of the geology of the region(s) being investigated.

The use of graphical procedures is perhaps one of the most important aspects of geochemical data
interpretation. Many of the numerical procedures are difficult to interpret from the examination of the numerical
results alone. However, from the results of the numerical methods, if the interrelationships between the samples
and elements can be shown graphically, the nature of the relationships can be easily observed.

The ultimate goal of the investigation of geochemical data is the detection of a spatially-continuous
zone which has elevated abundances of strategic elements and which may host mineral deposits. A zone of
elevated abundances is usually referred to as an anomaly. However, the definition of an anomaly is one of the
most contested definitions in current exploration geochemistry concepts. An important assumption is that the
background and target populations are adequately represented. In regional sampling programmes, this may not
always be the case. Sampling strategies are crucial and the design of sampling strategies should be carefully
considered prior to collecting samples (Garrett, 1983, Chapter 4). Data interpretation can be enhanced
significantly if the design of the sampling strategy ensures an adequate representation of geochemical features.

Gold, massive sulphide deposits, and other rare metal deposits often are characterized by a halo of
elevated abundances of other elements that are normally present in very low abundances in the country rocks.
These elements are called pathfinder elements as their aerial extent is larger than the extent of the target element
and thus provide a diagnostic key to the presence of the target being sought. This has led to the use of multi-
element geochemistry being an important aspect of exploration geochemistry programmes. Multi-element
geochemical distributions can yield useful results for mineral exploration purposes. Many elements have
associations (correlations) with other elements which indicate that the elements are not independent from each
other. Thus, inferences between the relationships of elements provide patterns that can be recognized with
geological processes. These relationships necessitate the use of multivariate methods of analysis and statistics
which assist in the recognition of mineral deposits.

These notes do not cover statistical theory, rather they emphasize methods that can be applied to multi-
element geochemical data. The notes assume that the reader has a basic knowledge of statistics. Davis (1986,
Chapter 2) gives an outline of basic statistics and discusses probability.

1.2 Data Sets Used In This Study

The laterite geochemical data used in these notes will provide contrasting examples between regional
background geochemical data (background groups) and geochemical data associated with precious metal and
massive sulphide base metal deposits (target groups). The study will focus on methods of exploring these
datasets and contrasting the geochemistry of the datasets in order to examine the differences between
background and target groups.

Dataset 1: Murchison Greenstone Belt: Regional Background Data

This dataset, part of the CSIRO/AGE Yilgarn geochemical database, represents geochemical data collected over
the granite-greenstone terrain of the Murchison area in the Yilgarn Block of Western Australia. The area is
underlain by supracrustal rocks, "greenstones", and surrounding felsic intrusive stocks and batholiths with
enclaves of gneissic material, all of Archaean age. The supracrustal areas are comprised of predominantly mafic
volcanic, felsic volcanic, and sedimentary sequences that have been deformed, metamorphosed, and intruded by
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later post-kinematic plutons. Late stage faulting has occurred throughout the preserved greenstone belts. Many
Au deposits have a proximity to these large scale fault systems.

As part of the AGE programme, 1983 to 1986, the region was sampled at 3-km triangular spacing
intervals with follow-up sampling at closer spacings of 1 km and 300 m. A variety of surface exposed lateritic
materials was sampled and classified as to the type of sample. Most samples belong to one of two groups
consisting of either lateritic residuum, which dominates, or subordinate lag of ferruginous pebbles or cobbles.
The most common form of the laterites is nodular or pisolitic. Only the lateritic materials are used in the
examples presented here. Reports on the laterite and other Fe-rich materials that were sampled over the area are
covered by Grunsky et al. (1988, 1989).

Gold mineralization is widespread throughout the area. Most deposits are viewed as epigenetic and
many shears and mineralized vein systems are associated with carbonate, soda, and potash metasomatism.

Dataset 2: Yilgarn Block Granite/Gneiss Terrain Background Group from the Albany-Fraser region (Grunsky,
1991).

The region was sampled at 3-km triangular spacing intervals with follow-up sampling at closer spacings of 1 km
and 300 m as part of the AGE programme. As in Dataset 1, a variety of surface-exposed lateritic materials were
sampled and classified as to the type of sample. Almost all of the samples are lateritic, the most common form
being nodular or pisolitic. The area is composed of large tracts of compositionally-banded gneiss and foliated
and massive granitoid rocks ranging in composition from tonalite to granite. Enclaves of greenstone material
occur throughout the area and are of middle to upper amphibolite facies grade metamorhpism.

Dataset 3: Mt. Gibson Au Deposit Target Group

The Mt. Gibson Au deposit occurs within a sequence of altered and sheared felsic and mafic volcanics of
amphibolite grade metamorphism. The sequence occurs as a synformal enclave within gneissic Archaean
granitoids. The volcanics are primarily tholeiitic basalts overlain by volcaniclastic sediments, felsic volcanics,
and some banded iron formation. It occurs within the Murchison greenstone terrain of the regional background
group of Dataset 1. The Au mineralization is situated in auriferous veins within a predominantly shear
controlled vein network. It is typical of many Archaean lode Au deposits (Groves, 1988; Colvine et al., 1988).
Orientation sampling was carried out along grid lines and at specific sites of interest. The sampling density is
approximately 18 samples per square kilometre. Several sample types were collected over the area (Smith et al,
in prep.), only lateritic duricrust samples are used in this paper. The geochemistry and geomorphology of the
area is discussed in Anand et al. (1989a).

Dataset 4: Golden Grove Cu-Zn-Au deposit (Murchison belt)

The Golden Grove deposit is most similar to a massive sulphide type of environment. The geology and
exploration geochemistry is discussed in Smith and Perdrix (1983) and Smith et al. (1984). Copper and Zn ore
deposits occur at both the Gossan Hill and Scuddles locations within a sequence of stratiform metavolcanics
with Au being enriched within the overlying laterite. The ore deposits occur within a sequence of intercalated
acid pyroclastic, volcaniclastic, and associated felsic flows. This target group is also located within the
Murchison greenstone terrain of Dataset 1. The mineralization is stratiform, hosted by felsic lapilli tuff. The
deposits contain Cu, Pb, Au, Zn, and Ag. The samples that comprise this dataset consist of 100 samples of
individual loose lateritized gossan-nodules (which will be a new category, LT164, in the Atlas (Anand et al.,
1989b}) collected from Gossan Hill. An initial study of the area indicated that associated pathfinders associated
with Cu, Au, and Ag are Bi, Sn, Mo, In, Sb, and As. The samples represent a specialized Golden Grove
geochemical signature which will be compared with the Mt. Gibson and Lawlers samples.

Dataset 5: Lawlers Au Deposit Target Group

The laterite samples collected for this dataset cover a range of bedrock lithologies. This Au deposit is situated
within a sequence of mafic/ultramafic volcanic rocks. The mineralization is not well understood. Only the
lateritic samples were used in this dataset. Sampling of the laterite was carried out over a small area directly
over the mineralization.

1.3 Special Problems :
There are some fundamental problems that commonly occur in geochemical data.

1) Most clements have a "censored" distribution, meaning that values at less than the detection limit
can only be reported as being less than that limit.

2) The data do not occur as normally-distributed abundances.

3) The data have missing values. That is, not every sample has been analysed for the same number of
clements.

4) Not every element has been analysed by the same method or the limits of detection of the method
have changed over time.
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These problems create difficulties when applying mathematical or statistical procedures to the data.
Statistical procedures have been devised to deal with all except the last problem. To overcome the problems of
censored distributions, procedures have been developed by applying transformations to estimate replacement
values for the purposes of statistical calculations by the CSIRO Division of Mathematics and Statistics. Non-
normally distributed data can be transformed using procedures discussed above. When the data have missing
values, several procedures can be applied to estimate replacement values. Most procedures use a multiple
regression procedure which estimates the replacement value based on a regression with samples that have
complete analyses. The use of replacement values has obvious limitations and precautions must be kept in
mind.

1.4 Frequency Distributions

1.4.1 SAMPLE POPULATIONS AND DISTRIBUTIONS

The chemical analyses of samples collected in a sampling programme generally show a range of abundances for
cach of the elements that are analysed. If the values for a given element of the sample population are ordered,
then the "distribution" of the sample population can be observed. The distribution is commonly expressed in the
form of frequency of value versus data value and can be expressed graphically by the histogram. Other
graphical methods of distributions are box and whisker plots and quantile-quantile plots. Figures 1lab
graphically illustrate two types of frequency distributions. Figure 1a describes a symmetric distribution while
Figure 1b displays a non-symmetric distribution. Each distribution has distinctively different properties. The
frequency of various elements can have frequency characteristics that closely match those shown in Figures 1a
or 1b.

The analysis of one element of a population of samples is known as univariate analysis. When several
clements are being analyzed, the population of samples is multivariate. Figures 1ab display characteristics
associated with univariate populations. Multivariate populations are impossible to display beyond three
dimensions. The statistics of multivariate populations are more complicated and less well understood. Figure 1c
shows a graphical example of bivariate distribution which shows the frequency relationship between two
variables.

1.4.2 ESTIMATES OF THE MEAN/MEDIAN
Estimates of the central values of a distribution are important for data analysis and statistical techniques that
make use of correlation or covariance estimates. Techniques such as principal components analysis, regression
procedures, and %2 plots are based upon the estimate of the mean. If the data are not normally distributed nor
skewed, then the arithmetic mean can be significantly different from the median value. Figure 1b illustrates this
difference. There are three measures of central tendency, the mode, median, and the mean. When a population is
normally distributed, then the three measures are equal in value.

The mean is the maximum frequency point in a normal distribution (see Figure 1a). In a normal
distribution for a random variable x and n samples in the population, the mean is defined as:

x = {Z xm
i=1

The mode is defined as the maximum frequency point of any distribution. In a non-normal distribution,
there can be many modes, hence the term polymeodal distribution. In a normal distribution, the mode and the
mean are the same. The median is the midpoint in the ordered set of frequencies of any distribution. In a normal
distribution, the median and the mean are the same. These three terms are illustrated in Figures 1a and 1b.

In statistical analysis, the use of the mean is the most commonly-used measure of central tendency. If
the mean does not represent the maximum frequency of the distribution as illustrated in Figure 1a, then the
results of a statistical analysis can be misleading. In the case of Figure 1b, it can be seen that the mean value is
greater than the mode or the median value. Most geochemical distributions have characteristics similar to that of
Figure 1b. In order to treat geochemical data statistically, there are a number of procedures that can be applied
to transform the distribution to more normal characteristics as in Figure 1a. These techniques will be discussed
below.

1.4.3 HISTOGRAMS

The histogram is probably the best known graphical means of displaying a distribution since it reflects the shape
similar to theoretical frequency distributions. The example presented here represents As samples collected over
the Murchison area greenstone terrain.

The histogram is constructed in the following way:

i) The interval of sample values is divided into a fixed number of classes. Figure 2 shows a histogram where the
interval has been divided into 40 equal segments. The choice of interval is an arbitrary and trial and error
procedure. If the number is intervals is too small, then the finer details of the distribution are smoothed over.
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If the number of intervals are too many, then the distribution appears discontinuous. This is illustrated in
Figures 2, 3, and 4 where the number of intervals are 40, 20, and 80 respectively. The shape of the histogram is
sensitive to the data interval used to construct the frequency bars. If data intervals are poorly chosen then
interpretation of the histogram can be misleading.

Relative frequency

PSRRI O

—~— T —_—
Smaller Central value Larger

Figure 1a. Normal frequency distribution

Relative frequency

Mode :
Median |
Mean |

Figure 1b. Skewed frequency distribution

Relative frequency

Figure 1c. Joint probability distribution
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ii) A cut-off value should be implemented in order to avoid distorting the histogram if extreme outliers are
present. The graphical presentation of the distribution can be enhanced by choosing a suitable interval for the
range of the data; however, this will hide the extreme values. Thus, histograms should be drawn for unscaled
and scaled data. Figure 5a shows the same data as Figure 2; however, in this case the data are unscaled and it
can be seen that the nature of the data distribution is masked by the extreme values that distort the scale of the

histogram.

iif) Summary statistics alongside of the histogram can assist in viewing the range and spread of the data. In
Figures 2-5, the number of samples, mean, standard deviation, maximum value, minimum value, median, left
hinge, and right hinge are shown. These values provide a numerical basis for interpreting the distribution.
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Figure 5a. Histogram & Box-Whisker Plot: Arsenic in Laterites,Murchison _Greenstqne
Terrain. Number of frequency intervals = 40. The data is unscaled, all outliers are included.
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1.4.4 BOX AND WHISKER PLOTS

The box and whisker plot was developed to express order statistics in a graphical form (Tukey, 1977). In the
analysis of a univariate distribution, it is often convenient to present the box and whisker plot along with the
histogram as is done in Figures 2 to 5. The box and whisker plot provides a graphical display of the median
(50th percentile), left and right hinges (25th and 75th percentile) as well as the maximum and minimum values
over the range of the data. The left and right hinges and median are presented as a "box" that displays the range
over which 50% of the data is spread. The "whiskers" are the lines that extend to the left and right of the box.
Several variations exist on the graphical presentation of box and whisker plots. Some plots display the values
that are less than the 25th and greater than the 75th percentiles as points along the whisker. The extreme ends
(maximum and minimum values) of the data are marked by vertical bars at the end of the whiskers.
Alternatively, the whiskers can extend to the "fences", which are defined as 1.5*midrange of the data. Samples
that plot beyond 3*midrange are plotted as special symbols. Samples that plot beyond 3*midrange can also be
shown by separate symbols indicating their uniqueness. These samples have not been plotted on the box and
! whisker plots shown in Figures 2-9.

The location of the median line within the box gives an indication of how symmetric the distribution is
within the range of the left to right hinges (midrange). The length of the whiskers on each side of the box also
provides an estimate of the symmetry of the distribution. Figure 2 shows the asymmetric character of the As
distribution for the Yilgarn greenstone terrain laterites. In this case, the median value occurs towards the left
hinge line and the extreme values plot beyond the range of the axis.

The main advantage of the box and whisker plot is that its shape is independent of the interval used to
present the histogram. Thus, providing the scale of presentation is reasonable, the box and whisker plot provides
a fast visual estimate of the frequency distribution.

1.4.5 QUANTILE-QUANTILE (Q-Q) PLOTS

Quantile-Quantile (Q-Q) plots are a graphical means of comparing a frequency distribution with respect to an
expected frequency distribution which is usually the normal distribution. Q-Q plots are generated by calculating
quantile values for the normal frequency distribution (value of the normal frequency distribution over the range
of probability, 0.0 to 1.0) and then plotting them against the observed ordered data. If a frequency distribution is
normally distributed, when the quantile values are plotted against the ordered values of the sample population
the plot will be a straight line. If the frequency distribution of the sample population is skewed or the population
is polymodal, then the Q-Q plot will be curved or discontinuous.

Figure 5b shows a Q-Q plot for an asymmetric (non-normal) distribution. The data is the same data
used to generate Figures 2-4. The histogram and box and whisker plot of Figure 4 show that the distribution is
asymmetric with many samples occurring to the right of the median value. This asymmetry is also expressed in
the Q-Q plot where the distribution of the data is highly distorted by a few outliers.

The main advantage of the Q-Q plot is that each individual sample is plotted and thus the detailed
characteristics of groups of samples that are of interest can be observed. Another means of analysing frequency
distributions is through the use of probability plots. Sinclair (1976) describes the use and applications of
probability plots in the analysis of geochemical data. Probability plots are essentially the same as Quantile-
Quantile plots.

1.5 Transformation of Data
In many distributions, the skewed nature of the data can be overcome by applying a suitable transformation that
shifts the values of the distribution such that it becomes normally distributed. It has been common in the
geological literature to apply logarithmic transformations to data as a way to correct positive skewness (long tail
to the right of the median). However, the application of a logarithmic transform may not always be the best
transform to apply and in some cases may even distort the distribution parameters even more so than the
untransformed data (Link and Koch, 1975).
Transformations that can be applied are:

*  Linear scaling, y=kx or y=x/k

*  Standardization, y=(X; - Xpyean)/s

*  Logarithmic, y=log;¢(x), y=In(a+x)

*  Exponential, y=eX —

*  Box-Cox Generalized Power Transform, y=(x7‘ - 1)/A, y=In(x) for A=0

The linear scaling and standardization transformations do not change the shape of the distribution;

however, the degree of dispersion can change. The logarithmic, exponential, and Box-Cox generalized power
transforms modify both the shape and the dispersion characteristics of the distributions and are the
transformations most commonly used. Howarth and Earle (1979) provide a computer program for estimating
parameters for the generalized Box-Cox power transform based on the optimization of skewness and kurtosis
and the optimization of the maximum likelihood criterion of Box and Cox (1964). Lindqvist (1976) has also
published a computer program (SELLO) for transforming skewed distributions based on minimizing skewness.
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Figure 6a shows a histogram of the log transformed data of Figure 2 after the extreme outliers have
been eliminated. Figure 6a shows that the median line is more centrally located within the box and whisker plot
with a value close to 3.0 (In(20 ppm)=3.0). Also the whiskers are of more equal length indicating a more
symmetric distribution. Figure 6b shows the same data on a Q-Q plot. The data clearly approximate a straight
line and thus the transformation can be seen to result in a dataset that is closer to a normal distribution.

After applying the appropriate transformation, Q-Q plots can also be used for detecting multiple
populations within data. Examination of Figure 6b indicates that there are changes in the slope of the data near
the log values of 1.8, 3.5, and 5.6 (these translate to 6, 33, and 270 ppm respectively) for As. Such a change of
slope indicates that there is a significant change in the frequency of observations at these abundances. The

Murchison Greenstone Terrain Laterites (LN LP) As
Somples 868.

Mean 32.09
Std. Dev. 3.00
i { I lr 1 Mox 6407.00
Min 2.00
B 9 Median 29.00
8 8
L Hinge 17.00
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6 3
oy >
~
£ 5 e
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g 3
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139
=
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Figure 6a. Histogram & Box-Whisker Plot: Arsenic in Laterites [In Transform],
Murchison Greenstone Terrain. Number of frequency intervals = 40.
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Figure 6b. Q-Q Plot: Arsenic in Laterites [In Transform], Murchison Greenstone Terrain.
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abrupt changes in frequencies can represent multiple populations or missing values within the frequency
distribution. The two peaks in the range of 15 and 30 ppm in Figure 4 may reflect different As values within
felsic and mafic volcanic rocks, whereas the extreme values above 1000 ppm (In(1000)=6.9) in Figures 5a,b
may be truly anomalous and possibly related to mineralization.

It is usual practice to apply a transformation procedure to data that have a non-normal distribution. The
distribution should be examined for outliers before and after a transformation has been fitted to the data. Once
the outliers are eliminated, the data should be subjected to an additional transformation fit to ensure that the
outliers did not influence the parameters for the transformation. Campbell (1986a) has written computer
programs that account for atypical abundances in the estimation of transformations and robust estimates of
means and variances. If applying the procedures of Howarth and Earle (1979), the transformation parameters
can be fitted after removing data above the 95-99th percentile ranking.

In exploratory data analysis, transformations are useful in assessing whether outliers are the result of an
incorrect frequency distribution or are in fact truly atypical values. The use of transformations is more important
in statistical testing between populations based upon established reference groups.

Table 1 displays the values of A used to transform data from a sample population of laterites collected
over the Archaean greenstone terrain of the Murchison area (Dataset 1). These values were obtained by
procedures outlined by Howarth and Earle (1979) from samples below the 95th percentile.

Table 1

Transformation coefficients used for the
Murchison Greenstone Belt Geochemical Data.
Box-Cox Generalized Power Transform

y=(xM - 1)/n for A=0 y=In

Fe,O4 0.6 Co 04
Ag In As In
Mn In Sb In
Cr In Mo In
Vv 0.4 Sn In
Cu In Ga 05
Pb 0.4 W In
Zn In Nb 0.3
Ni In Au In

1.6 Truncated and Censored Data

One of the biggest problems facing the analysis of geochemical data occurs when the data has an abundance less
than the detection limit of the method of analysis. This results in large numbers of analyses that have a common
value which results in a bias of the distribution. This effect is called censoring where the data are known to have
a value, but is assigned some fixed value. Distributions in which censored data are ignored are known as
truncated distributions.

Censored distributions are common in geochemical data. All geochemical analyses have a lower limit
of detection (1ld) imposed by the analytical method. In regional background samples, many of the chalcophile
elements or other pathfinder elements have low abundance levels that are less than the 11d. Figure 7 shows a
theoretical normal distribution with the censored portion shaded. The distribution displays a break at a specific
point which represents the lower limit of detection in geochemical analysis. A common practice is to substitute
the censored value by one half or one third the detection limit. If the number of samples that fall below the 11d
are large, then this estimate will produce poor results.

The problem of censored data becomes more apparent when means and covariances are required.
Clearly, using the substituted value biases the computation of the moments of the distribution. However, if the
nature of the distribution can be assumed to be normal, then the replacement value of the censored data and
parameters of the distribution (mean, variance) can be estimated based on the portion of the distribution that is
not censored. The estimate of the distribution parameters is obtained using the EM algorithm (Dempster et al.,
1977) and is discussed by Campbell (1986b) and Chung (1985, 1988). Chung (1985) and Campbell (1986b)
have published computer programs for the statistical treatment of geochemical data with observations below the
detection limit. These procedures work by calculating the characteristics of the data above the 11d. From these
characteristics, an estimate can be made as to how the data is distributed below the 1ld. The assumption of
normality is essential for the EM algorithm to work. Campbell (1986b) invokes an algorithm to transform the
data to normality using Box-Cox transformations as described in the previous section.
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Gold analyses from the regional background data of the Murchison greenstone terrain (Dataset 1) were
subjected to analysis using the CENSOR procedure of Campbell (1986b). The procedure fits an appropriate
transformation and substitute value for the distribution. The transformation is necessary since censoring
procedures assume that the underlying censored or truncated distribution is normal. The CENSOR program
estimated a replacement value of 0.51 ppb for values less than 1 ppb based on a logarithmic transformation of
the data. The replacement value of 0.51 ppb ensures that the statistical parameters (mean, standard deviation,
etc.) are for a complete distribution. Figure 8 shows the data prior to transformation with a replacement value of
0.51 ppb. Figure 9 shows the same data after a logarithmic transformation and using a replacement value of .51
ppb. The histogram still appears skewed; however, the mean and standard deviation calculated from this
replacement value represent values that would be obtained if the data were not censored.

1.7 Summary Tables / Order Statistics
Ranking (ordering) the data is an effective means of observing the distribution of a sample population.
Generally, abundances that are above a predetermined threshold or samples that rank above the 98th percentile
may be considered anomalous. Although tabulated measures of the 1, 5, 10, 25, 50, 75, 90, 95, 99th percentiles
are useful for obtaining actual numbers, graphical displays are the most effective means at describing the
distributions. Distributions can be graphically displayed in a variety of ways. Figures 2-6 show three graphical
ways in which a sample distribution can be expressed, the histogram, box and whisker plot, and the Q-Q plot.
Summary statistics in the form of a table provide a convenient means by which the distributional

characteristics can be viewed from a strictly numerical basis. Summary statistics should include:

¢ Percentile Rankings: 1, 2, 5, 10, 25, 50, 75, 90, 95, 98, 99th percentiles.

¢ Maximum Value

* Minimum Value

* Arithmetic Mean

* Median (50th percentile)

* Mode

¢ Standard deviation

¢ Left Hinge (25th percentile)

¢ Right Hinge (75th percentile)

Example of Censored Distribution
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Figure 7. Normal Frequency Distribution: Censored data in Shaded area.
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These numerical values are most useful when comparing distributions, particularly for the same
element over several types of sample media. The percentile values can provide a quick assessment about the
shape of the distribution. When adjacent percentile values are similar or equal then the distribution is skewed.
The mode is the value of maximum frequency. It is often difficult to determine computationally since the mode
is sensitive to the interval for binning the data required to create histograms. Also, there can be more than one
mode (i.e. polymodal) in a distribution and thus a computational mode will not have any real meaning.
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Figure 8. Histogram, Box-Whisker and Q-Q Plots of a Censored Distribution: Gold in Laterites
Murchison Greenstone Terrain. Number of frequency intervals = 40. Censored values are those
less than 1 ppb and form a peak at the left side of the histogram. A replacement value of 0.51 ppb
for samples with values less than the detection limit was derived from analysis of the non-censored
portion of the frequency distribution. Note that the censored values are masked by the
untransformed histogram.
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Tables 2, 3, and 4 are summary tables for three groups of data, a laterite sampling survey over the
Murchison greenstone belt, 100 lateritized gossan-nodules collected over the Golden Grove deposit, and a group
of lateritic duricrust collected over the Mt. Gibson Au deposit. Each Table displays selected percentile rankings,
minimum value, maximum value, median, mode, mean, and standard deviation for selected groups of elements.
Comparison between the tables of the upper percentiles, median, and mean values can assist in assessing the
geochemical differences between the sample groups.
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Figure 9. Histogram, Box-Whisker, and Q-Q Plots of a transformed Censored Distribution: Gold in
Laterites Murchison Greenstone Terrain. Number of frequency intervals = 40. Censored values are
those less than 0 (In(1 ppb)) and form a peak at the left side of the histogram. A replacement of -
0.67 (In(.51ppb)) is used for samples that are less than the detection limit. The censored values
stand out as a separate frequency bar in the transformed population.




Table 2
Summary statistics for Murchison Greenstone Laterites
Sample types: LN

No. of Samples in Group: 868

Element
Fe

Ag

Mn

Cr

Table 2

Wi%

ppm
ppm

ppm
ppm
ppm
ppm
ppm

ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppb

Lab
Amdel
Amdel
Amdel
Amdel
Amdel
Amdel
Amdel
Amdel
Amdel
Amdel
Amdel
Amdel
Amdel
Amdel
Amdel
Amdel
Amdel
Analb

Method L
AAS-HF
OES
AAS
XRF
XRF
AA-HF
XRF
AA-HF
AA-HF
AA-HF
XRF
XRF
XRF
XRF
OES
XRF
XRF
334
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#Samples
868
868
868
868
868
867
868
868

Summary statistics for Murchison Greenstone Laterites

Sample types: LN

Element
Fe

Ag

Mn

Cr

\%

Cu

Pb

Zn

Ni

Wi%
ppm

ppm
ppm
ppm
ppm
ppm
ppm
ppm
ppm

ppm

ppm
ppm
ppm
ppm
o
ppb

Lab
Amdel
Amdel
Amdel
Amdel
Amdel
Amdel
Amdel
Amdel
Amdel
Amdel
Amdel
Amdel
Amdel
Amdel
Amdel
Amdel
Amdel
Analb

Method L.
AAS-HF
OES
AAS
XRF
XRF
AA-HF
XRF
AA-HF
AA-HF
AA-HF
XRF
XRF
XRF
XRF
OES
XRF
XRF
334

Py
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#Samples Minimum Maximum

868
868
868
868
868
867
868
868
868
868
868
868
868
866
868
868
863
484

NOTE: Mode estimated by binning of data: # of bins= 100.
Bin width=(95%ile-minimum value)/100.0

1%
6.70
0.03
11.00
95.00
30.00
4.00
0.67
7.00
1.67
1.67
3.00
0.67
0.67
0.33
3.00
3.33
1.33
0.33

2,90
0.03
1.67
33.00
3.33
2.00
0.67
4.00
1.00
1.67
0.67
0.67
0.67
0.33
1.00
3.33
1.33
0.33

5%
10.30
0.03
21.00
172.00
112.00
6.00
3.00
10.00
1.67
1.67
6.00
0.67
0.67
0.33
6.00
3.33
1.33
0.33

83.78
10.00
>9999.00
>9999.00
5228.00
2211.00
309.00
5§92.00
2000.00
170.00
6407.00
115.00
780.00
72.00
80.00
5884.00
125.00
192.00

Median
34.60
0.03
110.00
702.00
669.00
48.00
27.00
26.00
40.00
8.00
29.00
2.00
3.00
2.00
20.00
3.33
10.00
2.67

25%
23.30
0.03
51.00
347.00
355.00
20.00
17.00
18.00
20.00
5.00
17.00
0.67
0.67
0.33
15.00
3.33
6.00
1.00

Mode
33.32
0.04
29.82
243.50
304.63
517
1.06
21.86
2.45
1.88
14.82
0.71
0.74
0.37
19.91
3.45
1.46
0.99

Percentiles

50%
34.70
0.03
110.00
707.00
669.00
48.00
27.00
26.00
40.00
8.00
29.00
2.00
3.00
2.00
20.00
3.33
10.00
2.67

75%
45.20
0.20
210.00
1780.00
1060.00
100.00
42.00
38.00
78.00
16.00
52.00
4.00
5.00
5.00
30.00
3.33
16.00
7.00

Std. Dev.
15.38
0.49
686.92
2329.25
571.88
216.79
28.83
33.00
158.44
17.65
318.01
8.09
27.11
3.78
9.67
264.42
947
12.63

90%
54.61
0.60
450.00
4481.00
1473.00
232.00
64.00
58.00
172.00
34.00
141.00
7.00
9.00
7.00
30.00
16.00
23.00
14.00

95%
§9.76
0.80
806.00
8453.00
1725.00
636.00
80.00
80.00
292.00
45.00
258.00
9.00
15.00
8.00
40.00
27.00
27.00
18.00

99%
74.77
2.00
3625.00
>8999.00
2691.00
1025.00
154.00
139.00
690.00
74.00
740.00
35.00
36.00
13.00
60.00
114.00
44.00
34.00
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Table 3
Summary statistics for Golden Grove Cu-Zn-Au Sulphide Deposit
Laterites
Sample types: LT164
No. of Samples in Group: 100

Percentiles
Element Lab Method LLD. #Samples 1% 5% 10% 25% 50% 75% 90% 95% 99%
Sio2 Wi%  Csiro ICP-FS 0.5 100 484 5.64 8.04 11.00 15.66 20.47 27.75 34.63 57.81
Al203 Wt% Csiro ICP-FS 0.5 100 3.16 4.68 5.12 6.73 9.59 13.10 14.74 16.00 16.83
Fe203 Wt% Csiro ICP-FS 0.1 100 41.42 49.49 51.45 56.20 61.23 66.99 72.48 75.52 85.50
MgO Wt%  Csiro ICP-FS 0.01 100 0.00 0.00 0.00 0.00 0.01 0.02 0.02 0.02 0.04
CaO Wt%  Csiro ICP-FS 0.01 100 0.01 0.01 0.01 0.02 0.03 0.04 0.05 0.06 0.08
Na20 Wt% Csiro XRF 0.01 100 0.00 0.00 0.00 0.00 0.01 0.05 0.11 0.14 0.18
K20 Wt%  Csiro XRF 0.01 100 0.02 0.04 0.05 0.08 0.28 0.82 1.66 2.07. 2.70
TiO2 Wt%  Csiro XRF 0.001 100 022 0.29 0.34 0.46 0.65 0.91 1.06 1.27 2.46
P205 Wit% Csiro XRF 0.002 100 0.01 0.01 0.02 0.02 0.02 0.03 0.04 0.04 0.05 Q
Mn ppm Csiro XRF 5.0 100 1.67 1.67 7.00 12.00 17.00 27.00 36.00 46.00 100.00 1)
Cr ppm  Csiro XRF 10.0 100 66.00 83.00 102.00 128.00 167.00 196.00 231.00 259.00 293.00 g
v ppm  Csiro XRF 10.0 100 72.00 94.00 110.00 145.00 184.00 206.00 235.00 256.00 282.00 byl
Cu ppm  Csiro XRF 10.0 100 12.00 23.00 26.00 38.00 81.00 111.00 145.00 159.00 212.00 Q
Pb ppm  Csiro XRF 5.0 100 §2.00 54.00 56.00 67.00 76.00 85.00 100.00 103.00 121.00 §
Zn ppm  Csiro XRF 2.0 100 0.67 3.00 4.00 7.00 10.00 14.00 25.00 40.00 151.00 [
Ni ppm  Csiro XRF 5.0 100 1.67 1.67 1.67 6.00 10.00 15.00 21.00 24.00 48.00 &
Co ppm  Csiro XRF 5.0 100 1.67 1.67 1.67 12.00 20.00 30.00 39.00 54.00 69.00 »)
As ppm  Csiro XRF 20 100 239.00 281.00 295.00 376.00 451.00 557.00 636.00 683.00 732.00 Y
Sb ppm  Csiro XRF 2.0 100 16.00 18.00 19.00 24.00 31.00 36.00 43.00 47.00 48.00 s
Bi ppm  Csiro XRF 1.0 100 35.00 49.00 53.00 60.00 74.00 94.00 106.00 143.00 168.00 ~—
In ppm  Csiro XRF 1.0 100 6.00 8.00 11.00 14.00 22.00 26.00 31.00 32.00 38.00 =
Mo ppm  Csiro XRF 1.0 100 0.33 0.33 1.00 1.00 2.00 4,00 5.00 6.00 14.00 *
Ag ppm  Amdel OES 0.1 100 0.03 0.03 0.10 0.20 0.30 0.40 0.70 0.80 1.50 "E
Sn ppm  Csiro XRF 2.0 100 8.00 13.00 14.00 22.00 36.00 67.00 118.00 162.00 447.00 <
Ge ppm  Amdel QOES 1.0 100 0.33 0.33 0.33 0.33 0.33 1.00 2.00 3.00 4.00 ]
Ga ppm  Csiro XRF 3.0 100 27.00 34.00 36.00 44.00 52.00 61.00 69.00 73.00 132.00 &
w ppm  Csiro XRF 5.0 100 1.67 6.00 8.00 12.00 15.00 19.00 26.00 34.00 46.00 3
Ba ppm  Csiro XRF 10.0 100 3.33 12.00 14.00 28.00 87.00 226.00 356.00 437.00 2234.00 1
Zr ppm  Csiro XRF 3.0 100 161.00 252.00 315.00 408.00 543.00 704.00 865.00 1033.00 1130.00
Sr ppm  Csiro XRF 2.0 100 0.67 0.67 0.67 3.00 5.00 7.00 10.00 10.00 14.00
Nb ppm  Csiro XRF 2.0 100 0.67 0.67 0.67 0.67 4.00 7.00 11.00 14.00 29.00
Se ppm  Csiro XRF 20 100 4.00 5.00 6.00 7.00 9.00 11.00 14.00 17.00 20.00
Be ppm  Csiro ICP 0.01 96 0.00 0.00 0.00 0.00 0.03 0.18 0.31 0.32 0.60
Au ppb Becql INAA 5.0 100 220.00 330.00 450.00 1430.00 3790.00 8480.00 10600.00 12900.00 18600.00
La ppm  Becql INAA 0.5 100 0.72 0.93 1.10 1.40 2.10 3.20 4.90 5.70 9.50
Rb ppm  Becql INAA 20.0 100 33.33 52.00 75.00 88.00 100.00 120.00 130.00 140.00 170.00
Ce ppm  Becql INAA 2.0 100 0.67 0.67 0.67 4.00 5.70 8.20 12.70 16.70 53.00
Sc ppm  Becql INAA 0.1 100 6.80 7.90 8.90 12.40 16.40 20.70 23.60 25.50 35.30
Y ppm  Csiro XRF 3.0 100 8.00 10.00 12.00 19.00 25.00 35.00 41.00 52,00 65.00
Yb ppm  Becql INAA 0.5 100 1.00 1.40 2.00 2.60 4.10 5.40 6.40 7.40 10.00
Th ppm Becql INAA 0.5 100 6.40 13.00 19.00 23.00 30.00 39.00 50.40 65.90 84.60
Eu ppm  Becql INAA 05 100 0.17 0.17 0.17 0.17 017 0.67 0.78 0.91 1.00
Hf ppm  Becql INAA 1.0 100 4.40 6.90 8.60 12.00 15.00 21.00 26.00 29.00 34.00
Lu ppm  Becql INAA 0.2 100 0.07 0.22 0.32 0.52 0.75 1.00 1.20 1.40 1.80
Sm ppm  Becgl INAA 0.2 100 0.55 0.66 0.79 1.00 1.30 1.50 1.60 1.80 3.20
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Table 3
Summary statistics for Golden Grove Block Cu-Zn-Au Sulphide Deposit
Laterites
Sample types: LT164
No. of Samples in Group; 100
Element Lab Method LLD. #Samples Minimum Maximum Median Mode Mean Std, Dev.
sio2 Wi%  Csiro ICP-FS 0.5 10 . 57.81 15.49 10.29 16.93 9,02
Al203  Wit% Csiro ICP-FS 0.5 100 2.99 16.83 9.57 12.03 9.74 3.67
Fe203 Wt% Csiro ICP-FS 01 100 36.61 85.50 61.00 57.04 61.56 8.61
Mgo Wi%  Csiro ICP-FS 0.01 100 0.00 0.04 0.01 0.00 0.01 0.01
CaO Wt%  Csiro ICP-FS 0.01 100 0.00 0.09 0.03 0.03 0.03 0.01
Na20  Wi% Csiro XRF 0.01 100 0.00 0.18 0.01 0.00 0.03 0.05
K20 Wt%  Csiro XRF 0.01 100 0.02 270 0.28 0.05 0.57 0.66
Tio2 Wit%  Csiro XRF 0.001 100 0.21 2.46 0.63 0.91 0.70 0.35
P205 Wt%  Csiro XRF 0.002 100 0.01 0.05 0.02 0.02 0.02 0.01
Mn ppm  Csiro XRF 5.0 100 1.67 100.00 17.00 12.97 20.35 14.55
Cr ppm  Csiro XRF 10.0 100 37.00 293.00 165.00 126.91 164.50 50.78
Vv ppm  Csiro XRF 10.0 100 72.00 282.00 183.00 196.20 174,70 47.18
Cu ppm  Csiro XRF 10.0 100 10.00 212.00 81.00 89.71 79.36 45,23
Pb ppm  Csiro XRF 5.0 100 46,00 121.00 75.00 78.77 76.87 15,11
Zn ppm  Csiro XRF 2.0 100 0.67 161.00 10.00 7.16 13.99 18.33
Ni ppm  Csiro XRF 5.0 100 1.67 48,00 10.00 1.78 10.94 7.93
Co ppm  Csiro XRF 5.0 100 1.67 69.00 20.00 1.93 22.06 14.55
As ppm  Csiro XRF 20 100 235.00 732.00 449.00 385,08 458.53 123.23
Sb ppm  Csiro XRF 2.0 100 14.00 48,00 30.00 32.97 30.37 8.27
Bi ppm  Csiro XRF 1.0 100 30.00 168.00 73.00 70.12 78.97 26.17
In - ppm  Csiro XRF 1.0 100 4.00 38.00 22.00 24.02 20.44 7.60
Mo ppm  Csiro XRF 1.0 100 - 0.33 14.00 2.00 2.01 2.75 2.03
Ag ppm  Amdel OES 0.1 100 0.03 1.50 0.30 0.20 0.33 0.24
Sn ppm  Csiro XRF 2.0 100 8.00 447.00 36.00 14.58 57.56 66.14
Ge ppm  Amdel OES 1.0 100 0.33 4.00 0.33 0.35 0.94 0.89
Ga ppm  Csiro XRF 3.0 100 27.00 132.00 51.00 43.79 53,02 14.69
w ppm  Csiro XRF 5.0 100 1.67 46.00 15.00 15.09 16.23 7.67
Ba ppm  Csiro XBF 10.0 100 3.33 2234.00 82.00 14.18 168.89 284.84
Zr ppm  Csiro XRF 3.0 100 117.00  1130.00 540.00 387.22 567.12 225.81
Sr ppm  Csiro XRF 2.0 100 0.67 14.00 5.00 6.97 5.50 3.07
Nb ppm  Csiro XRF 2.0 100 0.67 29.00 3.00 0.73 4.64 4.74
Se ppm  Csiro XRF 20 100 4,00 20.00 9.00 7.96 9.22 3.30
Be ppm  Csiro ICP 0.01 96 0.00 0.60 0.03 0.00 0.10 0.13
Au ppb Becql INAA 5.0 100 180.00 18600.00 3740.00 498.00 486145 413575
La ppm  Becql INAA 0.5 100 0.61 9.50 2.10 1.60 2.59 1.68
Rb ppm  Becql INAA 20.0 100 25.00 170.00 100.00 109.52 101.86 25,70
Ce ppm  Becql INAA 2.0 100 0.67 53.00 5.70 0.75 7.11 6.76
Sc ppm  Becql INAA 0.1 100 630" 35.30 16.40 13.89 16.56 5.66
Y ppm  Csiro XRF 3.0 100 8,00 65.00 25.00 20.10 26.69 12.14
Yb ppm  Becql INAA 0.5 100 0.50 10.00 4.00 240 4.12 1.85
Th ppm  Becql INAA 0.5 100 6.10 84.60 29.00 21.85 32.80 14.56
Eu ppm  Becql INAA 0.5 100 0.17 1.00 0.17 0.17 0.42 0.28
Hf ppm  Becql INAA 1.0 100 2.80 34.00 15.00 12.89 16.35 © 6,70
Lu ppm  Becql INAA 0.2 100 0.07 1.80 0.74 1.01 0.76 0.36
Sm ppm  Becql INAA 0.2 100 0.53 3.20 1.20 1.40 1.24 0.38
NOTE: Mode estimated by binning of data: # of bins= 100.

Bin width=(95%ile-minimum value)/100.0

Table 2 provides summary statistics for samples collected over the Murchison greenstone terrain using
a regional grid spacing of 3 km for each sample. The abundances of the elements reflect variations over a
diverse range of underlying lithologies and hence display large standard deviations. The abundances for the
elements listed in Table 2 reflect regional background variation.

Table 3 displays the summary statistics for the Golden Grove massive sulphide deposit. In comparison
with the regional background geochemical data of Table 2, this area shows increased Fe, 03, Ag, Cu, Pb, As,
Sb, Sn, Ga, and Au.

Table 4 displays the summary statistics for lateritic duricrust from the Mt. Gibson Au mine. Using the
median composition as a basis of comparison with the regional background samples of Table 2, V, Pb, Sb, Ga,
and Au are more abundant in the Yilgam Block Au mine samples. There is some suggested depletion of Cr and
Nj, but this may reflect a lack of more mafic rocks associated with the Au deposit.

Comparison of the two target groups (Tables 3 and 4) indicates that they differ in their abundances of
Si0,, Al O3, Fe,03, TiO,, Mn, Cr, V, Cu, Pb, As, Sb, Bi, Sn, Ge, W, Ba, Zr, Nb, Se, and Be and suggests that
these two types of deposits are geochemically distinct,

1.8 Robust Estimation

The importance of an accurate estimate of distribution parameters (mean, variance) cannot be over-emphasized.
The application of standard statistical procedures requires the assumption that the data are normally distributed.
As illustrated in Figure 1b, if the distribution of an element is not normal, the arithmetic mean can be
significantly different from the median or mode of the distribution. This type of distortion can have significant
effects in the estimates of distribution parameters, particularly for the estimates of variance.




Table 4

Summary statistics for Mt. Gibson Gold Mine
Lateritic duricrust

Sample types: LT200

No. of Samples in Group: 121

Percentiles

Element Lab Method LLD. #Samples 1% 5% 10% 25% 50% 75% 90%

Si0o2 Wt%  Analb ICP 0.1 121 20.53 25.41 28.20 31.23 35.00 40.20 47.00
Al203 Wi% Analb ICP 0.1 121 12.59 15.68 17.91 19.70 21.91 24.21 26.41
Fe Wit%  Analb ICP 0.1 121 9.14 13.49 16.82 20.65 28.95 34.46 39.65
MgO Wt%  Analb ICP 0.003 121 0.03 0.05 0.05 0.08 0.13 0.25 0.54
CaO Wi%  Analb ICP 0.007 121 0.00 0.02 0.02 0.03 0.08 0.29 1.5
Na20 Wi% Analb ICP 0.007 121 0.01 0.01 0.02 0.05 0.12 0.21 0.31
K20 Wi%  Analb ICP 0.06 121 0.02 0.02 0.02 0.06 0.09 0.14 0.24
Tio2 Wi%  Analb ICP 0.003 121 0.50 0.66 0.81 0.92 1.18 1.39 1.70
Mn ppm  Analb ICP 15.0 121 22.00 28.00 31.00 46.00 73.00 117.00 171.00
Cr ppm  Analb ICP 20.0 121 184.00 267.00 321.00 415.00 548.00 718.00 945.00
Vv ppm  Analb ICP 5.0 121 273.00 337.00 384.00 549.00 785.00 955.00 1210.00
Cu ppm  Amdel AA-HF 20 121 8.00 24.00 25.00 32.00 48.00 60.00 94.00
Pb ppm  Amdel XRF 20 121 15.00 22.00 30.00 36.00 50.00 62.00 80.00
Zn ppm  Amdel AA-HF 2.0 121 0.67 5.00 6.00 10.00 15.00 22.00 30.00
Ni ppm  Amdel AA-HF 40 121 14.00 22.00 26.00 32.00 42.00 52.00 62.00
Co ppm  Amdel AA-HF 4.0 121 1.33 1.33 1.33 4.00 8.00 12.00 18.00
As ppm  Amdel XRF 2.0 121 6.00 10.00 13.00 17.00 27.00 40.00 54.00
Sb ppm  Amdel XRF 20 121 0.67 0.67 1.00 4.00 6.00 8.00 11.00
Bi ppm  Amdel XRF 20 121 0.67 0.67 0.67 3.00 5.00 7.00 11.00
Mo ppm  Amdel XRF 1.0 121 0.33 0.67 2.00 3.00 4.00 5.00 7.00
Ag ppm  Amdel AAS 0.1 121 0.03 0.03 0.03 0.03 0.40 1.00 1.50
Sn ppm  Amdel XRF 2.0 121 0.67 0.67 0.67 0.67 2.00 3.00 4.00
Ge ppm  Amdel XRF 20 121 0.67 0.67 0.67 0.67 1.33 1.33 2.00
Ga ppm  Amdel XRF 4.0 121 16.00 26.00 30.00 40.00 48.00 58.00 68.00
w ppm  Amdel XRF 4.0 121 1.33 1.33 1.33 1.67 6.00 10.00 12.00
Ba ppm  Analb ICP 5.0 121 7.00 18.00 21.00 58.00 157.00 356.00 912.00
Zr ppm  Analb ICP 5.0 121 62.00 83.00 93.00 111.00 130.00 154.00 239.00
Nb ppm  Amdel XRF 20 121 1.00 3.00 5.00 6.00 8.00 11.00 13.00
Se ppm  Amdel XRF 2.0 121 0.67 0.67 0.67 2.00 4.00 6.00 8.00
Be ppm  Analb ICP 1.0 121 0.33 0.33 0.33 0.33 1.00 1.00 2.00
Au ppb  Analb 334 1.0 120 48.00 160.00 260.00 640.00 1400.00 2050.00 3020.00
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Table 4
Summary statistics for Mt. Gibson Gold Mine
Lateritic Duricrust
Sample types: LT200
Element Lab Method LLD. #Samples Minimum Maximum Median Mode Mean Std. Dev.
Sio2 Wt%  Analb ICP 0.1 63 11.80 56.70 28.76 23.99 29.32 8.45
Al203 Wt% Analb ICP 0.1 63 9.35 30.41 19.30 14.25 19.33 4.61
Fe Wt%  Analb ICP 0.1 63 19.66 67.56 35.57 29.34 38.76 10.95
MgO Wt%  Analb ICP 0,003 63 0.02 0.89 0.05 0.05 0.1 0.16
CaO Wit%  Analb ICP 0.007 63 0.02 1.14 0.04 0.03 0.11 0.22
Na20 Wt% Anabb ICP 0.007 63 0.01 0.39 0.02 0.01 0.07 0.10
K20 Wt%  Analb ICP 0.06 63 0.02 0.63 0.02 0.02 0.07 0.09
Tio2 Wt% Analb ICP 0.003 63 0.47 4.24 1.25 1.41 1.59 0.89
Mn ppm  Analb ICP 18.0 63 6.67 408.00 87.00 106.92 103.29 71.66
Cr ppm  Analb ICP 20.0 63 181.00 1842.00 702.00 618.46 822.29 326.41
Vv ppm  Analb ICP 8.0 63 383,00 3220.00 1037.00 83588 1165.78 5§22.84
Cu ppm  Amdel AA-HF 2.0 63 13.00 300.00 40.00 28.01 49.37 39.77
Pb ppm  Amdel XRF 2.0 63 33.00 158.00 64.00 53.91 70.86 26.43
Zn ppm  Amdel AA-HF 2.0 63 2.00 56.00 14.00 11.90 16.11 10.40
Ni ppm  Amdel AA-HF 4,0 63 22.00 80.00 36.00 29.95 38.92 13.05
Co ppm  Amdel AA-HF 4.0 63 1.33 18.00 10.00 12.06 9.80 4.56
As ppm  Amdel XRF 2.0 63 3.00 115.00 35.00 41.60 38.41 24.76
Sb ppm  Amdel XRF 2.0 63 0.67 11.00 5.00 6.03 4.89 2.94
Bi ppm  Amdel XRF 20 63 0.67 62.00 5.00 4.06 7.90 8.47
Mo ppm  Amdel XRF 1.0 63 0.67 16.00 5.00 5.03 462 2,60
Ag ppm  Amdel AAS 0.1 83 0.03 210 0.50 0.04 0.71 0.59
Sn ppm  Amdel XRF 2.0 63 0.67 12.00 3.00 2.98 3.85 2.34
Ge ppm  Amdel XRF 2.0 63 0.67 9.00 0.67 0.69 1.68 1.56
Qa ppm  Amdel XRF 4.0 63 10.00 195.00 60.00 60.31 63.75 26.62
w ppm  Amdel XRF 4.0 63 1.33 46.00 8.00 5.98 10.77 8.33
Ba ppm  Analb ICP 5.0 63 6.00 215,00 27.00 18.49 50,95 48.69
Zr ppm  Analb ICP 5.0 63 72.00 356.00 151.00 119.43 161.48 52.25
Nb ppm  Amdel XRF 2.0 63 1.00 32.00 9.00 9.01 10.00 5.37
Se ppm  Amdel XRF 2.0 63 0.67 11.00 6.00 3.98 5.98 2.63
Be ppm  Analb ICP 1.0 63 0.33 3.00 0.33 0.34 0.91 0.72
Au ppb  Analb 334 1.0 63 5.00 12757.00 1640.00 54.53 243549 2869.97
NOTE: Mode estimated by binning of data: # of bins = 100.

Bin width = (95%ile-minimum value)/100.0

Methods of robust estimation are primarily concerned with minimizing the influence of samples that
are atypical. There are several methods by which this can be done. Rock (1987) provides a review of several
methods of robust estimates and a number of computer subroutines for robust estimates of location
(mean/median) and scale (variance). An example of robust estimation is given in Table 5. Most robust
procedures are multivariate. Garrett (1989b, 1990) suggests that reasonable robust estimates of univariate or
multivariate data can be obtained by selecting only those samples that are less than the 90th or 95th percentile.
Naturally, some knowledge of the distribution of the data will assure that using such a procedure is realistic. By
eliminating the upper percentile data, it is assumed that all of the outliers will be removed in the estimates of the
means and covariances. Chork (1990) has demonstrated a more robust way of determining means and
correlations/covariances with minimal effect from outliers. The procedure is known as robust estimation using
the minimum volume ellipsoid method.

Robust estimates should be applied to transformed data. Robust estimates of distributions that are
skewed, such as log normal distributions, may underestimate the mean and standard deviation if transformations
are not applied first. This can be observed in Table 5 for As.

1.9 Spatial Presentation of Ranked Data

Since geochemical data are generally spatially distributed, it is useful to present geochemical analyses in map
form. One of the simplest ways of identifying anomalous samples is to plot the ranked data onto the map with
symbol sizes that are proportional to the ranking of the data. Thus, samples that are above the 95th percentile
will have a symbol size larger than samples at the 50th percentile. This method of reporting geochemical data is
discussed by Howarth (1983, Chapter 5).

Symbol maps have been used to outline the geochemical variation over 10 class-intervals for individual
elements, principal component scores, and multivariate indices. The symbol sizes have been chosen such that
only samples above the 95th percentile are easily recognized by sight. In the case of principal component
scores, samples that exceed the 95th percentile and those that are less than the 5th percentile are given symbol
sizes that are easily recognized. The symbol size is generated using a non-linear fourth order polynomial
function as follows:

Map Symbol Size = Minimum Symbol Size for Map + Constant Symbol Size * (Percentile/ 100)4.
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Figure 10. Map of Arsenic Values in Laterite from Archaean Greenstone Terrain: Samples greater than 140 ppm

rank above the 95th percentile.
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Figure 11. Map of Arsenic Values in Laterite from Archaean Gneiss Terrain: Samples greater than 58 ppm

rank above the 95th percentile.
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For a valid interpretation, the full range of values over an area should be represented in the population.
A large symbol size does not necessarily imply that the sample is atypical (i.. anomalous). Large symbol sizes
merely indicate which samples exceed the 95th percentile rankings. Thus, it is important to know the range of
values that are associated with the element. Comparison between Figures 10 and 11 illustrates this. Figure 10
shows a map of As for samples collected over a greenstone belt in the Yilgarn Block, while Figure 11 shows As
values for samples collected over a granite/gneiss terrain also in the Yilgarn Block. Both maps show large
symbols for As values above the 95th percentile. However, the 95th percentile ranking is 140 ppm for the
greenstone belt area and 58 ppm for the gneiss terrain area. Clearly, the samples over the gneiss terrain area do
not display significant As values relative to As values in the greenstone belt area.

The interpretation of these patterns requires knowledge about the underlying lithologies and geological
processes that may have occurred. Generally, As abundance is considered to be independent of primary
variations within igneous rocks and is usually associated with mineralized zones. Thus, the signature of As in
the Yilgarn greenstone area is more likely to be indicative of zones of potential mineralization, particularly
given the larger abundances relative to As observed in the granite/gneiss terrain.

Table 5
Robust Estimates of Murchison Greenstone Belt Loose Nodules
Observations: 484
Initial Estimates Final Robust Estimates
(weights=1.0)
Mean Std.Dev. Mean Std.Dev.
Fe 37.1756 15.3438 35.5976 15.0435 Fe
Ag 0.2754 0.6392 0.1879 0.2317 Ag
Mn 236.4966 632.1769 127.0169 102.9410 Mn
Cr 1638.3368 2142.5525 1078.6084 067.4877 Cr
v 782.2824 619.8652 748.2899 571.8699 V
Cu 154.0868 262.1634 ~154.8221 261.6487 Cu
Pb 35.2789 29.3632 29.8245 17.2313 Pb
Zn 36.7066 40.2301 28.6707 17.9285 Zn
Ni 90.9277 154.5024 59.2149 48.0592 Ni
Co 11.6074 12.1092 8.7999 6.7564 Co
As 112.3237 418.5397 545992 59.9303 As
Sb 4.1687 8.4046 3.2118 3.2839 Sb
Mo 6.5475 35.7867 3.8618 3.4544 Mo
Sn 2.8939 3.0594 2.5815 2.5910 Sn
Ga 22.0909 9.7060 22.4347 8.7234 Ga
w 12.3430 69.3784 6.3215 6.7272 W
Nb 11.2700 9.4191 10.4555 8.3822 Nb
Au 5.8147 12.6286 4.8749 5.7870 Au
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2.0 GEOCHEMICAL DEFINITIONS AND TERMINOLOGY

2.1 Definition of Threshold

There are several definitions of the term threshold. Garrett (1991) defines the threshold as the "outer" limit of
local background variation. The term "outer" is used instead of "upper". This allows for the definition to include
both "upper" and "lower" limits as it is common in some geochemical environments for depletion haloes to be
as significant as enrichment haloes (see Robertson and Taylor, 1987). The threshold can be a very elusive value
to obtain. The threshold of a geochemical distribution is considered to be the abundance level that is considered
to exceed the accepted value for a background or regional population. Another way of expressing this concept is
that the threshold is the minimum abundance level of an anomaly. Selection of anomalies depends upon
choosing a suitable threshold. If the threshold is too low, then there will be too many areas to follow-up. If the
threshold is too high, then some potentially-significant targets could be missed.

Samples from anomalous distributions usually overlap with samples from background distributions
such that the threshold is more likely a range of values where the two distributions overlap. Rather than choose
a specific threshold value, it may be better to assign a probability of the likelihood of an unknown sample
belonging to each population. This modelied approach will be discussed in more detail later.

WARNING: One of the earliest definitions of a geochemical anomaly was by Hawkes and Webb
(1962), where the threshold of a population is determined as the mean + 2 standard deviations. This is based
upon the assumption of normality. Later researchers (Rose et al., 1979; Levinson, 1980; Garret, 1989a) have
warned geochemists not to fall into the trap of defining thresholds as the mean < 2 standard deviations. This is
probably one of the least suitable ways in which anomalous values can be selected.

In univariate ranking, the choice of a suitable threshold is based upon information derived from
orientation studies. Orientation studies may show that the threshold is at a level that is not very obvious (effects
of lithology, etc.). An initial estimate of the threshold can be selected as the 95th percentile of the ranked
samples. However, the distribution of the data should be examined first by the use of graphical methods, such as
histograms, Q-Q plots, probability plots, or box and whisker plots. The choice of a threshold is largely a
visually-based one. Table 2 indicates that the 95th percentile for As is 258 ppm. This suggests that values above
this threshold value are anomalous. Figures 5a,b show that several values occur above the level of 258 ppm and
could be considered suitable target sites for further evaluation in an exploration programme.

2.2 Definition of Geochemical Anomaly

There has been much debate about the definition of an anomaly and currently there is no clear consensus for the
definition. Howarth and Sinding-Larsen (1983:208) discuss the concept of anomaly and suggest that anomalous
concentrations are those values that exceed a given threshold. Workshops held by the Association of
Exploration Geochemists (AEG) in 1983 and 1985 (Garrett, 1984; Aucott, 1987) failed to give any formal
definition and concluded that an anomaly is a desired level of abundance in which the geologist has a particular
interest and is different from the regional and/or background values and implies a spatially-continuous set of
values. Anomalies imply spatial association and are small in area relative to the regional population that is being
sampled.

A current working definition of anomaly used within the Laterite Geochemistry Section of CSIRO is a
single or multiple group of samples composed of one or more elemental abundances that exceed the threshold
expected for the regional or background population. The threshold values have been determined from
orientation studies carried out over areas being sampled. In order to recognize a geochemical anomaly, the range
of abundances must be different from the regional background abundances.

2.3 Outliers

Outliers can be defined as samples with abundance levels for one or more elements that are significantly
different from samples with which they are initially grouped. These samples may be of significance from an
exploration point of view and may be part of a mineralized zone (anomaly). Outliers can also be artifacts of
erroneous analytical results or data entries. Outliers should always be carefully examined to be certain that the
observed abundances are not the result of an error.

Samples are outliers when they do not fit within expected population parameters. A sample that is an
outlier in one group may be indistinguishable from other samples within another group. In practice, outliers are
assessed by examining the upper and lower percentile rankings of data, usually in the range of greater than the
95th or 98th percentile or Iess than the 5th or 2nd percentile. However, if the sample population if non-normal,
bimodal, or polymodal, then it is necessary to make the appropriate adjustments to the data. In the case of
multimodal populations, it will be necessary to split the populations into separate distinct populations through
the analysis of Q-Q plots, probability plots, or by computer-based means using such methods as outlined by
Campbell (1986a), Stanley and Sinclair (1987), or Bridges and McCammon (1980). Stanley has developed a
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computer program, PROBPLOT, designed to be run on IBM-PC microcomputers and is available from the
Association of Exploration Geochemists.

2.4 Indicator/Pathfinder Elements

Indicator elements are elements that are associated with mineralization. Pathfinder elements are indicator
elements that occur in association with the target element being sought and usually have little economic
significance (Joyce, 1984:9). An effective pathfinder element is usually more abundant and is distributed over a
larger areal extent than the target element being sought. Pathfinder elements can be selected from multivariate
data analysis techniques in conjunction with known geochemical/geological affinities of the elements.

The associations of indicator/pathfinder elements which occur within base metal and precious metals
deposits are well documented in the geochemical literature. Many examples of multi-element haloes associated
with Au deposits in Australian gossans and laterites have been cited in the literature (Smith et al, 1984,
Robertson and Taylor, 1987). In lode Au deposits in the Superior Province of Canada, pathfinder elements are
commonly associated with Au (Colvine et al, 1988). Pathfinder elements associated with lode Au deposits
commonly include As, Sb, W, Mo, Bi, Ag, Li, Ba, Rb, Cr, Cu, Zn, and Pb. The presence of these clements can
assist in choosing follow-up sites for further scrutiny in an exploration programme.

2.5 Target and Background Populations

Sample populations that represent the element(s) being sought are termed "Target" populations. These
populations are derived from samples collected in orientation studies over known mineral deposits or areas of
specific interest. Homogeneity of the target groups is important for the correct application of statistical
procedures.

Sample populations that represent the regional geochemical background material are termed
"Background" populations. Separation of the background population into similar subsets that represent
homogeneous multivariate normal populations is important and forms the basis of the modelled approach of
geochemical data analysis. This can be achieved using components analysis, spatial analysis, 2 plots, etc..

Typical background populations would be represented by regional geochemical sampling over
greenstone or gneiss terrains. The background populations should be checked for atypical observations, outliers,
anomalous values, or any trends that do not represent typical regional values. Some of these atypical values
could represent mineralized zones and should be closely scrutinized. Target populations may represent samples
collected over mineralized zones and associated alteration haloes. The geochemical characteristics of such a
population would be distinctly different from the regional background geochemistry and thus a statistical
distinction can be made between the two populations.
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3.0 EXPLORATORY DATA ANALYSIS

Preliminary data analysis involves the examination of the frequency distributions, univariate statistics
(parametric, non-parametric, and robust methods), bivariate plots, correlation coefficients, plus other numerical
or graphical methods that assist in understanding the nature of the data. It is at this stage that outliers should
be eliminated. Failure to remove or compensate for outliers can have profound effects on any statistical
interpretation of data.

3.1 Univariate Methods of Exploratory Data Analysis

Univariate methods involve the analysis of a single element, usually within a single population of samples. The
element may be the commodity being sought or it may be a pathfinder element. The primary goal is to split the
population into groups of samples that represent geochemically-distinct domains from which samples can be
isolated that may be related to mineralization.

Prior to any analysis, the removal of gross outliers is essential. These outliers may be related to areas of
economic interest and should be followed up. If the outliers are not deleted from the sample population, then the
results of most parametric statistical methods will be distorted.

One way of minimizing the effect of outliers is to use robust methods of parameter estimates. Robust
methods down-weight the significance of outliers when statistical parameters are calculated. Rock (1987)
provides a review and a computer program for analyzing univariate populations.

The use of exploratory data analysis (EDA) techniques can assist in recognizing patterns within
geochemical data. The simplicity of approach and interpretation makes EDA a logical choice for the initial
investigation of the data. EDA encompasses the use of order statistics, histograms, box and whisker plots, stem
and leaf plots, and summary statistics. EDA methods have been routinely applied in the analysis of regional
laterite geochemical data in Western Australia. Kiirzl (1988) discusses the success of applying exploratory data
analysis techniques in regional exploration programmes.

3.2 Interpretation of the Histogram, Box and Whisker, and Q-Q Plots

These three plots when used together can reveal a significant amount of information regarding the nature of the
frequency distribution of a sample population. The histogram is useful as it estimates a graphical display of the
shape of the distribution. Caution must be used in the construction of the histogram because data are binned into
intervals which affect the display of the data. The box and whisker plots provide a quick visual summary of the
order statistics for the sample population and the Q-Q plot provides a measure of how "normal” a distribution
might be and the presence of individual outliers.

3.3 Scatterplot Matrix

A useful visual summary of geochemical data is the crosscorrelation plot. These plots are illustrated in Figures
12 and 13. The horizontal axis along the top provides a histogram of each element. The diagonal box provides a
box-whisker summary of the data distribution and each non-diagonal element is a plot of each element against
every other element. The main advantage of these plots is that they provide a quick summary of the
distributions of the elements as well as their associations. Figure 12 shows the untransformed data plotted on a
scatterplot matrix. Figure 13 shows the transformed data plotted on a scatterplot matrix.

3.4 Modelled Univariate Methods: Dissection of Mixtures of Populations and Separating Anomalous
Samples

Bridges and McCammon (1980) developed a computer program for distinguishing anomalous populations from
background populations based on the analysis of inflection points on cumulative frequency distribution curves.
A combination of graphics and non-linear least-squares fitting routines are used to maximize the distinctions
between the sub-populations.

Campbell (1986a) developed a procedure for unmixing populations based on a measure of typicality
that each observation (sample) belongs to either population. The procedure requires that the component
distributions are normal. If the data are not normally distributed, then the appropriate Box-Cox power
transformation can be used to refine the resolution of samples into their respective component distributions.

Alternatively, Stanley and Sinclair (1987) have developed an approach whereby the multiple
populations can be dissected by a background characterization approach. This procedure involves:

a) grouping data into subsets according to geological and geochemical characteristics and treating each subset
independently,

b) choosing a dependent variable (i.e. the commodity element or suitable pathfinder element) for each subset,

¢) selecting a threshold for each dependent variable using probability plots to unambiguously define a group of
background samples characterized by concentrations lower than this threshold,
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d) develop a multiple regression background model for the selected dependent variable(s) using only samples
from the background population,

¢) applying this background model to samples whose abundances are greater than the selected threshold to test
the likelihood that these samples may in fact be part of the background population.

Implicit in this approach is the use of probability plots (or Q-Q plots) that have been suitably
transformed to assist in choosing suitable thresholds for the elements that will be studied. Stanley (1987) has
published a computer program, PROBPLOT, that assists in dissecting mixed univariate populations into a
preselected number of populations based on inflection points. The program then chooses appropriate thresholds
for each of the subpopulations

Gap statistic

A statistical procedure for estimating the threshold of distributions has been described by Miesch (1981). The
method, known as the gap statistic, estimates the threshold value of a distribution from which all values above
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Figure 12. Scatterplot matrix of untransformed data from the Murchison Greenstone Terrain.
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the threshold can be treated as outliers. The method also determines whether the threshold is realistic by
estimating the probability that the outliers belong to the distribution below the threshold. A computer program
has been written for this (Miesch, 1981).

The use of the gap statistic procedure is a useful adjunct to any programme of data evaluation.
However, the program does not always provide a reliable estimate of distribution gaps and thus it should not be
used without other methods to assess thresholds of distributions. Stanley and Sinclair (1989) compared the use
of the gap statistic to the use of probability plots and found in several cases that the gap statistic was unreliable.
Nonetheless, it can be used as an additional tool in the search for a threshold.

An example of the use of the gap statistic was applied to 868 As values from laterites over the
Murchison greenstone terrain. Figures 4 and 9 show a histogram and Q-Q plot of the As distribution for the
untransformed data. The application of the program (Miesch, 1981) resulted in a logarithmic transformation of
the data from which the most significant gap in the resulting near-normal distribution occurs between 123-132
ppm. The gap statistic is 0.0117 which means that for approximately 1% of the time the gap may be due to
random chance. Thus, the gap of 123-132 ppm can be considered to be meaningful. The gap statistic procedure
also indicated that 91 values were found above the 132 ppm gap. These samples are considered to be separate
from the main population of the background data and could be considered anomalous.

Fe203 Ag Mn Cr \ Cu Pb Zn Ni Co As Sb Mo Sn Ga W Nb Au
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Figure 13. Scatterplot matrix of transformed data from the Murchison Greenstone Terrain.
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40 MULTIVARIATE EXPLORATORY TECHNIQUES

The usefulness of multivariate data analysis methods applied to geochemical data has been well documented
(Howarth and Sinding-Larsen, 1983, Chapter 6). Methods such as principal components analysis, cluster
analysis, multidimensional scaling, and projection pursuit provide a numerical and graphical means through
which the relationships of the elements and samples can be studied. These techniques are dimension-reducing,
as they reduce the number of dimensions required to describe the variation of the data. An interpretation of the
systematic relationships of 30 elements is almost impossible without applying some form of dimension-
reducing technique. The outcome of these dimension-reducing techniques usually provides significantly fewer,
"new variables", that describe variation and can be tied to specific geochemical/geological processes. The use of
robust estimates for the correlation coefficient or covariance matrix assists significantly in assessing muiti-
element relationships. Otherwise, the presence of outliers can distort the resulting linear relationships that are
obtained in methods such as principal components analysis. There are several good reviews that discuss the
basics of multivariate data analysis techniques (e.g. Joreskog et al,, 1976; Davis, 1986, Howarth and Sinding-
Larsen, 1983). Mellinger (1987) provides a systematic approach to the application of multivariate methods in
geological studies. Other methods include non-linear mapping (Sammon, 1969), and multidimensional scaling
{Kruskal, 1964).

Multivariate techniques have been specifically applied to Archaean volcanic terrains from which a
number of geological processes can be inferred, ranging from primary compositional variation to alteration and
associated mineralization (Grunsky, 1986). Multivariate techniques also include empirical techniques such as
the chalcophile and pegmatophile indices developed by Smith and Perdrix (1983).

Mineral deposits are usually associated with multi-element geochemical signatures that are atypical
relative to regional background variation through depleted or increased abundances of a particular suite of
elements. The diagnostic elements are dependent upon the type of mineral deposit. Experience in the
exploration for Au deposits in lateritic environments has indicated the chalcophile elements, As, Sb, Bi, Mo,
Ag, W, Sn, and Ta are commonly associated with Au deposits. The usefulness of choosing appropriate elements
is outlined in Smith et al. (1984).

4.1 Robust Estimation of Mean and Covariance Matrices

In multivariate analysis, robust estimates of means, correlations, and covariances are determined from the
Mahalanobis distances of samples (distance to multivariate mean). In most cases, a sample population will
contain outliers and if these outliers are included in the calculations of the means and covariances, then the
statistics will be distorted. Several procedures exist for reducing the influence of outliers. The benefit of
applying robust estimates is that the application of statistical procedures will not be influenced by the presence
of outliers.

One method of reducing the influence of outliers in the calculations of means, covariances, and
correlations is through the use W-Estimators. This method reduces the influence of outliers in the distribution
by using weights. Outliers are given lower weights in the procedure thereby reducing their effect in the
estimates of the mean and variance. Campbell (1980) developed the use of W-estimators for the reduction of the
influence of outliers in multivariate datasets. This procedure is used in the program WTHGRP
(Campbell, 1986a). The mean x), and variance Sy, is defined as:

_ n n
x—l\f = {Z_Ilwsxs}/{z wg}

Sy o= 2 wl(Xe- Xp)(Xs- Xp)'/ (E wg2-1)
s=1 s=1

where wy is the weight attached to the sth sample.

The robust estimators give full weight to observations assumed to come from the main body of the
data, but reduced weight or influence otherwise. The weight given to each observation in the calculation of the
w-estimates is a function of the Mahalanobis distance. In practice, the influence of observations with unduly
large Mahalanobis distances is reduced. Further details are given in Campbell (1980). A more readable
description of the procedure can be found in Krzanowski, (1988:231-2).

Table 5 shows estimates of the mean and standard deviation for 484 laterite samples for which Au was
determined from the Murchison Greenstone terrain (Dataset 1). The first set shows standard estimates and the
second set shows the robust estimates. Comparison of the two sets clearly shows a difference between the
means and standard deviations.
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4.2 Principal Components Analysis

The objective of principal components analysis (PCA) is to reduce the number of variables necessary to
describe the observed variation within a set of data. This is done by forming linear combinations of the variables
(components) that describe the distribution of the data. Ideally, to the geologist, each component might be
interpreted as describing a geological process, such as differentiation (partial melting, crystal fractionation,
etc.), alteration/mineralization (carbonatization, silicification, alkali depletion, metal associations and
enrichments, etc.), and weathering processes (bedrock-saprolite-laterite).

Components analysis methods are based on the extraction of linear combinations of samples and
clements from some measure of association. Most commonly, the measures of association used are the inter-
element correlations or covariances. Davis (1986, Chapter 6) gives a very readable account on the mathematics
of principal components analysis.

Covariance relationships between the elements reflect the magnitudes of the elements and thus
elements with large abundances tend to dominate the variance-covariance matrix. This has the effect of
increasing the significance of elements with large magnitudes in the results of the principal components
analysis.

The correlation matrix represents the inter-clement correlations, it is actually the standardized
equivalent of the variance-covariance matrix. When the correlation matrix is used, then all elements have equal
representation and the linear combinations of the elements are based on their correlations only and not on the
magnitudes of the elements. Other metrics of association can be used and they are discussed by Davis (1986),
and Joreskog et al. (1976).

Robust estimation of either covariance or correlation gives a better estimate of the means of the
variables by down-weighting the influence of anomalous samples (Zhou, 1985, 1989).

A method of principal components analysis, known as simultaneous RQ-mode principal components
analysis (Zhou et al.,, 1983), has the advantage of presenting the component scores of the samples and the
clements in the same scaled component space. Thus, scatter plots of component scores show the relationships of
the samples with respect to each other and the elements with respect to each other.

The interpretation of the results of principal components is usually focused on placing a
geological/geochemical interpretation on the linear combinations of elements that comprise the components. In
regional geochemical studies within the Yilgarn Block, the first and second components usually reflect
underlying lithologies. The less significant components can be related to processes of interest (i.e.
mineralization) that are manifested by distinct linear combinations of chalcophile elements.

In multivariate ranking (%2 plots), the choice of a suitable "multivariate threshold" may be difficult.
Initially, the application of methods such as principal components analysis can reveal relationships of the data
that may be directly related to underlying lithologies. Princpial component analysis can be useful in choosing
suitable pathfinder elements for further follow-up.

The following example illustrates the use of PCA as a tool for investigating the systematics of a
regional geochemical dataset. The sampling was carried out using a 3-km triangular grid over the Murchison
greenstone belt in the Yilgarn Block of Western Australia.

1) The data were analyzed by producing histograms, Q-Q plots, and summary statistics tables (see
Tables 2-4). The data were scrutinized for outliers and atypical values. Atypical values were closely checked to
verify that laboratory errors were not the cause.

2) The data were then transformed using the power transformation method outlined by Howarth and
Earle (1979) (see Table 1). The transformations were derived from values that ranked less than the 95th
percentile. This ensured minimal influence from outliers. The application of the transformations to each of the
clement ensures a valid estimate of means and covariances/correlations.

3) Robust estimates of means and covariance were computed for a selected group of elements
considered important for exploration. Table 5 displays the robust estimates.

4) Principal components analyses were carried out as follows:
PCA with untransformed data and non-robust estimates of means and correlations (Table 6),
PCA with untransformed data and robust estimates of means and correlations (Table 8),
PCA with transformed data and non-robust estimates of means and correlations (Table 7),
PCA with transformed data and robust estimates of means and correlations (Table 9).
Comparison of the correlation coefficients between the Tables shows that the correlations change
significantly depending upon the use of transformed/untransformed and the use of robust/non-robust estimates.

Outliers are more readily recognizable through robust estimates and data transformations. Figures
14a,15a,16a, and 17a show the variable and sample loadings plotted against the first two component axes.

Figure 14a is a plot of the variables and samples along the Component 1 (C1) and Componenet 2 (C2)
axes for untransformed data using non-robust estimates of the means and correlations. The plot shows
significant dispersion of samples along the positive sides of the C1 and C2 axes. These outliers merely represent
the non-normal distribution of the data and do not necessarily reflect atypical values. The Figure indicates that




Table 6
Murchison Greenstone Laterites [Non-robust][Non-transformed]

Observations: 484

Var. Mean Std.Dev. Coef.Var.
Fe 37.1756 15.3279 41.23
Ag 0.2754 0.6386 231.87
Mn 236.4966 631.5234 267.03
Cr 1638.3368 2140.3381 130.64
v 7822824 619.2245 79.16
Cu 154.0868 261.8925 169.96
Pb 35.2789 29.3328 83.15
2n 36.7066 40.1886 109.49
Ni 90.9277 154.3427 169.74
Co 11.6074 12.0967 104.22
As 112.3237 418.1071 372.23
Sb 4.1687 8.3959 201.40
Mo 6.5475 35.7497 546.00
Sn 2.8939 3.0562 105.61
Ga 22.0909 9.6960 43.89
w 12.3430 69.3067 561.51
Nb 11.2700 9.4094 83.49
Au 5.8147 12.6156 216.96
Correlation Matrix
Fe Ag Mn Cr \" Cu Pb Zn Ni
Fe 1.0000  0.0309 -0.0402 0.2330 0.4710 0.1963 0.0675 0.3115 0.1341
Ag 0.0309  1.0000 0.0302 0.0308 0.0542 0.0877 0.2651 0.1264 0.0039
Mn  -0.0402 0.0302 1.0000 0.0896  -0.0380 -0.0600 0.3491 0.1592 0.1394
Cr 0.2330 0.0308 0.0896 1.0000 0.0718 0.0088 -0.0032 0.1320 0.6993
Vv 0.4710 0.0542 -0.0380 0.0719 1.0000 -0.2010 0.0524 -0.0062 -0.0543
Cu 0.1963 0.0877 -0.0600 0.0088 -0.2010 1.0000 0.0150 0.2484 0.0866
Ph 0.0675 0.2651 0.3491 -0.0032 0.0524 0.0150 1.0000 0.2964 0.0226
Zn 0.3115  0.1264 0.1592 0.1320  -0.0052 0.2484 0.2964 1.0000 0.2567 -
Ni 0.1341 0.0039 0.1394 0.6993 -0.0543 0,0866 0.0226 0.2567 1.0000
Co 0.1858 0.0175 0.3443 0.4076 0.0435 0.1687 0.0561 0.5198 0.5585
As 0.1500  0.0577 -0.0175 0.0835 0.0107 0.1948 0.2905 0.2072 0.1383
Sb 0.1623  0.0195 -0.0007 0.0846  -0.0404 0.1329 -0.0371 0.1235 0.0372
Mo 0.0539 -0.0123 -0.0136 0.0055  -0.0377 0.1208 0.3267 0.1033 0.0235
Sn 0.0187 0.1211 -0.0247 0.0594 0.1710 -0.2408 0.0572 -0.0217 -0.0189
Ga -0.2809 0.0547 -0.0348 -0.0978 0.0604 -0.1234 0.0592 -0.2612 -0.0928
w 0.0208 -0.0179 0.0113 0.0889 0.0742 -0.0326 -0.0248 -0.0185 -0.0098
Nb -0.1810  -0.0068 0.0507 -0.0001 -0.0205 -0.3008 0.1694 0.1123 -0.0403
Au -0.0448 -0.0334 0.0126 0.0127 -0.0157 -0.0592 -0.0559 0.0247 0.0581
Co As Mo Sn Ga Nb Au
Fe 0.1858 0.1500 0.1623 0.0539 0.0187 -0.2809 0.0298 -0.1810 -0.0448
Ag 0.0175% 0.0577 0.0195 -0.0123 0.1211 0.0547 -0.0179 -0.0068 -0.0334
Mn 0.3443 -0.0175 -0.0007 -0.0136 -0.0247 -0.0348 -0.0113 0.0507 0.0126
Cr 0.4076 0.0835 0.0846 0.0055 0.0594 -0.0978 0.0889 -0.0001 0.0127
v 0.0435 0.0107 -0.0404 -0,0377 0.1710 0.0604 0,0742 -0,0205 -0.0157
Cu 0.1687  0.1948 0.1329 0.1208  -0.2408 -0.1234 -0.0326 -0.3008 -0.0592
Pb 0.0561 0.2905 -0.0371 0.3267 0.0572 0.0592 -0.0248 0.1694 -0.0559
Zn 0.5198 0.2072 0.1235 0.1033 -0.0217 -0.2612 -0.0185 -0.1123 0.0247
Ni 0.5585 0.1383 0.0372 0.0235 -0.0189 -0.0928 -0.0098 -0.0403 0.0581
Co 1.0000 0.1721 0.0928 0.0035 -0.0752 -0.1651 0.0231 -0.1419 0.0177
As 0.1721 1.0000 0.1033 0.0238 0.0304 -0.1632 -0.0192 -0.0544 -0.0020
Sb 0.0928 0.1033 1.0000 -0.0307 0.0103 -0.1266 -0.0017 -0.0653 0.0368
Mo 0.0035 0.0238 -0.0307 1.0000 -0.0061 -0.0653 0.0340 -0.0259 -0.0230
Sn -0.0752 0.0304 0.0103 -0.0061 1.0000 0.2288 0.0591 0.5806 0.0026
Ga -0.1651 -0.1632 -0.1266 -0.0653 0.2288 1.0000 0.0113 0.4132 -0.0569
w 0.0231 -0.0192 -0.0017 0.0340 0.0591 0.0113 1.0000 0.0008 -0.0061
Nb -0.1419  -0.0544 -0.0653 -0.0259 0.5806 0.4132 0.0008 1.0000 -0.0243
Au 0,0177  -0.0020 0.0368 -0.0230 0.0026 -0.0569 -0.0061 -0.0243 1.0000

Eigenvalues % Trace S Trace
1 2.9413 16.3404 16.3404
2 2.0201 11.2226 27.5631
3 1.6434 9.1300 36.6931
4 1.5296 8.4975 45.1906
5 1.1642 6.4677 51.6584
6 1.0927 6.0706 5§7.7290
7 1.0438 5.7989 63.5279
8 0.9678 5.3767 68.9046
9 0.9475 5.2638 74.1684
10 0.8832 4.9065 79.0750
1 0.8138 4.5214 83.5963
12 0.7652 4.2514 87.8477
13 0.5919 3.2885 91.1362
14 0.5098 2.8321 93.9683
16 0.3149 1.7493 95.7176
16 0.2998 1.6656 97.3832
17 0.2518 1.3990 98.7822
18 0.2192 1.2178 100.0000
Principal Components R-Mode Loadings
1 2 3 5 6 7 8
Fe 0.5063 -0.0064 0.0279 -0.7028 0.0694 -0.0094 -0.0159 -0.0935
Ag 0.1138 0.2323 0.3645 -0.069 -0.1730 -0.1087 -0.4492 0.1995
Mn 0.2781 0.3111 0.1287 0.4032 0.4815 -0.3491 -0.0446 0.2270
Cr 0.5599  0.3098 -0.5212 0.0324 -0.0776 0.2604 -0.0424 -0.0780
v 0.0685 0.2515 -0.0682 -0.7690 0.3588 £0.0854 -0,1028 -0.0988
Cu 0.4016  -0.3943 0.2843 0.0712 -0.3681 0.2136 -0.1686 0.0755
Pb 0.2429 0.4442 0.6874 0.1194 0.1814 0.0228 0.0679 -0.0355
Zn 0.6739 0.0983 0.2641 0.0142 -0,0240 -0.1625 0.0413 0.0547
Ni 0.6463  0.2604 -0.4633 0.2524 -0.0882 0.1976 -0.0487 -0.1645
Co 0.7473 0.1737 -0.2108 0.2058 0.1039 -0.0931 -0.0903 0.0756
As 0.3858 0.0714 0.3175 -0.0827 -0.3562 -0.0395 0.1270 -0.1493
Sb 0.2405 -0.1018 -0.0066 -0.1465 -0.4951 -0.2995 0.1928 0.3424
Mo 0.1445 0.0544 0,4335 0.0531 0.1381 0.5714 0.4258 -0.1909
Sn -0.2124 0.7005 -0.0400 -0.2430 -0.3114 -0.0479 0.1394 0.0056
Ga -0.4624 0.4401 -0.0263 0.1281 -0.1084 0.1458 -0.2629 0.0346
W 0.0118 0.0859 -0.1292 -0.1726 0.1417 0,3868 0.2603 0.7875
Nb -0.3722 07339 -0.0124 0.0833 -0.2351 -0.0079 0.1179 -0.0446
Au 0.0271  -0.0305 -0.1633 0.0826 -0.0035 -0.4154 0.6143 -0.0989
Relative Contributions: Variables
1 2 3 4 5 6 7
Fe 25.6338 0.0040 0.0780 49,3984 0.4815 0.0089 0.0253 0.8741
Ag 1.2953 5.3947 13.2869 0.4858 2.9944 1.1824 20.17556 3.9798
Mn 7.7332 9.6791 1.6569 16.2577 23.1853 12.1876 0.1990 5.1546
Cr 31.3460 9.5992 27.1697 0.1050 0.6025 6.7825 0.1797 0.6090
v 0.4692 6.3236 0.4654 59.1360 12.8767 0,7298 1.0576 0.9755
Cu 16.1294 15,5466 8.0825 0.5064 13.5500 4,5638 2.8424 0.5697
Pb 5.8998 19.7326 47.2574 1.4248 3.2802 0.0520 0.4611 0.1258
Zn 45.4177 0.9656 6.9771 0.0202 0.0578 2.6413 0.1706 0.2997
Ni 41.7671 6,7807 21,4643 6.3724 0.7788 3.9045 0.2372 2.7059
Co  55.8494 3.0167 4.4432 4.2341 1.0804 0.8667 0.8147 0.5716
As 14,8808 0.5102 10.0820 0.6841 12.6895 0.1560 1.6138 2.2296
Sb 5.7828 1.0316 0.0043 2.1470 24.5143 8.9717 3.7168 11.7208
Mo 2.0885 0.2963 18,7925 0.2822 1.9071 32.6498 18.1281 3.6427
Sn 4.5122 49.0725% 0.1601 5.9041 9.6978 0.2297 1.9424 0.0032
Ga 21.3785 19.3654 0.0689 1.6410 1.1756 2.1245 6.9102 0.1200
w 0.0139 0.7384 1.6685 2.9800 2.0069 14.9577 6.7771 62.0224
Nb 13.8570 53.8573 0.0154 0.6933 5.5293 0.0062 1.3894 0.1992
Au 0.0733 0.0830 2.6674 0.6831 0.0013 17.2562 37.7389 0.9776
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Table 7

Murchison Greenstone Laterites [Non-robust][Transformed]

Observations: 484

Var. Mean Std.Dev. Coef.Var,
Fe 14.8613 4.7093 31.69
Ag -2.2775 1.3167 -57.82
Mn 4.7398 1.0561 22.28
Cr 6.8196 1.0499 15.39
v 30.9735 10.7038 34.56
Cu 4.1119 1.3349 32.47
Pb 7.2142 3.0260 41.94
2n 3.3482 0.6538 19.53
Ni 3.8707 1.1394 29.44
Co 3.5139 2.3275 66.24
As 3.7627 1.1688 31.06
Sh 0.7469 1.0991 147.15
Mo 1.0347 1.1290 109.12
Sn 0.3869 1.2654 327.08
Ga 7.1584 2.1186 29.60
w 1.6712 0.8849 52.95
Nb 3.0518 1.7433 57.12
Au 0.9458 1.2708 134.37
Correlation Matrix

Fe Ag Mn Cr v Cu Pb Zn Ni
Fe 1.0000  0.1233 0.2594 0.3908 0.4855 0.3683 00626 0.5127 0.2338
Ag 0.1233  1.0000 0.1157 0.2635 0.1793 0.4132 0.1583 0.3430 0.2528
Mn 0.2594 0.1157 1.0000 0.1529 0.1516 0.0629 0.2269 0.4659 0.1827
Cr 0.3908  0.2635 0.1529 1.0000 0.2592 0.3305 0.0035 0.3757 0.6403
v 0.4855 0,1793 0.1516 0.2592 1.0000 0.0182 0.0538 0.1292 0.0474
Cu 0.3683 0.4132 0.0629 0.3305 0.0182 1.0000 -0.0545 0.5700 0.4719
Pb 0.0626 0.1583 0.2269 0.0035 0.0538 -0.0545 1.0000 0.2203 0.0473
Zn 0.5127 0.3430 0.4659 0.3757 0.1292 0.5700 0.2203 1.0000 0.4255
Ni 0.2338  0.2528 0.1827 0.6403 0.0474 0.4719 0.0473 0.4255 1.0000
Co 02022 0.1762 0.3859 0.3898 0.0726 0.3995 0.0243 0.5040 0.6319
As 0.0958 0.2174 0.0138 02898  -0.0410 0.2256 0.1817 0.3383 0.2132
Sb 0.1033  0.1545 0.0473 0.1946 0.0102 0.1915 -0.0533 0.2016 0.1401
Mo 0.0206 -0.0633 -0.0253 0.0251  -0.0257 -0.1745 0.4053 -0.0457 0.0319
Sn -0.0525 0.0939 0.0384 -0.0318 0.1948 -0.2745 0.0386 -0.0737 -0.2590
Ga -0.3077 0.1355 -0.1619 0.1241 0.0540 -0.3273 0.1638 -0.3535 -0.1898
w 0.2362 0.0343 0.0944 0.1530 0.1595 -0.0269 0.0558 0.0411 -0.0030
Nb  -0.2889 -0.0318 0.1098  -0.1718  -0.0680 -0.5229 0.2104 0.2226 -0.3379
Au -0.1059 -0.1676 4.0207 -0.0666 0.0194 0.1734 -0.0766 -0.0938 -0.0795

Co As Sb Mo Sn Nb
Fe 0.2022  0.0958 0.1033 0.0206  -0.0525 -0.3077 0.2362 -0.2889 -0.1059
Ag 0.1762 0.2174 0.1545 -0.0633 0.0939 0.1355 0.0343 -0.0318 -0.1676
Mn 0.3859 0.0139 0.0473 -0.0253 0.0384 -0.1619 0.0944 0.1098 -0.0207
Cr 0.3898 0.2898 0.1946 0.0251 -0.0318 -0.1241 0.1530 -0.1718 -0.0666
\'s 0.0726 -0.0410 0.0102 -0.0257 0.1948 0.0540 0.1595 -0.0680 -0.0194
Cu 0.3995 0.2256 0.1915 -0.1745 -0.2745 -0.3273 -0.0269 -0.5229 -0,1734
Pb 0.0243 0.1817 -0.0533 0.4053 0.0386 0.1638 0.0558 0.2104 0.0766
Zn 0.5040 0.3383 0.2016  -0.0457  -0.0737 -0.3535 0.0411 -0.2226 -0.0938
Ni 0.6319 0.2132 0.1401 0.0319 -0.2590 -0.1898 -0.0030 -0.3379 -0.0795
Co 1.0000 0.2140 0.1331 -0.0607 -0.1367 -0.1814 0.0013 -0.1997 -0.0900
As 0.2140  1.0000 0.3655  -0.0826 0.0766 -0.1526 -0.1585 -0.0354 -0.0166
Sb 0.1331 0.3655 1.0000 -0.2254 0.0548 -0.0734 -0.0749 -0.0458 0.0011
Mo -0.0607 -0.0826 -0.2254 1.0000 <.0355 0.1442 0.2996 0.1010 -0.0354
Sn -0.1367 0.0766 0.0548 -0.0355 1.0000 0.1683 0.0423 0.4837 0.1164
Ga -0.1814 -0.1526 -0.0734 0.1442 0.1683 1.0000 0.0121 0.4133 -0.0499
w 0.0013 -0,1585 -0.0749 0.2996 0.0423 0.0121 1.0000 0.0213 -0.0077
Nb -0.1997 -0.0354 -0.0458 0.1010 0.4837 0.4133 0.0213 1.0000 0.0847
Au -0.0800 -0.0166 0.0011 -0.0354 0.1164 -0.0499 -0.0077 0.0847 1.0000

Eigenvalues % Trace S Trace
1 1677 23.1537 23,1537
2 2.0710 11.5054 34.6591
3 1.6766 9.3143 43.9734
4 1.4573 8.0961 52.0696
5 1.2668 7.0377 59.1073
6 1.0954 6.0858 65.1930
7 1.0647 5.9151 71,1082
8 0.8355 4.6415 75.7496
9 0.8150 4.5278 80.2775
10 0.7156 3.9756 84.2531
" 0.5055 2.8082 87.0613
12 0.4896 2,7201 89.7814
13 0.4457 2.4759 92.2573
14 0.3886 2.1589 94.4161
15 0.3163 1.7574 96.1735
16 0.2509 1.3936 97.5671
17 0.2351 1.3060 98.8731
18 0.2028 1.1269 100.0000
Principal Components R-Mode Loadings

1 2 3 5 6 7 8
Fe 0.6038  0.2051 0.3276 0.4400 0.0287 0.1796 0.2031 -0.0369
Ag 0.4237 0.2918 0.2954 -0.1035 0.4779 0.1955 -0.1459 -0.1353
Mn 0.3823 0.3990 -0.0256 0.0688 -0.5653 0.1956 -0.3770 0.1210
Cr 0.6595  0.1863 0.0056 0.0492 0.1958 -0.4933 0.0199 0.0249
\ 0.2424 0.4101 -0.1833 0.5893 0.2771 0.0240 -0.0656 -0.3123
Cu 0.7489 -0.2787 0.0114 -0.0756 0.2049 0.1991 0.0187 -0.0543
Pb 0.0749  0.6071 -0.0308 -0.4747 -0.1424 0.2670 0.2557 -0.2412
Zn 0.7927 0.1773 0.0611 -0.0142 -0.2469 0.2497 0.0354 -0.0185
Ni 0.7338 -0.0482 -0.0370 -0.2837 0.0433 -0.4320 -0.1801 -0.0703
Co 0.6765 0.0360 0.0536 -0.1853 -0.2258 -0.2367 -0.3829 0.0587
As 0.4002 0.0683 0.5614 -0.1538 -0.0404 -0.0312 0.4834 -0.0203
Sb 0.3080 -0.0532 0.5544 0.1448 0.0560 -0.0785 0.2971 0.3754
Mo -0.1099  0.4402 -0.4823 -0.4542 -0.0001 -0.1510 0.3425 -0.0078
Sn -0.2439 0.5095 0.4080 0.3967 -0.0145 -0.0622 0.0012 0.0388
Ga -0.4320 0.4015 0.1581 -0.2283 0.4529 -0.1403 -0.2768 -0.0873
w 0.0644 0.3763 -0.5122 0.1594 0.1000 -0.2079 0.1679 0.4873
Nb -0.4928 0.5788 0.3479 -0.0297 -0.1665 -0.0730 -0.1535 0.1526
Au -0.1806 -0.0419 0.0931 0.2564 -0.4231 -0.4739 0.2041 -0.4710
Relative Contributions: Variables 6
1 2 3

Fe 36,4526  4.2050 10.7288  19.3598 0.0824 3.2259 4.1254 0.1363
Ag 17.9511 8.5167 8.7242 1.0708 22.8401 3.8209 2.1276 1.8319
Mn 14.6155 159177 0.0654 0.4738  31.9555 3.8272 14.2151% 1.4642
Cr 43.4953 3.4698 0.0031 0.2422 3.8336 24.3392 0.0395 0.0619
v 5.8774 16.8157 3.3614  34.7302 7.6797 0.0576 0.4308 9.7501
Cu  56.0815 7.7690 0.0129 0.5711 4.1974 3.9652 0.0348 0.2947
Pb 0.5608 36.8597 0.0951 22.5372 2.0280 7.1273 6.5394 5.8182
n 62.8415 3.1452 0.3737 0.0200 6.0836 6.2358 0.1250 0.0343
Ni 53.8474 0.2324 0.1368 8.0510 0.1872 18.6632 3.2452 0.4937
Co  45.7649 0.1293 0.2873 3.4326 5.1000 5.6048 14.6581 0.3440
As 16.0129 0.4666 31.5132 2.3649 0.1629 0.0971 23.3689 0.0411
Sb 9.4891 0.2827 30.7385 2.0980 0.3136 0.6319 8.8242 14.0940
Mo 1.2078 19,3785 23.2652  20.6283 0.0000 2.2813 11,7336 0.0061
Sn 5.9474 25,9596 16.6479 15.7355 0,0211 0.3872 0.0002 0.1506
Ga 18.6615 16,1201 2.4995 52134 20.5121 1.9674 7.6618 0.7630
w 0.4147 14.1574 26.2310 2.5393 0.9893 4.3235 2.8200 23.7501
Nb  24.2821 33,4966 12.1048 0.0881 2.7735 0.5332 2.3558 2.3274
Au 3.2630 0.1756 0.8677 6.5741 17.8982 22.4554 4.1666 22,1851
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Geochemical Data Interpretation 31

samples which plot along the positive side of the C1 axis are associated with laterites that are Co, Zn, Ni, Cr,
and Fe enriched relative to samples that plot along the negative side of the C1 axis which are associated with
Ga, Nb, and, Sn. The association of the elements along the C2 axis shows Sn is associated with more
fractionated rocks containing Nb and Ga, while samples along the negative end of the C2 axis have a greater
affinity with Cu and samples associated with Fe, Zn, Ni, Cr, and Co. An interpretation of the diagram suggests
that samples which plot along the positive side of the C1 axis are associated with mafic volcanic rocks, while
samples that plot along the negative side of the C1 axis are associated with felsic volcanic or fractionated
plutonic rocks. Samples that plot close to the origin of the diagram indicate that they do not contribute much to
the components which are plotted.

Figure 15a is a plot of component loadings of the variables and sample scores along the C1 and C2
axes for untransformed data using robust estimates of the mean and correlations. This Figure also shows
significant dispersion along the C1 and C2 axes. In contrast with Figure 14a, the samples show a greater
dispersion. This increased dispersion is due to the robust estimates of the means which tend to enhance the
presence of the outliers for non-transformed data. The relationships between the variables are also different
from Figure 14a. The results of this analysis suggest that Sb, As, and Ag have a more significant association
with the mafic volcanic rocks represented by a relative enrichment in Cr, Co, Zn, Cu, and Ni. The association of
W, Mn, V, Pb, and Mo along the C2 axis represents more fractionated rocks.

Figure 16a shows a plot of the variables and samples along the C1 and C2 axes for transformed data
using non-robust estimates of the means and correlations. The Figure indicates that transforming the data
significantly affects the dispersion of the samples in comparison with Figures 14a, and 15a. The association of
the elements indicates that Zn, Ni, Cu, Co, Cr, Fe Ag, As, Sb, and possibly V are associated with lateritic
materials derived from mafic volcanics and that Nb, Ga, Sn, and Mo are associated with materials derived from
more fractionated rocks. Notice that Au plots very close to the origin of the diagram and has little significance
in the first two components. Lead and W show a positive association with the elements associated with the more
fractionated materials along the C2 axis, while Cu is associated more with the mafic-associated elements. The
reduced dispersion of the diagram suggests that most of the samples represent a homogeneous population with
very few outliers represented by the linear combination of elements in the first two components.

Figure 17a shows a plot of the variables and samples along the C1 and C2 axes for transformed data
using robust estimates. The Figure is almost identical to Figure 16a and suggests that for this group of data, the
effect of transforming the data brings the data distribution to normality and the resulting robust estimates of
means and correlations are very similar to that of a non-robust estimate. The similarity of the first two principal
components suggests that the elements associated with principal lithological variations are essentially normally
distributed. This may not be the case for some of the other chalcophile elements.

One of the objectives of multivariate methods is to assess the associations of target elements. In this
example, Au is chosen as the target element. Examination of the component loadings and relative contributions
of Table 6 shows that Au makes significant contributions to the 7th component. Figure 14b shows a plot of the
C1 versus C7 components. The associations of the samples and elements along the C1 axis show the
mafic/felsic pattern as in Figure 14a, but the dispersion of samples along the positive side of the C7 axis
indjcates that a few samples are associated with Au, Mo, and W. These samples may represent sites that warrant
further investigation in the form of more detailed sampling.

Table 7 shows that the seventh component is also the most significant component for Au association.
Figure 15b shows a plot of the samples and element scores plotted onto the C1-C7 axes. Samples that plot along
the positive side of the C7 axis show relative enrichment in Au and some association with Mo, As, and perhaps
Co. This pattern outlines a problem with linear combinations based on untransformed data. It is difficult to
judge which samples are truly atypical or anomalous since these apparent outliers may be part of the
background population if the data were transformed. Exploration follow-up on these samples might be time
consuming and costly.

Table 8 shows the results of the PCA for transformed data but without any robust estimate.
Examination of the relative contributions indicates that Au contributes significantly to the CS, C6, and C8
components. Figures 16b,c, and d show plots of these components against the C1 component. Figure 16b shows
that Au has an association with Mn and suggests that it is associated with some Mn-enriched lithologies. Figure
16¢ and Table 8 (Variable loadings) show that Au plots close to the C1 origin, but the association of Ni along
the negative part of the C6 axis indicates some association with the Ni-enriched rocks that may be associated
with mafic lithologies. Figure 16d shows the elements and sample scores plotted against the C1-C8 axes. The
association of Au with Pb and V is suggested by the plot. Note that with the use of transformed data, the
dispersion of the samples is not nearly as great as when using non-transformed data (cf. Figures 14, 15). In these
plots, the few samples that plot away from the main cloud of points can be considered outliers and anomalous.
These points should take first priority in a follow-up investigation.

Table 9 shows the results of the PCA applied to transformed data using robust estimates of the means
and correlations. The analysis indicates that Au contributions to the fourth, fifth, sixth, and ninth components.
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Table 8

Murchison Greenstone Belt Laterites [Robust][Non-transformed]
Robust Principal Components: Based on Previously Calculated

Robust Estimates of Means, Correlations, and Covariances

Observations: 484

Robust Means

Fe 35.60
Ag 0.19
Mn 127.02
Cr 1078.61
v 748.29
Cu 154.82
Pb 29.82
Zn 28.67
Ni §9.21
Co 8.80
As 54,60
Sb 3.21
Mo 3.86
Sn 2.58
Ga 22.43
W 6.32
Nb 10.46
Au 4.87

Robust Correlation Matrix

Fe

1.0000  0.1095
0.1095  1.0000
0.3939  0.0725
0.3751  0.2604
0.5364 0.1018
0.2051  0.3315
0.0193 -0.0134
0.4806  0.3150
0.18%0  0.3783
0.3139  0.2892
0.0307 0.1584
0.0879  0.1029
-0.0537 0.1150
©0.0760 -0.0330
-0.3801  0.15837
02322  0.1155
-0.3221  -0.1919
0.1565 -0.1568

Co As
0.3139  0.0307
0.2892 0.1584
0.3202 -0.0936

0.1758
-0.1013

0.0160
0.3519
-0.0486

Eigenvalues % Trace S Trace
1 1353 22.9739 22,9739
2 2.1216 11.7867 34.7606
3 1.7011 9.4505 442111
4 1.4992 8.3291 52.5402
5 1.1021 6.1226 58,6629
6 1.0106 5.6143 64.2771
7 0.9864 5.4801 69.7572
8 0.8583 4.7686 74.5258
9 0.7961 4.4229 78.9487
10 0.7114 3.9520 82,9007
" 0.6040 3.3555 86.2563
12 0.5418 3.0102 89.2665
13 0.4692 2.6067 91.8733
14 0.3952 2.1956 94,0689
15 03773 2.0959 96,1647
16 0.3038 1.6876 97.8524
17 0.2015 1.1193 98.9716
18 0.1851 1.0283 100.0000
Principal Component R-Mode Loadings
1 2 3 4 5 & 7 8
Fe 0.5830 -0.5897 0.0915 -0.1398 0.0477 0.1467 -0,2073 -0.0316
Ag 0.4563  0.0552 0.3965 0.2573 0.0815 -0.5216 -0.0842 0.0647
Mn 0.2240  -0.6850 -0.0623 0.0904  -0.3789 -0.0798 0.1544 -0.0554
Cr 0.5873  -0.0829 0.1158 0.1282 0.5097 0.0727 -0.0116 0.0757
v 02752 -0.7037 -0.1417 0.1162 0.0423 -0.0689 -0.1307 0.4147
Cu 0.5829  0.4333 0.2272  -0.1120  -0.1196 -0.0593 -0.1244 -0.1144
Pb -0.2632 -0.3391 0.6362 0.1061 -0.0995 0.3776 0.0357 0.0907
n 0.7604 -0.1055 0.0078 0.0990 -0.2185 0.1071 0.1554 -0.1621
Ni 0.7480  0.2587 0,2926 0.0170 0.0330 -0.0552 0.2098 0.0400
Co 0.7291  -0.0769 0.1209 0.0436  -0.3693 -0.0983 0.2731 -0.0181
As 0.4148  0.2469 -0.0240 0.4649 0.1792 0.3498 0.2421 -0.2352
Sb 0.3158  0.1719 -0.1851 0.3983 0.2075 0.3467 -0.1076 0.3753
Mo  -0.3035 -0.2292 0.5661  -0.2910 0.1378 0.3180 0.2809 -0.0206
Sn £0.2744  -0.2201 -0.2361 0.7125 0.1020 -0.1411 0.0413 -0.2282
Ga 0.3949 0.0932 0.6073 0.3196 -0.0233 -0.2619 -0.0113 0.3148
w 0.0325 -0.4440 0.1908  -0.1928 0.5596 -0.2529 0.0191 -0.3887
Nb -0,6294 -0.1238 0.1300 0.4679 -0.1660 0.0302 0.0585 -0.2283
Au 0.2139  -0.0088 03292 -0.1189 0.1811 -0.1826 0.7622 0.2673
Relative Contr:butions: Variables 7 8
2 4
Fe  33.9846 34.7789 0.8380 1.9533 0.2279 2.1514 4.2985 0.0995
Ag 208215 0.3046 15,7222 6.6228 0.6637 27.2022 0.7084 0.4186
Mn 5.0160 46.9294 0.3877 0.8175  14.3566 0.6368 2.3851 0.3069
Cr  34.4887 0.6868 1.3405 1.6441  25.9781 0.5284 0.0134 0.5732
v 7.5719 49,5230 2.0078 1.3510 0.1792 0.4747 1.7085 17.1946
Cu 33.9764 18,7730 5.1618 1.2649 1.4316 0.3517 1.5472 1.3082
Pb 6.9296 11,4999 40.4803 1.1248 0.8897 14,2558 0.1273 0.8235
Zn  57.8262 1.1129 0.0061 0.9799 4.7764 1.1470 2.4146 2.6280
Ni 559431  6.6930 8.5564 0.0289 0.1091 0.3043 4.4037 0.1604
Co 53.1565 0.5909 1.4611 0.1900  13.6380 0.9663 7.4608 0.0327
As  17.2026  6.0975 0.0576 21.6139 3.2097 12,2391 5.8631 §.5300
Sb 9.9812 2.9554 3.4246  15.8649 4.3054 12.0171 1.1680 14.0879
Mo 9.2100 5.2539  32.0470 8.4709 1.8990 10,1102 7.8897 0.0426
Sn 7.5276  4.8427 55741 50,7695 1.0410 1.9912 0.1707 5.2550
Ga 15,5929 0.8678 36.8755 10.2113 0.0541 6.8592 0.0128 9.9110
w 0.1056 19.7101 3.6389 37165 31.3132 6.3964 0.0366 15.1052
Nb  39.6195 1.5339 1.6898 21,8965 2.7557 0.0914 . 0.3419 5.2116
Au 4.5764  0.0077 10.8389 1.4136 3.2796 3.3337 58,1014 7.1450
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Table 8

Murchison Greenstone Belt Laterites [Robust][Transformed]
Robust Principal Components: Based on Previously Calculated
Robust Estimates of Means, Correlations, and Covariances

Observations: 484

Robust Means

Fe 14.78
2.26
Mn 4.72
Cr 6.82
\'4 31.05
Cu 4.10
Pb 7.13
Zn 3.32
Ni 3.88
Co 3.47
As 3.76
Sb 0.73
Mo 1.03
Sn 0.37
Ga 7.18
w 1.65
Nb 3.05
Au 0.93
Robust Correlation Matrix
Fe Ag Mn Cr v
Fe 1.0000 0.1405 0.3274 0.4002 0.5308
Ag 0.1405  1.0000 0.1671 0.2746 0.1708
Mn 0.3274 0.1571 1.0000 0.1799 0.2495
Cr 0.4002  0.2746 0.1799 1.0000 0.2546
v 0.5308 0.1708 0.2495 0.2546 1.0000
Cu 0.3595 0.4314 0.0824 0.3344 0.0296
Pb 0.0806 0.1688 0.1823 -0.0018 0.0924
Zn 0.5363 0.3860 0.4955 0.4154 0.1960
Ni 0.2359 0.2745 0.1782 0.6549 0.0739
Co 0.2076 0.2271 0.3780 0.4069 0.1272
As 0.0477  0.2235 -0.0171 0.3022 -0.0218
Sb 0.0716 0.1700 0.0436 0.1930 0.0325
Mo 0.0279 -0.0518 -0.0221 0.0034 -0.0370
Sn -0.0565 0.0976 0.0850 -0.0278 0.1873
Ga -0.2918 0.1440 -0.1539 -0.1438 -0.0139
w 0.2451  0.0643 0.1184 0.1217 0.1612
Nb -0.2871 -0.0361 0.1415 -0.1807 -0.1027
Au -0.1328 -0.1692 -0.0617 -0.0676 -0.0072
Co As Sb Mo Sn
Fe 0.2076  0.0477 0.0716 0.0279  -0.0565
Ag 0.2271  0.2235 0.1700  -0.0518 0.0976
Mn 03780 -0.0171 0.0436 -0.0221 0.0850
Cr 0.4069 0.3022 0.1930 0.0034 -0.0278
v 0.1272 -0.0218 0.0325 -0.0370 0.1873
Cu 0.4108 0.1882 0.1902 -0.2067 -0,2690
Pb -0.0262 0.1364 -0.0451 0.4201 0.0673
Zn 0.4970  0.3211 0.2016  -0.0730  -0.0758
Ni 0.6484 0.1806 0.1393 0.0239 -0.2432
Co 1.0000  0.2168 0.1297  -0.0814  -0.1129
As 0.2168 1.0000 0.3716 -0.1044 0.1002
Sb 0.1297 0.3716 1.0000 -0.2325 0.0572
Mo  -0.0814 -0.1044 -0.2325 1.0000  -0.0480
Sn 0.1129  0.1002 0.0572  -0.0480 1.0000
Ga  -0.1470 -0.0866 -0.0463 0.1677 0.1352
w -0.0361 -0.1474 0.1191 0.3016 0.0316
Nb -0.1932 0.0031 -0.0341 0.1087 0.4766
Au -0.1126 -0.0418 -0.0165 -0.0232 0.1380

-0.0866
-0.0463

0.1352
1.0000
0.0070
0.3828
-0.0446

Eigenvalues % Trace S Trace
1 2205 23.4470 23.4470
2 2.1646 12.0255 35.4725
3 1.7557 9.7538 45.2263
4 1.5070 8.3720 53.5982
5 1.1382 6.3289 59.9271
6 1.0838 6.0214 65.9485
7 1.0102 5.6120 71.5605
8 0.8406 4.6700 76.2304
9 0.7890 4.3836 80.6140
10 0.7135 3.9640 84,5780
11 0.5141 2.8561 87.4340
12 0.5025 2.7917 90.2257
13 0.4204 2.3356 92.5613
14 0.3913 21736 94,7350
15 0.3032 1.6843 96.4193
16 0.2328 1.2934 97.7126
17 0.2210 1.2280 98.9406
18 0.1907 1.0594 100.0000
Principal Component R-Mode Loadings
1 2 3 4 5 6 7 8
Fe 0,6193 0.2287 0.3921 -0.3385 -0.2245 0.0619 0.1490 -0.1611
Ag 0.4662 0.2810 0.2995 0.2018 -0.3940 -0.0127 -0.2843 0.4010
Mn 0.4148  0.4394 0.0670  -0.2805 0.3121 -0.5278 -0.0214 0.0343
Cr 0.6824  0.1360 0.0541 0.0512 0.1817 0.4410 -0.1140 -0.1392
" 0.3235 0.3972 -0.2186 -0.4796 -0.2645 0.2046 -0.2180 -0.3737
Cu 07376  -0.3062 0.0057 0.1382  -0.2487 -0.0836 -0.0346 0.2775
Pb 0.0108  0.6679 0.0052 0.3838  -0.0539 <0.1379 0.3399 -0.1396
Zn 0.8102 0.1531 0.0370 -0.0747 0.0280 -0.2515 0.2067 0.1598
Ni 0.7206  -0.0507 0.0165 0.3353 0.3528 0.2021 -0.2380 -0.1035
Co 0.6834  0.0117 0.1092 0.1291 0.4177 -0.1420 -0.2529 -0.0767
As 0.3538  0.0510 0.5994 0.0842  -0.0299 0.2065 0.4612 -0.0613
Sb 0.2973 -0.0727 0.5600 -0.1266 -0.1624 0.1876 0.2485 -0.0875
Mo -0.1415 0.4596 -0.4098 0.4787 0.1449 0.1921 0.2860 0.0116
Sn -0.2071 0.4828 0.3942 -0.4528 -0.0093 0.1063 -0.1165 0.1516
Ga  -0.3766  0.4042 0.2347 0.3986  -0.1771 0.1097 -0.4332 -0.1346
w 0.0680  0.3890 -0.4972  -0.0203  -0.0744 0.3020 0.0221 0.4590
Nb  -0.4680 0.5737 0.3762  -0.0749 0.2154 -0.1452 -0.0556 0.0578
Au 0.2196  -0.0445 00574  -0.3421 0.4870 0.4053 0.0677 0.2972
Relative Contributions; Variables
1 2 3 5 [} 7 9
Fe 38.3576 5.2292 16,3762  11.4606 5.0391 0.3826 2.2205 2.5945 0.1232
Ag 21.7357 7.8943 8.9700 4.0740  15.5235 0.0160 8.0833 16.0785 4.1504
Mn 17.2147 19.3032 0.4491 7.8675 9.7406 27.8604 0.0456 0.1175 0.3293
Cr  46.5621  1.8507 0.2929 0.2618 3.3023 19.4476 1.2988 1.9381 3.1702
Vv 10.4620 157745 47778  23.0043 6.9961 4.1873 4.7957 13.9622 41739
Cu 54.4082 9.3768 0.0033 1.9100 6.1849 0.6988 0.1195 7.7025 1.8685
Pb 0.0116 44.6105 0.0027 14.7277 0.2903 1.8018 11.5536 1.9491 8.5029
Zn 65.6418 2.3451 0.1370 0.5587 0.0784 6.3261 4.2714 2.5540 1.0237
Ni 51.9279 0.2569 0.0273 112417 12,4456 4.0853 5.6655 1.0719 0.0711
Co 46.7052 0.0138 1.1933 1.6664  17.4458 2.0157 6.3967 0.5889 0.3916
As 12.5143 0.2602 35.9266 0.7083 0.0897 4.2631 21.2746 0.3761 0.1718
Sb 8.8389  0.5287  31.3593 1.6038 2.6367 3.5200 6.1750 0.7665 4.1597
Mo 2.0021 21.1264 16.7941 22.9138 2.0998 3.6922 8.1809 0.0135 0.0324
Sn 4.2887 23.3109 156.5424 20,5022 0.0087 1.1300 1.3567 2.2992 1.0276
Ga 14,1838 16.3384 55096 15.8918 3.1348 1.2024 18,7620 1.8123 1.1349
w 0.4622 15.1318 24,7224 0.0414 0.5528 98.1201 0.0490 21.0691 16.2524
Nb 21.9068 32.9089 14,1540 0.5609 4.6380 2.1079 0.3089 0.3344 3.0499
Au 4.8229  0.1983 0.3297 117008  23.7127 16.4270 0.4587 8.8307 29.2704
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Geochemical Data Interpretation 37

Figures 17b and 17c¢ show the scores of the samples and variables plotted onto the C1-C5 and C1-C9 axes
respectively. Figure 17b shows that Au is relatively enriched along the CS axis. The Figure suggests that Au
enrichment may be associated with Mn, Co, and Ni enrichment, but that the association appears to be inversely
related to relative enrichment in Fe, or Cu. Figure 17c shows that Au occurs associated only with Pb along the
positive side of the C9 axis. This indicates that Pb is relatively enriched in samples that also have Au
enrichment.

Experience within lateritic materials of the Yilgam Block has found that elements such as Au can be
significanct in as many as four components. The significance is due to the presence and absence of various
chalcophile elements that may or may not be present with Au. Typically, Au may have a strong association with
As in one component and an inverse association with As in another component. Part of this muitiple component
association is an artifact of the mathematics of PCA. Interpretation of these components must be placed within
the context that within an area of elevated Au abundances, samples with elevated Au abundances may have As
present or absent. In such a case, this relationship is expressed as two distinct components, but in fact represents
the same locality.

Maps of the principal component scores of the samples can be useful in expressing linear relationships
of the data that express meaningful geochemical processes. If a component expresses underlying lithologies,
then a map of that component will clearly outline the major lithological variation of the area (Grunsky, 1986).
Other components that outline other processes such as mineralization or alteration can also be clearly expressed
on maps that display the component scores.

4.3 Cluster Analysis Methods

In an exploration programme, groups of samples defined by multi-element geochemistry may form distinct
clusters that can represent background and target populations. Cluster analysis methods are useful as an
exploratory tool for detecting groups of multi-element data that may not be readily observable in simple scatter
plots or principal components analysis. The main objective of clustering algorithms is to represent natural
groupings of multidimensional data in as few dimensions as possible. Clustering methods can be broadly
divided into hierarchical and non-hierarchical methods. Davis (1986) provides a good introductory review of
clustering methods.

Clustering procedures in geochemistry have been applied in many studies. Sinding-Larsen (1975) used
clustering methods for the initial subdivision of a heterogencous geochemical area. Jaquet er al. (1975) provide
a detailed analysis of lake sediment geochemistry through the use of clustering procedures. Howarth and
Sinding-Larsen (1983) provide a general discussion of clustering methods applied to geochemical exploration.
Grunsky (1986) has shown how dynamic cluster analysis was used to detect different types of mineralization
based on distinct geochemical differences between the mineral occurrences. More recently, the use of fuzzy
clustering methods in geochemistry has been introduced (Bochang and Xuejing, 1985).

Hierarchical Methods
Hierarchical clustering is based on the linking varjables (R-mode) or samples (Q-mode) from measures of
similarity. The relationships between the variables or samples are usually expressed graphically on the
dendrogram. Individual clusters can be discriminated by choosing an appropriate value of linkage at which the
similarities between the objects is not realistic. Hierarchical clustering assumes a constant linkage of
samples/variables which may not be a reasonable assumption for geological data.

The most common measure of similarity for clustering on the basis of variables (R-mode) is the
correlation coefficient. For Q-mode analysis, the Euclidean distance can be used as a measure of proximity
through which samples can be clustered.

Non-hierarchical Methods

Arbitrary Origin Methods are non-hierarchical and may offer some advantage over hierarchical methods since
the clusters which are formed are based on multivariate similarities (proximities) rather than individual
correlation coefficients. These methods start with an initial number of cluster centres that can be randomly or
specifically chosen. Each sample is allocated to one of the groups based on the closest distance to group centres.
The process is iterative and group centres change until a stable solution results. Methods such as K-means
(McQueen, 1967; Everitt, 1974) or dynamic cluster analysis (Diday, 1973) are examples of this.

One method of non-hierarchical clustering known as dynamic cluster analysis has been applied to
geochemical data. Like many non-hierarchical methods, it is commonly applied to component scores from
methods such as principal analysis. The reasoning for clustering together component scores is based on the
interpretation that linear combinations of the variables (component scores) may reflect geological processes that
will be grouped together in a clustering procedure. Additionally, the component plots provide a reduced set of
dimensions for viewing the multi-element associations of the data and thus provide additional visual assistance
in examining grouped associations.
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The dynamic cluster analysis procedure works by initially selecting random "seed" points, or group

centroids, in the principal component space of the samples. The analysis proceeds through the following steps:

i) The Mahalanobis distance from each sample to each random seed point is computed.

ii) Each sample is then allocated to a group representing the shortest distance to one of the group centroids.

iii) From the samples that comprise each group, a new group centroid value is calculated which represents a
"new" mean or group centroid.

iv) Mahalanobis distances for each sample are continued with corresponding allocation to new group centroids.
Steps i) to iii) are repeated until the group centroids stabilize.

v) Each group is compared using Hotelling's T2 and corresponding F-test for statistical uniqueness of the
groups. If two groups are not statistically different at the 95% confidence level, then the groups are joined
together and the statistics recomputed.

vi) Step v) is repeated until each group is statistically distinct.

vii) For each group, average compositions of the samples (from the original geochemical data) are computed so
that compositions of the groups can be compared.

Dynamic cluster analysis was applied to the same transformed data as for the example describing the
use of principal components analysis. Partial results of the analysis are shown in Table 10.

The first part of the Table shows that the data was subdivided into 22 statistically-distinct groups.
Notice however, that Groups 14 to 22 consist of single values that represent outliers. Groups 1 to 13 represent
groups of samples that are statistically distinct from each other based upon the principal component scores
obtained from the robust principal components analysis procedure shown in Table 9.

The second part of the Table shows the mean composition of each group using the original
untransformed data. This permits examination of the characteristics of the groups in units that are familiar to the
geologist. Each mean value is accompanied by its coefficient of variation which is defined as (standard
deviation/mean value)*100.0. Large coefficients indicate broad dispersion while small coefficients indicate
limited dispersion. The main advantage of the ratio is that it is unitless and thus each element can be compared
with every other element. Thus, relative variations of the elements can be observed with this coefficient.

Significant elements in groups can be done by scanning each element through each of the groups.
Large and small mean values assist in determining the geochemical significance of the groups. As well, plotting
the mean component scores onto the principal components axes, shown in Figures 18ab,c,d, can assist in
viewing multi-element associations with each group.

Groups 3 and 1 show relatively-large Fe values relative to the other groups. However, Group 3 has
significantly more V, Ni, and Co, while Group 1 has more Mo, Sn, and W. This might suggest that these
samples have distinct lithological associations. Group 5 shows significant Au accompanied by elevated Mo and
lower Fe. Elevated W occurs in Group 1. Figures 18a, b, ¢, and d show projections of the mean component
scores for each group. Figure 18a shows that Groups 3 and 1 are associated with the mafic rocks along the
positive side of the C1 axis. Group 3, having a greater Fe abundance, plots closer to Fe on the plot.

Groups that may be of interest to the investigator are those with elevated values for chalcophile
elements, pathfinder elements, and commodity elements. Associations with elevated Au occur in Groups 2, §, 7,
8,11, 12, and 13. Isolated Au samples occur as Groups 17, 18, 19, 20, and 21. These Groups can be investigated
for their Au associations with other elements. Some of the associations may be lithologically controlled, while
other associations may be with alteration assemblages. Further scatter plots, clustering or components analysis
can be carried out on some of the larger groups to examine the multi-element associations. Figures 18a,b,c,d
show that these groups plot closer to Au than other groups indicating their affinity to relative Au enrichment.

Other groups show elevated abundances for elements of interest. These include Group 13 for Ag;
Groups 4, 6, 16, 17, 18, and 19 for Cu; Groups 9, 10, 13, 15, 16, 18 20, and 22 for Pb; Groups 9, 13, 16, 17, 18,
and 22 for Zn; Groups 11, 16, 17, and 22 for Ni; Groups 14, 16, and 21 for Mo; and Groups 7, 10, 12, 13, 15,
and 21 for Sn.

Some primary lithological associations are described by groups 1, 2, 3, 4, 5, 7, and 12. These groups
show little deviation from the C1 axis. Mafic/ultramafic volcanic associations may be suggested by Groups with
elevated Cr, Mn, Ni, and Co. Groups 1, 3, 4, 6, 9, 11, and 13 show elevated Cr values as well as individual
samples that form groups 14, 15, 16, 18, 19, 21, and 22.

44 Xz (Chi-square) Plots: A multivariate extension of Q-Q Plots

Most anomaly recognition procedures are based upon determining the threshold that distinguishes background
from anomalous values. However, the use of multivariate procedures can be useful in determining background
from anomalous samples for a set of desired elements.

Garrett (1989b, 1990) and Chork (1990) describe the use of the covariance matrix as a tool for
distinguishing background from anomalous sample populations. The covariance matrix contains information on
the variability of the elements as well as their inter-relationships. The multi-element data define a hyper-
ellipsoid in multidimensional space. The mean values of each element define the centroid of this hyper-ellipsoid



Table 10

Dynamic Cluster Analysis

Murchison Greenstone Belt Laterites

Loadings Determined from Robust PCA on Transformed Data
Observations: 484

Mean Principal Component Loadings of the Groups

Group Size 1 2 3 4 5 6 7 8 9 10

1 68 0.0196 0.0431 -0.0716 0.0085 0.0125 0.0246 0.0038 0.0339 -0.0218 -0.0081
2 50 -0.1304 -0.0200 0.0212 0.0349 0.0110 0.0155 -0.0026 -0.0167 0.0002 -0.0036
3 52 0.0433 -0.0225 -0.0368 -0.0154 -0.0060 0.0016 -0.0012 -0.0351 0.0205 -0.0166
4 32 0.1141 -0.0457 0.0176 0.0401 -0.0254 -0.0121 -0.0013 0.0020 -0.0083 0.0139
5 51 -0.0556 -0.0147 0.0010 0.0231 -0.0087 0.0250 -0.0074 0.0066 0.0269 0.0114
6 21 0.0745 -0.0761 0.0460 0.0536 -0.0434 0.0033 -0.0177 0.0182 0.0010 -0.0197
7 36 0.0047 0.0172 -0.0093 -0.0661 -0.0236 -0.0264 -0.0547 0.0037 0.0188 -0.0018
8 17 -0.0570 -0.0834 -0.0226 -0.0363 0.0308 -0.0535 -0.0182 0.0255 0.0027 0.0102
9 20 0.0990 0.0788 0.0097 0.0352 0.0426 -0.0767 0.0327 0.0170 0.0062 0.0194
10 43 -0.1134 0.0574 0.0108 -0.0101 0.0122 -0.0420 0.0106 -0.0186 -0.0021 -0.0071
" 40 0.0895 -0.0113 0.0424 -0.0220 0.0671 0.0274 -0.0127 -0.0217 -0.0333 0.0149
12 31 -0.0270 -0.0292 0.0452 -0.0620 -0.0157 0.0208 0.0468 0.0002 -0.0295 0.0027
13 14 0.0651 0.1036 0.0908 -0.0093 -0.0439 -0.0155 0.0592 0.0299 0.0594 0.0011
14 1 0.0667 -0.0040 -0.2182 0.0670 0.0546 0.0722 0.0385 0.0873 -0.0848 0.0038
15 1 0.0322 0.0791 0.0858 0.0997 -0.1457 0.0782 0.0695 0.0180 0.0620 0.0473
16 1 0.1379 0.0978 -0.0483 0.1596 0.0339 0.0102 0.2440 0.0121 0.0516 0.1068
17 1 0.3319 -0.0498 0.0147 -0.0497 0.1669 -0.0638 0.1795 0.0574 -0.0103 -0.0677
18 1 0.2430 0.0304 0.0209 0.0488 0.0209 0.0097 0.1853 -0.0240 0.1292 0.1036
19 1 0.1663 -0.0975 0.0446 -0.0576 0.0345 0.0613 0.1738 0.0551 -0.0233 -0.1079
20 1 0.0084 0.0481 0.0312 0.0253 0.1488 -0.2335 0.0598 0.0161 0.0532 -0.1277
21 1 0.0321 0.1311 -0.1556 -0.0113 -0.0149 0.1128 -0.0605 0.0931 -0.2204 -0.0641
22 1 0.1567 0.1068 -0.0572 0.0691 0.2079 -0.0856 -0.0245 -0.0204 -0.0306 -0.0435
Tabie 10

Group Description
Mean Composition & Coefficient of Variation (C.V.)

Box-Cox Power Transformations

Transforms  A=0.6 In In A=0.4

Group Fe C.V. Ag C.V. Mn C.V. Cr C.V. \'4 C.V. Cu
1 17.67 20.14 -1.92 -69.29 4.88 16.82 7.08 11.70 34.18 25,16 4,
2 8.39 28.66 -3.23 -14.96 3.68 16.03 5.88 7.86 24,23 17.38 2.
3 18.22 18.21 -2.58 -41.04 4.91 14.43 7.15 14.13 38.36 18.95 4,
4 16.94 14.64 -1.41 -74.06 4.56 13.56 7.40 6.96 27.05 41.67 5.
5 12.44 26.16 2.16 -60.66 3.74 25.52 6.54 10.30 29.18 33.26 3.
6 13.94 13.19 -1.00 77.76 4.02 8.30 7.05 11.04 23.73 43.76 6.
7 16.73 21.39 -1.70 74.35 5.33 13.92 6.44 10.63 42.56 27.19 4.
8 11.19 54.35 3.21 -13.46 5.11 15.74 5.96 14.98 21.44 51.74 3.
9 14.79 36.15 -1.55 -90.21 6.40 13.53 7.09 15.53 29.17 37.01 4.
10 13.42 35.31 3.23 -15.42 5.13 16.59 5.78 11.20 27.78 43.39 2.
11 15.67 22.15 -2.60 -48.31 5.22 16.51 8.36 10.65 32.45 21.27 4,
12 15.13 25.48 2.87 -28.64 4.49 16.50 6.78 13.31 29.10 30.13 3.
13 16.69 23.11 0.13 705.36 5.38 16.90 7.05 11.64 36.28 16.39 4,
14 15.80 0.00 -3.40 0.00 4.09 0.00 - 8.1 0.00 26.34 0.00 5.
15 16.38 0.00 2.30 0.00 277 0.00 7.21 0.00 33.74 0.00 4
16 20.28 0.00 -3.40 0.00 3.87 0.00 7.47 0.00 20.00 0.00 6
17 25.39 0.00 3.40 0.00 7.10 0.00 6.79 0.00 17.32 0.00 6.
18 21.79 0.00 -1.20 0.00 5.01 0.00 8.06 0.00 40.06 0.00 6.
19 26.33 0.00 3.40 0.00 5.49 0.00 7.63 0.00 9.92 0.00 6.
20 4.70 0.00 3.40 0.00 9.21 0.00 5.04 0.00 12.28 0.00 3.
21 14.55 0.00 -3.40 0.00 4.79 0.00 8.55 0.00 44,98 0.00 4,
22 14.67 0.00 -3.40 0.00 8.59 0.00 9.21 0.00 21.31 0.00 3.
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Table 10
Group Description
Mean Composition & Coefficient of Variation (C.V.)

Box-Cox Power Transformations

Transforms A=0.4 In In A=0.4 In In

Group Pb C.V. Zn C.V. Ni C.V. Co As C.V. Sh CV.
1 7.84 28.58 3.35 14.75 3.97 16.46 3.19 3.25 28.18 0.34 315.55
2 7.28 24.09 2.48 15.07 3.32 22.31 2,13 . 3.54 12.05 0.60 143.45
3 6.90 26.45 3.48 14.02 4.15 22.21 3.68 . 3.40 22.60 0.80 122.19
4 6.49 20.10 3.94 11.45 4.84 10.96 5.57 . 4.48 28.21 1.13 86.69
5 6.99 27.25 3.01 13.76 3.57 20.53 2.36 . 3.51 22.50 0.34 266.98
6 5.89 22.75 3.57 6.10 4.75 9.40 4.30 . 4.33 18.11 1.66 30.67
7 5.60 46.86 3.42 10.76 3.44 27.71 3.56 . 2.81 30.19 0.42 233.16
8 4.37 59.04 3.09 9,58 3.43 14.25 2.45 X 2.74 33.74 -0.30 -144.81
9 11.18 22.03 4.52 10.20 4.46 21.68 6.54 g 437 25.96 0.42 231.46
10 9.09 29.65 2.95 11.21 2.68 50.03 2.06 X 3.30 20.43 0.39 214.50
11 4.89 61.65 3.64 12.84 5.34 17.95 6.27 . 4.76 23.24 1.26 87.71
12 5.32 45.62 3.12 9.87 2,97 .74 1.86 9. 4.63 24,25 1.87 64.28
13 13.32 16.84 4.28 15.51 3.51 26.28 2.56 . 5.59 18.00 1.60 53.42
14 7.37 0.00 3.40 0.00 4.44 0.00 6.56 . 1.95 0.00 -0.41 0.00
15 13.58 0.00 3.26 0.00 3.69 0.00 0.57 0.00 6.04 0.00 1.95 0.00
16 19.40 0.00 4.91 0.00 5.23 0.00 4.89 0.00 6.05 0.00 0.69 0.00
17 7.37 0.00 6.38 0.00 6.00 0.00 14.06 0.00 6.58 0.00 3.47 0.00
18 19.16 0.00 4.63 0.00 5.96 0.00 5.79 0.00 8.77 0.00 -0.41 0.00
19 7.37 0.00 3.74 0.00 4.54 0.00 4.47 0.00 6.57 0.00 4.53 0.00
20 18.27 0.00 3.89 0.00 2.94 0.00 9.45 0.00 271 0.00 1.39 0.00
21 4.68 0.00 3.26 0.00 3.91 0.00 579 0.00 1.61 0.00 1.61 0.00
22 14.12 0.00 417 0.00 6.66 0.00 11.18 0.00 3.09 0.00 -0.41 0.00
Table 10

Group Description

Mean Com position & Coefficient of Variation (C.V.)

Box-Cox Power Transformations

Transforms »=0.4 In A=0.5 iIn A=0. In

Group Mo C.V. Sn C.V. Ga C.V. w Nb A Au C.V.
1 1.96 52.45 0.19 617.93 6.89 30.30 3.08 272 3 0.79 149.42
2 1.38 46.66 0.41 268.60 8.64 10.27 1.30 3.82 3 1.23 94.44
3 0.84 105.71 -0.60 -169.73 6.70 26.47 1.38 1.68 . 0.98 154.30
4 0.67 109.19 0.18 -643.82 6.81 16.48 1.37 X 1.16 . -0.31 -258.96
5 1.45 66.28 0.31 363.16 7.95 24.85 1.39 . 3.20 . 1.51 84.52
6 0.04 1722.48 0.79 -88.59 7.80 13.756 1.35 : 1.54 X 0.20 363.18
7 0.19 437.91 1.25 74.18 7.57 35.16 1.54 . 3.24 . 1.06 99.64
8 0.25 -173.57 0.05 1823.28 5.58 2470 1.28 R 245 . 1.41 81.01
9 1.94 36.53 0.73 130.85 6.38 22.26 1.63 . 3.63 . 0.15 928.29
10 1.33 77.38 1.06 116.34 8.66 20.31 1.39 . 554 x 0.92 131.26
11 0.54 200.38 0.70 202.02 6.10 36.48 1.43 . 3.40 48.61 1.19 98.46
12 0.39 214.65 1.31 72.07 5.59 39.53 1.51 X 3.18 48.68 1.16 95.41
13 0.54 188.45 1.36 84.46 7.47 24.94 1.52 40.96 4.39 29.51 1.50 81.24
14 4.14 0.00 -1.10 0.00 2.90 0.00 5.08 0.00 0.30 0.00 0.69 0.00
15 2.83 0.00 1.39 0.00 8.00 0.00 1.20 0.00 2,07 0.00 0.00 0.00
16 6.66 0.00 1.10 0.00 2.90 0.00 1.20 0.00 1.72 0.00 0.00 0.00
17 1.10 0.00 -1.10 0.00 0.00 0.00 2.30 0.00 0.30 0.00 2.94 0.00
18 0.69 0.00 -1.10 0.00 1.46 0.00 1.20 0.00 0.30 0.00 1.95 0.00
19 0.41 0.00 -1.10 0.00 2.90 0.00 2.64 0.00 0.30 0.00 3.53 0.00
20 0.41 0.00 -1.10 0.00 5.76 0.00 1.20 0.00 3.11 0.00 1.95 0.00
21 3.00 0.00 1.95 0.00 8.00 0.00 7.30 0.00 3.69 0.00 -1.10 0.00
22 1.10 0.00 -1.10 0.00 6.94 0.00 2.64 0.00 3.51 0.00 1.10 0.00
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and the distance from each sample point to the centroid is known as the Mahalanobis distance. In a multivariate
normal sample population, most samples lie within an expected radius of the centroid and are, by definition, the
background group of samples. However, if outliers are included in the data, the shape of the hyper-¢llipsoid that
is defined by the covariance matrix changes. This resulting distortion affects the location of the centroid and
thus affects the Mahalanobis distances for all of the samples.

The Mahalanobis distance is defined as:
For each sample x;,

D7 = (xi- X)'S1 (x;- X)

where S is the covariance matrix and X is the mean vector for the data. The estimates of S and X can be
obtained from robust procedures which enhance the presence of outliers.

Outliers can be distinguished from the main background population by determining the Mahalanobis
distance of each sample to the group centroid. The distances can be compared to the "expected" distances of a
multivariate normal population (cumulative probability with the number of degrees of freedom defined as the
number of variables) by the use of %2 values. Garrett (1989b) uses robust estimates for determining the
covariance matrix, S.

Table 11

Mahalanobis Distance vs. Theoretical X2 values
for Muitielement Data [Box-Cox Power Tranformations]

Observations 866
Variables 8
Elements Ag As Sb Bi Mo Sn w Se
Transformations In In In In In 015 In 0.66
Mahalanobis Distance vs. Chi-Square (xz)
Mahalanobis x°2
Sample Type Distance Value
G03121 LN 74 74
G04666 LN 1.03 1.00
G04664 LN 1.06 1.15
G04238 LP 1.28 1.26
G02605 LP 1.34 1.36
G03604 LP 1.44 1.44
G04082 LP 1.45 1.51
G04065 LP 1.47 1.58
G02598 LP 1.49 1.64
G03105 LN 1.54 1.69
G04236 LP 1.58 1.74
G02562 LP 1.58 1.79
G02459 LP 1.59 1.84
G03708 LP 1.59 1.88
G03341 LN 1.58 1.92
1.61 1.96

G02528 LP

The following samples are considered outliers

G03352 LN 24.73 17.06
G03148 LN 26.67 17.18
G05693 LN 27.25 17.30
G05776 LN 27.98 17.42
G04043 LN 27.99 17.55
G03152 LN 28.00 17.69
G03832 LN 32,11 17.83
G02409 LP 32.70 17.98
G03939 N 32.73 18.14
G04137 LP 33.01 18.31
G05780 LP 34.23 18.48
G06237 LN 35.42 18.67
G06085 LP 36.20 18.87
G06833 N 37.93 19.08
G04034 LP 40.70 19.31
G04273 LP 41.66 19.56
G05097 LN 42.44 19.84
G03326 LN 44.48 20.14
G05798 LP 48.27 20.48
G06819 LN 54.00 20.87
G03962 , LN 61.53 21.32
G03975 LN 75.93 21.85
G06084 LP 85.94 22.52
G02612 LN 91.43 23.40
G05795 LP 158,31 24.72

G05816 LN 195.14 21.51
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A graphical procedure of plotting the Mahalanobis distances of the observed from the expected values
allows for the detection of outliers. If the sample population is multivariate normal, then the x* plot is a stralght
line. If the population contains outliers, then the observed Mahalanobis distances are greater than the expected
values and the plot becomes non-linear.

A x* plot was prepared for the data collected over the Murchison greenstone belt. The data were
transformed using A values for Box-Cox transformations as shown in Table 1. Only chalcophile elements were
selected as these might be the elements used in a reg10na1 geochemical exploration programme. Table 11 shows
Mahalanobis distances and corresponding theoretical x values for a selected group of samples from the Murchison
greenstone terrain (Dataset 1). The last 26 samples are listed at the bottom of the Table. Note that these samples
have rather large Mahalanobis dlstances relative to the theoretical %* values.

Figure 19a shows a x> plot of the untransformed laterite data. The procedure used to calculate the
Mahalanobis distances for this plot used robust estimates. The Figure shows a distorted curve with 18 samples
that plot away from the main part of the data. Figure 19b shows the same data after they were transformed using the
coefficients 11sted in Table 11. The line is less curved and there appears to be only 26 atypical samples. Figure
19c shows a x*> plot of the data after removing the 26 atypical samples. The Mahalanobis distances were
recomputed with these outliers removed. The curve is much closer to a straight line and the data can be assumed
to represent the background population data. Figure 20 shows a map of three of the 26 atypical samples plotted
onto a map that covers the southern part of the Murchison greenstone area (see Grunsky et al., 1988). The other
eight samples plot on the adjoining map sheet north of the area (see Grunsky ef al., 1989). These samples can be
considered anomalous for the elements used to compute the Mahalanobls distances and could be considered for
further follow-up. From this example, it should be clear that the %> plot is a useful tool for outlier recognition in
multi-element datasets

Since the 2( plot is a long tailed distribution, it is not symmetrical Thus identifying outliers at the
lower end of the %~ plot is difficult. Also, because the tail is very long, 1t is sometimes difficult to recognize
outliers with apparently large Mahalanobis distances. An alternative to the > plot is the use of the cube root of the
Mahalanobis distance plotted against the quantiles for a normal distribution. This plot has the advantage that it is
symmetric, enabling the identification of outliers at both ends of the distribution.

4.5 The Use of Empirical Indices

The use of pathfinder elements has prompted the use of a number of numerical procedures through which selected
elements can be elements can be used in an exploration programme by creating mineralization potential indices
based upon the weighted sum scores of the pathfinder elements. The techniques used in this approach are described
by Garret (1991), Garrett et al. (1980), Smith and Perdrix (1983), Smith et al. (1987), and Chaffee (1983).

Weighted Sum Index
Garrett ef al. (1980:144) has suggested the use of a linear combination of a group of indicator elements that gives a
weighted sum. This is defined as:

For m variables
m
Vi =3 a; Z;;,
j=1
where

a =L )"
i=1

Z; = (Xij. X;/Sj

x; is the robust mean estimate for variable j, and
s; is the robust estimate of the standard deviation of variable j.
The quantity Ij is the importance of the jth variable and that

In the multi-element survey, those elements which are considered pathfinders are given more weight than elements
which may be more diagnostic of background. Background elements may be given weights of zero. Examples of
the use of this index are given in Garrett et al. (1980).
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Mahalanobis Distances of Anomalous Samples N. Murchison Terrain (Laterites)
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Scoresum

Chaffee (1983) has developed a method of scoring samples for anomaly potential. Each element is evaluated
such that the range of abundances are subdivided into 4 groups, or thresholds, with corresponding scores that
represent background (0), weakly anomalous (1), moderately anomalous (2), and strongly anomalous (3). These
ranges are derived from orientation studies over areas where the range of abundances and underlying
geochemical distributions are reasonably-well understood. Each sample is then assessed with respect to each
element. Samples with the highest scores are considered to be most anomalous and are targeted for further
follow-up.

CHI-6*X, NUMCHI, PEG-4 Indices :

Smith et al. (1989) have noted that there are broad linear trends, termed "chalcophile corridors”, throughout the
Yilgarn Block in Western Australia. The presence of elevated values of the pathfinder elements within these
"corridors", namely As, Sb, Bi, Mo, Ag, Sn, and W form the basis of the empirical indices CHI-6*X, NUMCHI,
and PEG-4 as developed by Smith et al. (1987) and Smith and Perdrix (1983). These trends show elevated
abundances of these pathfinder elements in lateritic materials associated with greenstone belts, shear zones, base
metal and precious metal deposits. These indices are based on simple equations as follows:

CHI-6*X= As + 3.56xSb + 10xBi + 3xMo + 30xAg + 30xSn + 10xW + 3.5xSe
PEG-4 = .09xAs + 1.33xSb + Sn + .14xGa + .4xW + .6xNb + Ta.

The coefficients provide weighting to the elements, such that samples with elevated chalcophile
abundances have high CHI-6*X or PEG-4 indices. These coefficients were derived for lateritic materials only.
The coefficients must be altered for other materials. The CHI-6¥X index is suited more to isolating samples
with elements associated with precious metal deposits, while the PEG-4 index is suited for isolating samples
with elements associated with pegmatophile environments, such as Sn deposits within granitoid terrains.

The NUMCHI index is a score of the number of elements that exceed the threshold for each element.
Thus for a given sample, if nine elements exceed their respective thresholds, then the NUMCHI index for that
sample will have a value of 9. Threshold values are chosen from visual inspection of summary tables, order
statistics, Q-Q plots, etc.

CHI-6%X Indices Murchison Greenstone Belt [Laterites]
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PEG—4 Indices Murchison Greenstone Belt [Laterites]
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The indices were calculated for the Murchison greenstone data of Dataset 1. The scores for the samples
were computed using the equations listed above. The larger scores are the scores of interest. Usually,
investigation of CHI-6*X or PEG-4 scores that exceed the 95th or 98th percentile are considered worthy of
follow-up. The samples with NUMCHI indices greater than 3 or 4 could be considered worthy of additional
investigation.

Figures 21a,b,c are maps showing the CHI-6*X, PEG-4, and NUMCHI indices over part of the area
covered by the Murchison greenstone terrain of Dataset 1. Figure 21a shows that several large scores occur
throughout the area. These sample sites have elevated abundances of the elements listed in the formula quoted
above. These sites would be considered suitable follow-up targets in an exploration programme. Figure 21c
shows sample sites with NUMCHI indices of 3 or more elements that exceed thresholds obtained from the 95th
percentile level of the regional geochemical data (see Table 2). A comparison of the sample sites with high
CHI-6*X, PEG-4, and NUMCHI indices with the Mahalanobis distances of Figure 20 indicates that two of the
three prominent sites in Figure 20b match high CHI-6*X, PEG-4 and NUMCHI indices.

Methods such as the CHI-6*X, PEG-4, NUMCH]I, and XZ plots are useful because they employ the use
of pathfinder elements. Methods such as the NUMCHI can assist in choosing a suitable multivariate threshold
since it represents an integer number that reflects the number of anomalous elements that are present based on
thresholds taken from univariate populations. Significant anomalies from CHI-6*X, PEG-4 indices, and the %2
plots can be chosen in conjunction with the NUMCHI index or by taking a conservative threshold such as the
95th percentile ranking of these indices.
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50 MODELLED APPROACH TO ANOMALY RECOGNITION - THE USE OF
STATISTICAL ANALYSIS

5.1 Multivariate Data Analysis: Grouped Data- Target vs. Background

Once structures and systematic processes can be recognized within the data, then additional numerically-based
and statistically-based methods can be applied to further enhance the data interpretation. Methods such as
regression analysis, canonical variate analysis (discriminant functions), and classification procedures can be
applied to test target from background populations. This approach is part of a modelled approach in determining
the differences between samples that may be associated with specific geological processes.

Reference groups are clearly-defined groups of samples that represent background and target groups.
Unknown samples and populations can be statistically tested against these groups and a measure of similarity
can be determined, thus assisting in finding samples that share the characteristics of the "target" populations.
This approach has been clearly established and defined by classical statistical methods and has been
successfully applied by Smith et al. (1984). Methods such as canonical variate analysis are well suited to be
applied in areas where appropriate orientation studies have been carried out and the target and background
geochemical populations have been well established.

5.2 Analysis of Variance

Selection of suitable pathfinder elements is based upon an understanding of elements that contribute to
processes that underly both background and target populations. Incorporation of unimportant elements
introduces uncertainty and confusion. Robust estimates of correlations can assist in determining elements that
contribute to the multivariate geochemical signature. When groups of samples are being considered, methods
such as Analysis of Variance (ANOVA) or Multivariate Analysis of Variance (MANOVA) can be used to
determine the significance of an element. Davis (1986, Chapter 2) gives an account of ANOVA, and Cooley &
Lohnes (1971) give an account of MANOVA. There are many different methods for analysis of variance which
are dependent upon the relationships of the populations being tested. Rock (1988, Topics 11, 12) describes the
various types of ANOVA's than can be carried out.

Analysis of variance is based upon testing the differences between populations of data. When only one
variable (element) is involved then the procedure is analysis of variance (ANOVA). An evaluation of
differences between batches of As analyses from the same set of samples sent to different laboratories can be
tested using ANOVA. This is known as a one-way analysis of variance. Multivariate analysis of variance
involves the comparisons of groups of samples that are composed of several variables (elements).

The application of MANOVA is particularly important in the use of regression and canonical variate
analysis procedures. Before background and target groups can be established, the statistical uniqueness of each
group must be tested. If the groups are not sufficiently distinct, then the application of statistical procedures,
such as canonical variate analysis, allocation, or typicality procedures cannot be applied effectively. As an
example, the laterite samples collected over the Mt. Gibson Au mine of Dataset 3 will be tested against the
regional background samples of the Murchison greenstone terrain of Dataset 1.

In order to carry out the MANOVA procedure, the two datasets must be examined for outliers and then
a common set of transformation parameters be calculated and applied to both sets of data. Each dataset was
trimmed of samples that exceeded the 95th percentile and then values of A were computed using the procedure
outlined by Howarth and Earle (1979). The transformation parameters for both datasets were examined and
where they were different, the values of A were averaged and used for both datasets when the data were
transformed.

Table 12 displays the resuilts of the MANOVA. The Table shows the means and standard deviations for
the two groups and for the total sample population. The first test of equality of dispersions is a measure of how
similar the covariances of the groups are. The F-ratio of 15.088 exceeds the F-value of 1.18 for 171 and 390283
degrees of freedom at the 95% confidence level. From this, it can be concluded that the dispersions between the
groups are not equal. In the case of unequal dispersions of covariances, Wilk's A must be cautiously interpeted.
The Table also displays the mean square values between the two groups and within the groups and the
corresponding F-ratio for each variable. For the corresponding degrees of freedom of 1 and 688, the F-value is
3.85. Only Mo and W show no significant difference between the two populations. Elements that appear to be
most distinct between the two datasets are Au, Ga, Zn, Pb, and Ag. The Wilk's lambda (A) coefficient is a
measure of how distinct the groups are. As lambda approaches zero, the groups are increasingly different. The
results of the MANOVA on these two datasets indicates that they are sufficiently distinct from each other and
can be used in further statistical procedures. Despite the inequality of covariances, the differences between the
populations are significant and this can be further demonstrated in the application of Canonical Variate
Analysis.




Table 12
MANOVA - MULTIVARIATE ANALYSIS OF VARIANCE

Background / Target Group {18 elementi
Murchison Greenstone Belt/ Mt. Gibson Au Deposit

Analysis for 18 variables and 2 groups
Group 1 NG= 507
Group 2 NG= 183
Pooled-samples

Group Means

Fe Ag Mn Cr \'4 Cu
Group 1 3712 229 825 18.92 49.86 590
Group 2 3184 -116 7.02 16.05 57.16 5.18
Total Sample 3575 -199 792 18.15 65179 5671
Standard Deviations
Fe Ag Mn Cr \Y Cu
Group 1 1639 1.32 298 6.37 2027 258
Group 2 11.09 146 1.61 230 1414 1.06
Pooled samples 1438 136 268 559 18.84 228
For test of h1 (equality of dispersions), M= 2680.320 and F= 15.088
For F ,N.D.F.1=171 N.D.F.2= 390283
Expected F(95%,171,390283)= 1.18
Univariate F-ratios,with NDF1= 1 and NDF2= 688
Among Within
Variable Mean square Mean square F-ratioquare
Fe 3597.16 206.85 17.39
Ag 172.97 1.85 93.47
Mn 202.95 7.20 28.18
Cr 1106.02 31.22 35.42
\'J 7177.42 355.11 20.21
Cu 69.64 5.21 13.38
Pb 2095.81 16.64 125.97
Zn 442.92 3.47 127.61
Ni 1563.05 77.65 20.00
Co 13.18 2.49 5.28
As 95.91 3.95 24.26
Sb 169.70 4.20 40.36
Mo 1.21 2.63 46
Sn 10.61 1.58 6.70
Ga 134264.11 181.75 738.75
w 67 1.64 41
Nb 12213 19.06 6.41
Au 46065.13 13.55 3399.61

Wilks Lambda= .1349

F-ratio for h2, Overall discrimination= 239.09
Ndf1= 18 and NDF2= 671
Expected F(95%,18,671)= 1.62

Dispersion determinant= .48864819E+17
Dispersion determinant= .69646212E+11
Dispersion determinant= .68301370E+17
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5.3 Regression Methods

Regression methods are usually applied when it is desired to model a predictor variable, that is an element of
interest with elements that may or may not have an association with that element. Regression procedures have
been used in exploration geochemistry for many applications. A review of regression applications can be found
in Howarth and Sinding-Larsen (1983:255) and Rock (1988:252). Davis (1986, Chapter 4) gives a concise
account of regression procedures. Regression is commonly employed to systematically characterize the
background multi-element response through a linear model. Thus, samples that do not fit within the model, that
is samples with high residuals, may be considered atypical and possibly anomalous.

The definition of the formula for linear regression is of the form:

Y =PBo+ B1xy + PoXa + oo + Brxp,

where y is the dependent variable, Bos---,Bp are coefficients, and x; to x
In matrix form the linear regression model can be expressed as:

Y=Xp+E

where X is a matrix of independent variables, B is a matrix of coefficients, and E is a matrix of residuals.
Variations in regression analysis include stepwise analysis which tests the significance of each of the variables
in the regression calculations and iteratively deletes variables that do not add significantly to the regression
model. Standard methods of regression are calculated using ordinary least squares (OLS) which means
minimizing the difference between the observed value of Y from the predicted value of Y.

Methods such as stepwise backward elimination or forward stepwise regression methods are regression
methods that delete or add variables to a regression model based on the overall improvement in the sum of
squares explained by the regression versus the total sum of squares. These methods may be more desirable to
use as they select the best set of elements that provide a consistent linear model.

Regression procedures make some assumptions that may make it difficult to justifiably apply them in
geochemical data analysis. The first assumption is that the dependent variable has no associated errors. Clearly,
this is not the case in geochemical data analysis. Secondly, regression models assume that the predictor
variables are not strongly correlated. If they are, then procedures, such as ridge regression techniques should be
employed. van Gaans and Vriend (1990) have published a ridge regression program that is also based on robust
estimators.

Regression procedures also fail when the relationship between the variables is not linear. The most
important aspect of applying regression procedures is that the results be studied carefully and that a number of
regression techniques be applied so as to be certain that the regression is meaningful. In many regression-based
studies, it is not always clear which are the dependent variables and which are the independent predictor
variables.

Stanley and Sinclair (1987) used regression procedures to characterize anomalous samples from
background samples using a reduced major axis regression technique. This technique differs from standard
regression methods by regressing Y on X and X on Y. The rationale for using this method was based on the
assumption that the predictor variables have errors that are not precisely known and thus OLS methods cannot
be applied to the data. .

The example of regression shown here was applied to the regional laterite geochemical data applied
over the Murchison greenstone belt. In this particular case, Zn was chosen as the dependent variable and Fe,
Mn, Cr, V, Cu, Pb, Ni, Co, and Ga as the independent predictor variables. A regression of this type exemplifies
two of the problems encountered with analysis of these types of variables. Firstly, the independent variables
have errors associated with them and secondly, there may be strong correlations between the variables.
Correlation coefficients are shown in Table 9. Table 13a displays the results of the analysis. The program
computes regression coefficients for both the ordinary least squares and the ridge regression methods. The first
part of the Table provides mean values, standard deviations, squared multiple correlation coefficients R2 the
determinant of the correlation matrix (see Table 9), the eigenvalues, and the condition number.

The multiple R? coefficients are a measure of correlation between each predictor (independent)
variable and all of the other predictor variables. It provides an assessment of how redundant a variable might be.
The determinant, eigenvalues, and condition number indicate if high intercorrelations between the independent
variables will interfere with the regression. If the condition number exceeds 100, then strong multicollinearity
will exist. In this example, the condition number is 12.56. This suggests that the correlations between the
variables are not high and will not distort the regression.

The Table also shows for each variable, the coefficients, standard error, normalized coefficients,
contribution to the mean square error, and the contribution to the overall goodness of fit R2 Multiple regression
also includes a measure of how good the linear model is with the data. By computing the sum of squares of the
total variation, the sum of squares calculated from the regression equation, and the sum of squares calculated
from the residuals, an F-test can be applied to test if the regression equation is statistically significant. In this

p are the independent predictor variables.
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Table 13a

Multiple Regression
Murchison Greenstone Belt
Box-Cox Transformations

NO. OF SAMPLES 484
NO. OF VARIABLES 10

Zn Fe Mn Cr v Cu Pb Ni Co Ga
Mean 3.348 14.86 4.740 6.820 30.97 4,112 7.214 3.871 3.514 7.158
St.Dev. 0.655 4.714 1.057 1.051 10.71 1.336 3.029 1.141 2.330 21421
R2 .468 .268 .483 316 .368 AN 624 .498 233
A2 are the squared multiple correlations among the predictors
Determinant of the Predictor Correlation Matrix: .08240
Eigenvalues 299 1.39 1.21 1.03 .79 .59 .44 .33 24
Condition Number: 12.56 [M of collinearity]
LEAST SQUARES SOLUTION
REGRESSION COEFFICIENTS
INTERCEPT 1.0370E+00 1.7870E-01
STANDARD NORM. CONTRIBUTION TO CONT|

COEFFICIENT ERROR COEFF. MEAN SQUARE ERROR TO
Fe 3.3894E-02 5.3517E-03 2441 .0015 1252
Mn 1.5609E-01 2.0341E-02 2522 0011 L1175
Cr 5.1923E-02 2.4576E-02 .0834 0016 .0313
v -4.3638E-03 2.0763E-03 -.0714 0012 -.0092
Cu 1.7503E-01 1.7315E-02 3574 .0012 2037
Pb 4.0327E-02 6.4414E-03 .1866 .0009 0411
Ni ~2.7625E-02 2.6293E-02 -.0481 .0021 -.0205
Co 5.4198E-02 1.1138E-02 .1929 .0016 .0972
Ga -3.4285E-02 9.9007E-03 - 1111 .0010 .0393
ANALYSIS OF VARIANCE
SOURCE OF SUM OF DEGREES OF MEAN
VARIATION SQUARES FREEDOM SQUARES APP. F-TEST
TOTAL VARIATION 206.8848 483
REGRESSION 129.4235 9 14.3804 87.9962
RESIDUAL 77.4613 474 .1634 1.0000
STANDARD ERROR OF THE Y ESTIMATE = 4.0425E-01
GOODNESS OF FIT = .6256
CORRELATION COEFFICIENTR =  .7909
Table 13b
Multiple Regression
Murchison Greenstone Belt
Box-Cox Transformations
NO. OF SAMPLES 484
NO. OF VARIABLES 6

Zn Fe Mn Cu Pb Co
Mean 3.348 14.86 4.740 4.112 7214 3.514
St Dev. 0.655 4.714 1.057 1.336 3.029 2.330
R2 .193 1327 306 .059 248
R2 are the squared muttiple correlations among the predictors
Determinant of the Predictor Correlation Matrix: .571
Eigenvalues 1.83 1.20 .802 .704 .459
Condition Number: 4.00 [Measure of collinearity]
LEAST SQUARES SOLUTION
REGRESSION COEFFICIENTS
INTERCEPT 5.9017E-01 1.1251E-01
REGRESSION COEFFICIENTS
STANDARD NORM. CONTRIBUTION TO CONT&

COEFFICIENT ERROR COEFF. MEAN SQUARE ERROR TO
Fe 3.3335E-02 4.5212E-03 .2401 .0011 1231
Mn 2.0059E-01 1.9433E-02 .3240 .0010 L1510
Cu 2.0558E-01 1.7197E-02 4198 0012 2393
Ph 3.2340E-02 6.5153E-03 .1497 0009 .0330
Co 6.0247E-02 1.9360E-02 .1050 .0011 0447
ANALYSIS OF VARIANCE
SOURCE OF SUM OF DEGREES OF MEAN
VARIATION SQUARES FREEDOM SQUARES APP. F-TEST
TOTAL VARIATION 206.8848 483
REGRESSION 122.2634 05 24,4527 138.1256
RESIDUAL 84.6214 478 770 1.0000
STANDARD ERROR OF THE Y ESTIMATE = 4.2075E-01

GOODNESS OF FIT (R SQUARED) = .5910

CORRELATION COEFFICIENTR = .7687
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example, the F-ratio is 87.9. At the 95% confidence level, for 484 samples and nine variables (degrees of
freedom) the corresponding F-value is approximately 1.8. This indicates that it is unlikely that the regression
coefficients are not significant. The F-ratio of 87.9 also says that the variation (sum of mean squares = 14.3804)
of the regression is 87.9 times the variation (sum of squares = 0.1634) of the residuals or values not explained
by the regression. The goodness of fit, R2, is 0.6256 indicating that 62.5% of the variation of the data is
accounted for by the regression equation.

The example presented here is for nine independent variables on Zn. However, not all of these
variables may be important in the model. The low coefficients for V (-0.004), Ni (-0.002), and Ga (-.003) as
well as their corresponding low RZ? contributions might suggest that these variables may not contribute
significantly to the overall regression model.

To illustrate the point about the lack of significance of some of the variables, the multiple regression
was repeated on Zn using a group of five elements, Fe, Mn, Cu, Pb, and Co. The results of the regression are
shown in Table 13b. An examination of the analysis of variance shows that for these five elements the
regression has a total sum of squares of 122. Compared to a sum of squares of 129 for nine variables, this
suggests that these five variables are the most significant in terms of a regression model. Similarly, the F-ratio
of 138 is higher than in Table 13a, also indicating that the regression model is 138 times more likely to be
significant relative to a random chance. The R2 coefficient is only slightly less than the R2 coefficient for the
nine variables. Thus, the linear regression model is more likely to be appropriate for the five element group of
variables.

5.4 All Possible Subsets

The selection of suitable pathfinder elements can be determined from procedures, such as ALL-POSSIBLE-
SUBSETS, which allow the selection of elements that give maximum separation between target and background
groups while selecting only those elements which are most useful in the separation.

The all possible subsets procedure (McCabe, 1975) has been developed so that it determines the Wilk's
likelihood ratio criterion:

A=|W|/[W+B|
where W is the within-groups sums of squares and products. B is the between-groups sums of squares and
products. The likelihood ratio is computed for all possible subsets of variables. From the resulting values of A
for each group of possible subsets, a group of variables can be chosen that indicates maximum group separation
with a minimum number of variables.

For this example, five populations were selected. Background Group 1 is comprised of the Murchison
greenstone belt area of Dataset 1 and Background Group 2 is a suite of samples collected over a the Archaean
Albany-Fraser granitoid gneiss terrain that also occurs within the Yilgarn Block. Three target populations were
also included for comparison. Target Group 3 is comprised of laterite samples collected over the Mt. Gibson Au
deposit represented by Dataset 3, Target Group 4 is the suite of samples collected from the Golden Grove
lateritic blanket, Dataset 4, and Target Group 5 is comprised of a suite of lateritic samples collected over the
Lawlers area Au deposit that is also situated in the Yilgarn Block.

Table 14 displays a partial output from an all possible subsets program developed by Campbell
(1986a). The procedure was applied to four subsets of elements in order to determine the minimum number of
elements required to maximize the discrimination between the groups. The subsets were chosen using
geochemical/geological considerations. The first subset used all 18 elements. This subset naturally gives
maximum discrimination. Table 14a shows that for one element, Au gives maximum discrimination between the
groups. As elements are added, the negative log ratio of Wilk's likelihood ratio increases to a maximum of 5.30.
Table 14b shows a partial list of the all possible subsets using six chalcophile elements, threc background
elements, and Au. Group separation increases to a log ratio value of 4.47. Table 14¢ shows the results applied to
six chalcophile elements only, and Table 14d shows the results applied to four commodity elements. Tables
14c,d both show a log ratio considerably less than the combinations of elements shown in Tables 13a,b.

Although Table 14a gives maximum discrimination between the groups, a subset of elements
composed of fewer elements may be just as effective at discriminating the groups. One way of examining the
differences between the subset choices is to plot the cumulative log ratio score versus the number of elements.
This is shown in Figure 22. The Figure consists of four curves representing the four subsets that were analyzed.
The curve that contains all 18 elements shows a steady increase in the log ratio starting with Au and ending with
Ag. Notice that the curve rises steeply until Fe is included. At this point, the curve flattens out and suggests that
the additional elements Cu, Co, Mn, Ni, Sb, Zn, W, Mo, and Ag do little to increase the separation between the
groups. The elements, Au, Cr, As, Ga, Sn, Nb, Pb, and V appear to be useful discriminators for the five groups.

The curve for the log ratios of group separation for the six chalcophile elements, three background
elements, and Au follows a similar path to the full 18 element in Figure 22. The differences between the two
groups shows up with the use of Cu, Sb, and Zn as discriminators. The full 18 element set suggests that V, Fe,
and Cu might be better at discrimination than Cu, Sb, or Zn. Nonetheless, the curves are nearly identical and
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suggest that Au, Cr, As, Ga, Sn, Nb, and Pb maximize the differences between the groups. The log ratio curves
of the six chalcophile elements and the four commodity elements display steep slopes, but do not reach the same
level of group separation as the other two curves.

The analysis indicates that the subset of six chalcophile elements, three background elements, and Au
provides good group separation without losing much information. Thus, these elements would be good to use in
an exploration programme where unknown samples could be compared with the reference groups in order to
detect samples associated with target group characteristics.

Table 14
All Possible Subsets [ Box-Cox Transformed Data}
Group 1 456 samples Murchison Greenstone terrain
Group 2 451 samples Albany-Fraser Granite/Gneiss terrain
Group 3 173 samples Mt.Gibson Au deposit [felsic]
Group 4 100 samples Golden Grove Au Cu sulphide deposit
Group 5 48 samples Lawlers Au deposit [mafic]
Table 14a
18 Elements [ Transformed
Fe AgMn CrV CuPb Zn Ni Co As Sb Mo Sn GaW Nb Au
W}/ [W+B]| Log Ratio Element(s)
0.174947 1.7432709 Au
0.8568654E-01  2.4549742 Au Cr
0.497756E-01  3.0002301 Cr Au As
0.498526E-02 5.3012705 Fe Mn CrV Cu Zn Ni Co
As Sb Mo Sn Ga Nb AuPb W Ag
Table 14b
6 Chalcophile Elements + 3 Background Elements + Au [ Transformed]
Cr CuPb Zn As Sb Sn GaNb Au
W]/ [W+B| Log Ratio Element(s)
0.174947 1.7432709 Au
0.858654E-01  2.4549742 Au Cr
0.497756E-01 3.0002301 Cr Au As
0.132957E-01  4.3203163 Cr As Sn Ga Nb Au Pb Cu
0.121458E-01  4.4107680 Cr Cu As Sn Ga Nb Au Pb Sb
0.114211E-01  4.4722939 Cr Cu As Sn Ga Nb Au Pb Sb Zn
Table 14c
6 Chalcophile Elements [ Transformed]
CuPb Zn As Sb Ga
W/ (W+B| Log Ratio Element(s)
0.267145 1.3199652 Ga
0.139957 1.9664201 Ga As
0.944823E-01  2.3593428 As GaZn
0.720437E-01  2.6304827 As GaZn Pb
0.588621E-01  2.8325582 As GaZn Pb Sb
0.497424E-01  3.0008972 As GaZn Pb Sb Cu
Table 14d
4 Commodity Elements [ Transformed]
CuPb Zn Au
W}/ [W+B]| Log Ratio Element(s)
0.174947 1.7432709 Au
0.119741 2.1224275 Au Cu
0.101373 2.2889445 Cu Au Pb
0.883679E-01  2.4262469 Cu Pb AuZn
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5.5 Canonical Variate Analysis
Statistical procedures, including canonical variate analysis (CVA) (multiple discriminant functions analysis)
have been used for anomaly recognition by Smith ez al. (1984). The most common application being the
statistical comparison between background groups (regional lithological variation) and target groups (groups
representing mineralization) from which reference populations are created with distinct geochemical attributes.
CVA and the associated linear discriminant functions test the statistical uniqueness of the reference groups and
indicate whether the distinctions between the groups are significant. A description of the method can be found
in LeMaitre (1982), Cooley and Lohnes (1971), and Srivastava and Carter (1983). Caution must be applied
using the CVA procedure. Samples that do not share any characteristics with the reference populations will still
be classified into one of the discriminant reference groups. This implies that the samples that comprise the
reference groups must be carefully chosen. In the analysis of geochemical data, the preceding methods of outlier
detection and elimination and appropriate transformations help to ensure that atypical samples will not be
included in the reference groups.

The method is based on the following procedure. Given a data matrix X, composed of N samples and
m variables, three m by m matrices are computed that are composed of the following relationships:

T matrix: sum of squares and products of all samples and variables, (total covariance of all the data)
defined as:

N
tij = Z(Xjk - XXk - X)),
j= ik X

where
X; is the total sample mean of the ith major element oxide,
X; is the total sample mean of the jth major element oxide,
Xjk is the value of the ith major element oxide of the kth observation in the total sample,
Xjk is the value of the jth major element oxide of the kth observation in the total sample.
A matrix: sum of squares and products of samples among each reference group (covariance among the
different reference groups), defined as:

g8 _  _ _  _
ajj =l§( Xik - X)( Xjk- X}

where g is the number of reference groups.
W matrix: sum of squares and products of samples within each reference group (covariance within
each reference group).

8 Nk _ -
wij= 2 2 (Ximk - Xi)&jmk - Xjh
k=1 m=1

where Ny is the number of samples in each reference group,
Ximk iS the ith major element oxide of the mth observation in the kth reference group,
Ximk is the jth major element oxide of the mth observation in the kth reference group,

X; is the mean value of the ith major element oxide in the kth reference group,

Ejk is the mean value of the jth major element oxide in the kth reference group.

Given two or more distinct reference groups, then

T=A+W

The method of canonical variate analysis is based on maximizing the ratio of the variation among the
groups (A) to the variation within the groups (W). The number of canonical roots that can be obtained is g-1,
where g is the number of groups.

The test statistic Wilk's A is a measure of similarity of the three reference groups. This statistic
measures the ratio of variation within the reference groups (W) to the total variation over all of the groups (T).
The lower the number, the less likely that the groups share common characteristics. The test assumes equality of
the reference groups covariance matrices. Frequently, this is not the case and the Wilk's A test must be
interpreted with caution. Campbell (1984a) outlines the CVA procedure for unequal covariances. Despite the
problem of unequal covariances, the resulting discriminant functions will still separate the populations if they
are significantly unique. Plots of the discriminant scores onto the canonical variate axes will show if the
dispersions of the populations overlap and provide a visual assessment as to group separation. The %2 values
provide a measure of the significance of each discriminant function. Values of 2 that are less than an accepted
level of significance (99%) indicate that the function may not be significant. The A value associated with each
function indicates how different the reference groups are with respect to the discriminant function. The trace
indicates how much discriminating information is obtained from the discriminant function.
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The use of the F-test allows the comparison of the similarities of the three groups. By assuming a level
of significance and determining the number of degree of freedom, a critical value of F can be determined. If the
F-test score is less than the critical value, then it is likely, within the level of significance, that the groups are
similar. If the F-test score is greater than the critical value, then as the F-test score increases, the more distinct
the groups become. The discriminant function coefficients (DF) provide the coefficients for functions that
separate the reference groups. The canonical variate (factor pattern) scores (CV) for each function give the
coordinates in the discriminant function space for each variable and provide the relative relationships of the
variables.

Canonical variate procedures developed by Campbell (1986a) ensure that the covariances of the groups
are based upon robust estimates and thus significantly reduce the effects of outliers. In the analysis of
geochemical data, at the stage of applying CVA, it is assumed that reference groups have been established
which have no outliers and that the data have been transformed to normality. Thus, robust estimation is not
critical at this stage.

In CVA, there are various measures and tests which are applied that indicate how significant the
discriminant functions are. These are described as follows. The value of Wilk's A, as in the all possible subsets
analysis, is a measure of how distinct the groups are based on the determinant of the sums of squares
representing variation between the groups from variation within the groups. As A — 0, the groups are
increasingly distinct. The F-ratio of overall discrimination between the groups is a measure that provides a
means of determining whether the distinction between the groups is meaningful at a given confidence level. By
determining the F-value at a given confidence interval (95%) and given degrees of freedom the significance of
the groups can be ascertained. The canonical roots can be assessed for their significance by determining how
much each linear combination of variables contributes to the distinction between the groups. The canonical
correlation coefficient, R, is a measure of how well each discriminant function separates the groups. As R
increases, the ability of the function to separate the groups increases. Generally, for each successive function in
an analysis the value of R decreases. The %2 values are a measure of significance of discrimination for each
discriminant function. Similarly, each successive discriminant function will be less significant and have a lower
%2 value. The value of A for each discriminant function is also a measure of how well each function separates
the groups. Each function is represented by a linear combination of elements given by the discriminant function
coefficients. For each function, the factor pattern coefficients provide a measure of how well a variable
correlates with that function. They are also similar to the loadings of principal components analysis as they
provide the relative relationships of the variables in the discriminant function space. The measures of
communalities indicate how much of the variable is accounted for by the full set of linear discriminant
functions. Variables with low communalities are not important in describing group differences. The group
centroids are useful when plotting the discriminant function scores for the samples in the discriminant function
space.

The examples provided here are from two background reference group datasets and three target
reference group datasets as discussed in the all possible subsets section previously.

Testing the Background Populations

CVA was applied to the two background datasets (Murchison and Albany-Fraser areas) to test their statistical
uniqueness based on the combination of ten elements which was selected from the previous selection of all
possible subsets (Table 14). The results of the CVA are shown in Table 15. Because there are only two groups,
there is only one discriminant function. The various tests of the discriminant function indicate that it is
significant. The canonical coefficient R of 0.880 suggests that the function is reasonably good at separating the
two groups. The %2 test shows a large value of 1341 which exceeds the x2 value of 18.3 for ten degrees of
freedom. The value of Wilk's A is 0.2254 and indicates a good degree of separation between the groups. The
communalities of the variables show that Cr, Cu, Zn, As, and Ga are important in distinguishing the two groups
and that Pb, Sn, and Au make virtually no contribution in distinguishing between the two groups.

Testing the Target Populations

Table 16 shows the resulis of applying CVA to the 3 taget populations. Wilk's A of 0.021 indicates that the
groups are very distinctive from each other. The F-value of 101.73 exceeds the F-test value of 1.43 for 36 and
618 degrees of freedom. The canonical R of 0.956 for the first function indicates that the function discriminates
between the groups very well. Similarly, the second function with R, 0.87 also separates the groups very well.
Wilk's A for the first function is very low relative to the value of A of the second function and indicates that the
first function is by far the best discriminator between the groups. The factor pattern of the first function
indicates that Cu, Pb, As, Sb, Sn, Ga, and Au are associated with each other and negatively associated with Cr,
Zn, and Nb. The communalities of the variables show that Cr, Pb, As, Sb, Sn are important to the discrimination
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Table 15
Multiple Group Discriminant Analysis
2 Background Groups { Transformed ]
Murchison Greenstone Beli/Albany Fraser Granitoids
Wilks A=.2254
F-ratio for overall discrimination = 192.49
ndfi= 16 and ndf2= 896
| Expected F(95%,16,896)= 1.65
Chi-square tests with successive roots removed
Roots Canonical
removed Eigenvalue 2 n.d.f. A % Trace
0 0.880 3.437 1341. 0.2254 100.00
Factor Pattern Communalities
Function for Disciminant for Discriminant
Coefficients Function Function
Cr 0.0354 0.785 0.6154
Cu 0.0982 0.654 0.4271
. Pb -0.0743 -0.093 0.0087
Zn 0.1084 0.675 0.4559
As 0.1414 0.642 0.4123
Sh 0.0417 0.513 0.2632
Sn -0.0032 0.014 0.0002
Ga 0.2370 0.765 0.5857
Nb -0.0731 -0.362 0.1313
Au 0.0918 0.250 0.0625
Centroids for groups in 1 dimensional discriminant space
Group 1 0.8748
Group 2-0.8845
Table 16
Muitiple Group Discriminant Analysis
3 Target Groups [ Transformed ]
Mt. Gibson/Golden Grove/Lawlers
Wilks A=.0208
F-ratio for overall discrimination = 101.73
ndfi= 36 and ndf2= 618
Expected F(95%,36,618)= 1.43
Chi-square tests with successive roots removed
Roots Canonical
removed Eigenvalue X2 n.d.f. A % Trace
0 0.956 10.666 1213. 20 0.0208 77.41
1 0.870 3.112 443, 9 0.2432 22.58
Factor pattern Communalities for
Function for disciminant Discriminant
Coefficients function Function
1
Cr 0.0301 0.0342 0.576 0.545 0.6291
Cu -0.0362 0.1915 -0.188 0.258 0.1023
Pb -0.0307 -0.3172 -0.493 -0.682 0.7077
Zn 0.0206 0.0487 0.295 0.409 0.2548
As -0.1008 0.4598 -0.753 0.519 0.8365
Sb -0.2138 -0.0737 -0.768 0.213 0.6349
Sn -0.3006 0.0377 -0.894 0.051 0.8011
Ga -0.0053 0.0650 -0.030 -0.121 0.0155
Nb 0.1138 -0.0441 0.497 -0.100 0.2569
Au -0.0014 -0.0307 -0.460 -0.332 0.3215
Centroids for groups in 2 dimensional discriminant space
1 2
Group 1 0.6000 -0.5895
Group 2 -1.4160 0.0868
Group 3 0.7877 1.9436

between the groups, while Cu, Zn, Ga, Nb, and Au are less important variables in the discrimination. Relative to
the background groups, Cr appears to be important in distinguishing all of the groups and Pb, As, Sb, and Sn are
more important in distinguishing between the target groups.

The increase in the significance of Pb, As, Sb, and Sn is to be expected and supports the use of
chalcophile elements as useful pathfinder elements for the recognition of various mineral deposits.

Testing the Background and Target Populations

The background and target groups were tested together using CVA. In this example, the results of the CVA are
shown for the full set of 18 elements, ten elements [background + chalcophile], six chalcohpile elements, and
the four commodity elements. This example will illustrate the importance of choosing the correct elements for
the discrimination of populations.

18 Element CVA
Table 17 lists the results of the CVA applied to the full set of 18 elements for both the target and background
groups. The value of Wilk's A of 0.0051 indicates that the distinctions between the groups are very significant.
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Table 17

Multiple Group Discriminant Analysis

3 Target Groups/ 2 Background Groups [Transformed]
18 elements

Target: Mt. Gibson/Golden Grove/Lawlers
Background: Murchison Greenstone/Albany-Fraser

Wilkks A=.0051

F-ratio for overall discrimination =
ndf1=140 and ndf2= 4744
Expected F(95%,140,4744)= 1.21

Chi-square tests with successive roots removed

96.13

Roots Canonical
removed Eigenvalue x2 n.d.f A % Trace
0 0.966 14.039 6426. 72 0.0051 74.90
1 0.852 2.638 132, 51 0.0760 14.07
2 0.798 1.755 1562. 32 0.2767 9.36
3 0.487 0.312 330. 15 0.7624 1.66
Communalites for
Discriminant Function Coefficients Factor pattem for disciminant functions 4 Discriminant
1 2 3 1 2 4 Functions
Fe 0.0549 -0.1093 -0.1200 -0.1427 0.586 0.204 -0.432 0.068 0.5765 Fe
Ag 0.0041 -0.0055 0.0872 0.0758 0.457 0.257 0.115 0.134 03057 Ag
Mn -0.0088 0.1755 0.0129 -0.3950 -0.315 0.523 -0.126 -0.176 0.4196 Mn
Cr -0.0011 0.0567 -0.0210 0.0442 0.092 0.741 -0.380 -0.067 0.7068 Cr
v -0.0431 0.0685 0.0825 0.0500 -0.025 0.620 0.077 0.107 0.4019 v
Cu 0.0055 0.1010 -0.0892 0.6081 0.373 0.411 -0.329 0.376 0.5577 Cu
Pb 0.0087 -0.1273 0.1287 0.2634 0.408 -0.218 0.306 0.368 0.4438 Pb
Zn -0.0150 0.1151 -0.0625 0.147 0.067 0.487 -0.464 0.180 0.4890 Zn
Ni -0.0553 0.0341 0.1941 -0.6537 -0.210 0.620 -0.120 -0.249 05045  Ni
Co 0.0452 -0.0738 -0.0738 -0.159 0.404 0.173 -0.346 -0.269 03852 Co
As 0.0394 -0.0017 -0.3766 -0.1225 0.674 0.045 -0.495 -0.011 0.7018 As
Sb 0.0818 -0.0440 0.0335 0.0224 0.788 0.076 -0.144 0.016 0.6472 Sb
Mo -0.0037 0.0415 0.0418 0.218 -0.003 0.151 0.064 0.232 0.0805 Mo
Sn 0.0847 -0.1843 -0.0488 0.071 0.573 -0.339 -0.115 0.024 0.4569 Sn
Ga 0.0850 0.1610 -0.0249 0.016 0.800 0.408 0.138 0.034 0.8264 Ga
w 0.0063 -0.0003 -0.0977 -0.162 0.417 -0.014 -0.180 -0.184 0.2405 w
Nb -0.0738 -0.0093 0.0205 -0.1174 -0.436 -0.065 0.199 -0.175 0.2644 Nb
Au 0.0364 0.0063 0.0828 -0.0504 0.888 0.011 0.365 -0.081 0.9280 Au
Centroids for groups in 4 dimensional discriminant space
1 2 3 4
Group 1 -0.2401 0.5150 -0.6791 0.3583
Group 2 -0.7740 -0.7098 0.3416 -0.2190
Group 3 0.9251 0.9490 1.5632 0.1534
Group 4 2.5829 -1.5888 -0.6251 0.0843
Group 5 0.8387 1.6669 -1.0891 -2.0749
Table 18
Multiple Group Discriminant Analysis
3 Target Groups/ 2 Background Groups [Transformed]
10 Elements [Chalcophile + Background + Au]
Target: Mt. Gibson/Golden Grove/Lawlers
Background: Murchison Greenstone/Albany-Fraser
Wilks A=.0116
F-ratio for overall discrimination = 135.81
ndf1= 76 and ndf2= 4605
Expected F(95%,76,4605)= 1.28
Chi-square tests with successive roots removed
Roots Canonical
removed R Eigenvalue xz ndf. A % Trace
0 0.958 1,117 5438. 40 0.0116 77.10
1 0.828 2.183 2396. 27 0.1402 15.14
2 0.706 0.996 984. 16 0.4463 6.91
3 0.330 0.123 141. 7 0.8908 0.85
Communalites for
Discriminant Function Coefficients Factor pattem for disciminant functions 4 Discriminant
1 2 3 4 1 2 3 4 Functions
Cr -0.0019 -0.0627 -0.0419 0.0489 0.139 0.837 0.032 0.097 0.7299
Cu 0.0207 -0.1183 0.0896 .6084 0.391 -0.486 0.228 -0.498 0.6889
Pb 0.0116 0.1741 -0.0388 -0.3951 0.411 0.361 -0.101 -0.544 0.606 1
Zn 0.0024 -0.1529 -0.0064 0.0235 -0.051 -0.646 0.230 -0.230 0.5259
As 0.0417 -0.0932 0.5812 0.2987 0.636 -0.191 0.604 0.176 0.8370
Sh 0.1006 0.1040 0.1109 0.0456 0.781 -0.068 0.257 0.066 0.6853
Sn 0.0856 0.1943 0.3205 -0.0428 0.526 0.314 0.392 0.080 0.5346
Ga 0.0963 -0.1573 -0.0596 -0.0787 0.852 -0.260 -0.189 -0.060 0.8326
Nb -0.0888 -0.0420 -0.1462 0.0805 0.426 0.107 -0.263 0.185 0.2965
Au 0.0437 0.0307 -0.0822 0.0668 0.915 0.208 0.216 0.116 0.9401
Centroids for groups in 4 dimensional discriminant space
1 2 3 4
Group 1 -0.2350 -0.7599 0.3944 -0.2284
Group 2 -0.8198 0.7263 -0.1405 0.1402
Group 3 1.2206 -0.0934 -1.4469 -0.1690
Group 4 2.2460 1.2723 1.3041 0.0214
Group 5 0.8567 -1.9197 0.0718 1.4166
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The value of F is 96.13 and far exceeds the F-statistic of 1.21 for 140 and 4744 degrees of freedom. Because
there are five groups, there are four discriminant functions. The first three functions all show high canonical
correlations and indicate that they are good at discriminating between the groups. The fourth function is less
significant at group discrimination as indicated by the low canonical R and the high Wilk's A for that function.
The communalities of the variables indicate that Cr, As, Sb, Ga, and Au are the most significant variables in the
discrimination.

The relationships of the groups can be described graphically by plotting the discriminant function score
of each sample for each function into the discriminant function space. The scores of the samples for the CV1 vs.
CV2 and CV1 vs. CV3 are shown in Figures 23a,b. Each sample is labelled with the group with which it is
associated. Figure 23a shows that the Yilgarn background groups form two distinct clouds of points with some
degree of overlap. This is not unexpected as many samples in the greenstone terrain can also relate to granitic or
felsic gneisses. The three target groups plot away from the two background populations and indicate their
distinctiveness. The two Au deposits merge in Figure 23a; however, they are quite distinct in the projection of
the samples onto the CV1-CV3 plane of Figure 23b. The samples associated with the massive sulphide deposit
are quite distinct from any of the other groups. The first two discriminant functions clearly show the group
separation and indicate that the populations of samples are sufficiently unique.

A graphical presentation of the factor patterns can assist in visualizing the associations of the elements
with the different groups. Figure 23c shows the factor pattern of the variables for the first two discriminant
functions and Figure 23d shows the pattern for the first and third discriminant functions. Both Figures describe
similar relationships of the variables with respect to the groups of samples. The locations of the variables
indicate the relative associations of the samples with the element. These relative associations can be observed in
Figure 23a, where the relative position of Group 1 indicates that it is relatively enriched in Mn, Ni, V, Zn, and
Cr while Group 2 is relatively enriched in Nb. The target groups show relative enrichment of the chalcophile
elements, Au, and Fe.

10 Element CVA

The results of the CVA for the three background elements + six chalcophile elements + Au are shown in Table
18. The F-ratio and Wilk's A both indicate that this suite of elements is almost as good at separating the groups
as the full set of elements shown by the analysis in Table 17. This had already been determined by the all
possible subsets calculations of Table 14 and Figure 22. The first three discriminant functions provide for 99%
of the total discrimination of the groups. The communalities of the variables show that Au, As, Ga, Cr, Cu, Pb,
and Sb are the most important variables in the discrimination of the groups. Figures 24a,b show the sample
scores plotted onto the CV1-CV2 and CV1-CV3 axes respectively.

In both of the Figures, the five groups are clearly distinct. The samples of the massive sulphide deposit
of Group 4 stand out as being very different from those of the other groups. The mafic association of the Au
deposit of Group S is shown by the proximity of Group S and Group 1 samples. Group 3 samples which are
from the Au deposit associated with both mafic and felsic volcanics show a proximity to the more felsic portion
of the Group 1 cloud.

Figures 24c,d show the relationships of the variables plotted onto the CV1-CV2 and CV1-CV3 axes.
The chalcophile elements display affinity for the three target groups in Figure 24c. Zinc and Cr show affinity
with the Murchison greenstone samples of Group 1 and Nb shows association with the Albany-Fraser
granite/gneiss samples of Group 2. Figure 24d displays similar features, although As appears to be more
- distinctly associated with the Golden Grove dataset.

6 Element CVA

Table 19 shows the results of the CVA applied to the six element subset of samples. The value of Wilk's A, and
the F-value indicate that the groups are significantly different. However, in this analysis, only the first
discriminant function is really significant. The other functions have significantly-lower canonical cotrelation
coefficients and the corresponding Wilk's A for each successive function is large. The communalities of the
variables are all high and indicate that all of the variables are required to distinguish between the groups.
Figures 25a,b show the discriminant scores of the samples plotted onto the CV1-CV2 and CV1-CV3 axes
respectively. In both Figures, the distinction between the Murchison greenstone samples (Group 1) and the
Albany-Fraser granite/gneiss samples (Group 2) is present, but there is considerable overlap of the target groups
among themselves and with the Group 1 greenstone samples. The target groups show a trend of separation along
the CV2 axis, but there is considerable overlap among them. Group 5, in particular, shows dispersion
throughout the entire range of the samples along the CV2 axis. Figures 25c,d show the relative relationships of
the variables along the CV1-CV2 and CV1-CV3 axes. Figure 25¢ shows that Zn is associated with the more
mafic samples in the Group 1 greenstones, Cu is associated with the massive sulphide samples of Group 4, As,
Sb, and Ga are associated with the three target Groups 3, 4 and 5, and Pb is associated with the Au deposit
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Figure 23a. Plot of discriminant function scores onto the first two canonical variate axes of the 2
background and 3 target groups for the full set of 18 elements. Each sample is labelied with the
group from which it originates. Group 1 is the Murchison Greenstone belt dataset, Group 2 is the
Albany-Fraser granite/gneiss terrain dataset, Group 3 is the data from the Mt. Gibson Au deposit in
the Murchison greenstone belt, associated with feisic and mafic volcanics, Group 4 is the data
associated with the Golden Grove massive sulphide deposit, and Group 5 is the data from with the
Lawlers area Au deposit associated with mafic rocks.
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Figure 23c. Plot of the factor pattern scores projected on to the first and second canonical variate
axes. The relative positions of the variables indicate the relative association of the samples to the
variables in Figure 23a.
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Figure 23d. Plot of the factor pattern scores projected on to the first and third canonical varime
axes. The relative positions of the variables indicate the relative association of the sampies to the
variables in Figure 23b. :
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Figure 24a. Plot of discriminant function scores onto the first and second canonical variate axes of
the 2 background and 3 target groups for the subset of 10 elements [3 Background + 6 Target +
Au]. The separation between the 5 groups is as good as that shown in Figure 23.
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2 background and 3 target groups for the subset of 10 elements [3 Background + 6 Target + Au].
The separation between the 5 groups is as good as that shown in Figure 23.
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Figure 24c. Plot of the factor pattern scores projected on to the first and second canonical variate
axes. The relative positions of the variables indicate the relative association of the samples to the
variables in Figure 24a.
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target Groups 3 and 5. Figure 25d indicates that As and Sb are associated with Groups 1 and 5, which are more
mafic in character than the other three groups. Gallium appears to show an association with the Mt. Gibson
samples.

The increased dispersion and overlap of samples from the CVA applied to the six element chalcophile
suite of elements suggest that it is not nearly as good at distinguishing the groups as the ten element set. This
demonstrates the importance of choosing a valid set of elements on which to distinguish background from target
samples in an exploration programme.

4 Element CVA

The results of CVA applied to the chalcophile suite of four elements are shown in Table 20. The value of Wilk's
A for the overall discrimination indicates that the group separation is good. However, only the first discriminant
function contributes significantly to the group separation as indicated by the canonical R coefficients and the

Table 19

Multiple Group Discriminant Analysis

3 Target Groups/ 2 Background Groups [Transformed]
6 Chalcophile Elements

Target: Mt. Gibson/Golden Grove/lLawlers
Background: Murchison Greenstone/Albany-Fraser

Wilks A=.0502

F-ratio for overall discrimination = 131.14
ndf1= 44 and ndf2= 4250

Expected F(95%,44,4250)= 1.38

Chi-square tests with successive roots removed

Roots Canonical
removed R Eigenvalue x2 nd.f. A % Trace
[1] 0.919 5.415 3655. 24 0.0502 78.33
1 0.694 0.929 1384. 15 0.3220 13.44
2 0.570 0.482 582. 8 0.6211 6.97
3 0.282 0.086 101. 3 0.9204 1.26
Communalites for
- Discriminant Function Coefficients Factor pattern for disciminant functions 4 Discriminant
1 2 3 4 . 1 2 3 4 Functions
Cu 0.1544 -0.0618 0.0985 0.6091 0.535 -0.407 -0.077 0.626 0.8506
Pb -0.0226 0.3344 0.0274 0.4320 0.311 0.601 0.122 0.519 0.7422
Zn -0.0133 -0.4500 0.0466 0.0179 0.136 -0.776 -0.099 0.381 0.7762
As 0.1612 -0.0950 ~0.7730 -0.0855 0.721 -0.040 -0.663 0.016 0.9606
Sb 0.1664 0.3421 -0.1206 -0.1760 0.810 0.210 0.256 - -0.055 0.7687
Ga 0.1682 -0.0905 0.2266 -0.1222 0.902 0.089 0.341 -0.151 0.9610
Centroids for groups in 4 dimension;l discriminant space
1 3 4
Group 1 0.0908 -0.6876 -0.1467 0.2246
Group 2 -1,0091 0.4032 -0.0369 -0.1175
Group 3 0.9937 0.4054 1.2205 0.0082
Group 4 1.7844 1.3129 -1.1219 0.0627
Group 5 1.3192 -1.4527 -0.3215 -1.1901
Table 20
Multiple Group Discriminant Analysis
3 Target Groups/ 2 Background Groups [Transformed)
mmodlg Elements
et: Mt. Gibson/Golden Grove/Lawlers
Ba ground: Murchison Greenstone/Albany-Fraser
Wilks A=.0893
F-ratio for overall discrimination = 160.41
ndf1= 28 and ndf2= 3727
Expected F(95%,28,3727)= 1.48
Chi-square tests with successive roots removed
Roots Canonical
removed R Eigenvalue 12 n.d.f. A % Trace
0 0.914 5.085 2953. 16 0.0893 86.90
1 0.629 0.655 745. 9 0.5436 11.19
2 0.314 0.109 129. 4 0.8996 1.86
3 0.047 0.002 3. 1 0.9978 0.04
) Discriminarzlt Function Coefficients s Factor pattem 2for discimina;t functions
3 1
Cu -0.0306 0.3816 -0.5890 -0.6633 -0.262 0.846 -0.384 -0.259
Pb -0.0804 -0.1679 -0.5213 0.3060 -0.500 -0.266 -0.676 0.470
Zn 0.0312 0.3566 0.3069 0.6766 0.215 0.843 -0.017 0.490
Au -0.0915 0.0129 0.0769 0.0206 -0.990 0.047 0.119 -0.033
Centroids for groups in 4 dimensionzal discriminant spa%e
1 4
Group 1 0.4961 0.6352 -0.1926 0.0011
Group 2 0.5344 -0.7142 0.0854 -0.0061
Group 3 -1.4005 -0.0455 0.0715 0.0905
Group 4 -2.0981 -0.1692 -0.2917 -0.1060

Group 5 -0.3158 1.1932 1.3777 -0.0587
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Figure 25a. Plot of discriminant function scores onto the first and second canonical variate axes of
the 2 background and 3 target groups for the subset of 6 chalcophile elements [Cu Pb Zn As Sb
Ga]. Note the good separation between background populations but poor separation of target
groups from the Murchison greenstone population.
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Figure 25b. Plot of discriminant function scores onto the first and third canonical variate axes of the
2 background and 3 target groups for the subset of 6 chalcophile elements [Cu Pb Zn As Sb Gal.
Note the good separation between background populations but poor separation of target groups
from the Murchison greenstone population.
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Figure 25c¢. Plot of the factor pattern scores projected on to the first and second canonical variate
axes. The relative positions of the variables indicate the relative association of the samples o the

variables in Figure 25a.
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successive Wilk's A values for each function. Because the number of groups is equal to the number of variables,
all of the communalities of the variables are set to 1.0, as they all must contribute equally to the group
separation. Figures 26a,b show the discriminant scores of the samples plotted onto the CV1-CV2 and CV1-CV3
axes. The Figures show target group and background group separation along the first discriminant function
(CV1) and Group 1 and Group 2 separation along the second discriminant function (CV2). CV3 does not appear
to delineate any meaningful separation. From Figure 26a, the separation between the target and background
groups can be seen, but Group 5 samples merge with the Murchison greenstone samples of Group 1 making the
distinction of samples associated with this type of Au deposit difficult. Figure 26¢ shows that the background
group, Group 1, is associated with Zn and Cu and the target Groups 3, 4, and S have relative Au and Pb
enrichment. Group 2 is separated on the basis of being relatively depleted in these four elements.

The use of the four element suite of samples for discriminating background from target groups is even
poorer than the six element suite and serves as a waming to avoid choosing a limited suite of elements that are
inadequate for distinguishing between various geochemical populations.

5.6 Allocation / Typicality .
When a statistical analysis is carried out on a particular group of samples that have been analysed for a specific
clement, it is assumed that the samples may belong to one or more groups of data which may represent one or
more geological processes. This concept is crucial in any analysis of geochemical data.

The use of canonical variate analysis has provided a means of obtaining a statistical measure of the
distinction of the reference groups. The analyses indicate that all of the magma clan and rock type reference
groups are statistically distinct. A consequence of the establishment and testing of the reference groups is the
ability to test unknown samples for possible membership into none, one, or more of the groups. Two types of
procedures that can be used to do this are allocation and typicality.

Allocation procedures (also known as Classification Procedures) and measures of typicality make it
possible to predict the probability of an unknown sample belonging to none, one, or more of the reference
groups. The method is based on the assumption that the variables are the same between the reference groups and
the unknown sample(s). A general reference to allocation procedures can be found in Cooley and Lohnes
(1971), LeMaitre (1982), and Campbell (1984b). Allocation can also be used to test the group membership of
samples used to create the reference groups in a canonical variate analysis. Typicality is described by Campbell
(1984b).

Allocation methods and measures of typicality have not been used extensively in geological
classification analysis. Exceptions to this have been for purposes of geochemical exploration as documented by
Smith et al. (1984) and Garrett (1989a). These more recent contributions clearly explain the usefulness of the
method.

Allocation procedures work on the basis of measuring the distance of a sample from each reference
group centroid. The mathematics of allocation are straight forward and can be found in Cooley and Lohnes
(1971) and LeMaitre (1976). By using the covariance estimates of the populations of samples used for the
reference groups, the Mahalanobis distance can be computed between each unknown sample and the group
centroids. LeMaitre (1982:171) provides a schematic concept of the allocation procedure. The covariance
matrix contains the characteristics of the dispersion of the reference population. If the Mahalanobis distance of a
sample, with respect to a particular reference group centroid, is within the dispersion matrix defined by the
reference group covariances, then the probability of that sample belonging to that reference group is greater than
zero. The closer a sample is to a group centroid, the higher the probability of membership; however, any sample
with a probability >0 can be considered to be similar to the reference group. The dispersion between groups can
overlap, which results in some samples having probabilities of belonging to more than one reference group.
Similarly, if a sample has a Mahalanobis distance outside the dispersion matrix then it has a zero probability of
belonging to any of the reference groups. A significant test is the determination of whether or not the groups
have similar covariances. If they do not, then comparison of samples must be modified according the different
covariance matrices.

Posterior Probability
Allocation of individual samples through the computation of posterior probabilities can be briefly described as:
For the estimation of posterior probability of membership in the kth population is given by:

— — g —
pr(k; Xm) = P f( xmPp)/ 2 pj(f xm;Pj)’
j=1
where pr(k; Xp,) is the posterior probability of membership in the kth group with group vector (centroid) Xm>
Px is the prior probability that the unknown sample belongs to the kth group,
f( Xp;Py) is the value of the probability density function for the group vector X
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Figure 26a. Plot of discriminant function scores onto the first and second canonical variate axes of
the 2 background and 3 target groups for the subset of 4 commodity elements [Au Cu Pb Zn]. Note
the poor separation between the target groups and between the background groups.
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Figﬂre 26b. Plot of discriminant function scores onto the first and third canonical variate axes of the
2 background and 3 target groups for the subset of 4 commodity elements [Au Cu Pb Zn]. Note the
noor separation between the target groups and between the background groups.
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Figure 26¢c. Piot of the factor pattern scores projected on to the first and second canenical variate
axes. The relative positions of the variables indicate the relative association of the samples to the
variables in Figure 26a.

Background / 3 Target Groups [Transformed] 4 Elements

1.00

2
0
>
O

0.75

—

0.50
|

0.25
i

-0.25 0.00
N
F

-0.50

Pb

-0.75

~1.00

T T T T T T T T
1.00 -0.80 -0.60 -0.40 -0.20 -0.00 0.20 0.40 0.60 0.80 1.00

Figure 26d. Plot of the factor pattern scores projected on to the first and third canonical variate
axes. The relative positions of the variables indicate the relative association of the samples to the
variables in Figure 26b.
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The posterior probability is the probability of belonging to the kth group divided by the sum of the
probabilities of belonging to all g groups. An unknown sample is then assigned to the reference group with the
highest posterior probability (smallest Mahalanobis distance).

Index of Typicality
The index of typicality is explained by Garrett (1990) (although it is referred to as allocation) and Campbell
(1984b). Given a covariance (dispersion) matrix S, k groups, with samples composed of p variables, then D2,
the generalized Mahalanobis distance is calculated such that
Dy = (xj-xik)' S (XiXio)s
where k is the kth group, and i is the ith sample.
For the index of typicality, the unknown sample is provisionally allocated to the jth of the g groups
such that
Dj2 +In |Sj| = min[Dy2 + In [S[]
where k=1,...,j,...g reference groups, |Sj| is the determinant of the covariance of the jth group.
If the covariances of the groups are equal then the logarithmic term is dropped.
The probability of group membership of each sample is predicted for each reference group using the
statistic:
N-g-p+)ng
D2

pPN-g)(nk+1)
where
N= total number of samples over the groups being tested,
g= number of groups,
np= number of samples in group k,
p= number of variables.

This statistic is distributed as F with p (numerator) and N-g-p+1 (denominator) degrees of freedom.
This is a "predictive" probability rather than an "estimative" probability that would normally be computed using
the %2 distribution. Estimative procedures have been shown to underestimate group membership probabilities
(Garrett, 1989a), thus the estimative approach is a better choice for classification.

An example of the use of allocation through posterior probabilities and the computation of the index of
typicality is shown for a number of samples classified over the five reference groups listed in Table 21. The
Table shows 18 samples that have been selected from a number datasets. The Group number associated with
cach sample represents the Group (Dataset) number mentioned in Section 1.2. Samples from Groups 6 and 7 are
samples removed from Groups 1 and 2 respectively prior to establishing the references groups. The first part of
the Table displays the composition of each sample and the second part of the Table shows the index of
typicality and the posterior probability for each sample. The posterior probabilities force a fit of the sample to
be allocated to at least one of the groups. The index of typicality does not force a fit. Comparison of samples 1
to 14 shows that generally the index of typicality and the posterior probability for each sample are as expected
for the group with which it is associated. Samples that have probabilities in more than one group indicate that
they overlap between the groups.

Samples 16, 17, and 18 have zero values for typicality indices. The application of the posterior
probabilities appears to allocate these three samples to be most like Group 1. These samples were originally
included in Group 1, but were eliminated in the reference group selection as their Mahalanobis distances
exceeded the 95th percentile in the reference group selection. In this case, the application of posterior
probability is reasonable. Sample 16 also shows a significant posterior probability of belonging to Group 5. The
Mahalanobis distance of this sample to the Group 5 centroid may exceed the acceptable 95% confidence level
for the F-statistic; however, it appears to have significant affinity to Group 5.

The application of posterior probabilities and indices of typicality have obvious advantages in an
exploration programme where the geochemical characteristics of the commodity being sought are known.
Samples that classify within the background populations can be recognized immediately. Samples from areas
which have high typicality indices for any of the target groups are obvious areas for follow-up exploration.
Maps of target group membership probability can be created which may outline areas of high mineralization
potential. Such an approach was taken by Smith et al. (1984). Samples that have typicality indices of zero for
any of the target or background groups should be investigated for their likelihood of representing some
previously unrecognized target or background geochemical model. The use of posterior probabilities can assist
in “forcing" a fit to one of the reference groups and to examine which group is the closest for an unknown
sample.
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Table 21

Typicalities 2 Background / 3 Targi:t Groups [Transformed]
rs

Target: Mt. Gibson/Golden Grove/Lawl

Background: Murchison Greenstone/Albany-Fraser

Sample Group Cr Cu Pb Zn As Sb Sn Ga Nb Au
1 1 869 100 36 22 25 4 4 25 15 3
2 1 552 32 74 14 21 <2 3 20 12 1
3 1 558 21 34 1 27 4 2 40 8 3
4 1 1105 73 5 28 45 9 <1 , 25 S 29
5 1 3469 100 19 26 26 6 <1 20 <4 17
6 6 634 54 38 20 20 <2 4 20 6 10
7 7 2028 90 14 30 23 <2 <1 15 5 4
8 7 364 32 78 12 30 7 3 30 9 1
9 2 98 4 25 10 10 <2 1 15 15 <1

10 2 137 24 36 10 13 <2 3 15 10 1
1 3 973 20 40 10 28 <2 5 38 15 5
12 3 625 28 46 15 38 6 2 62 12 34
13 4 196 60 74 5 385 34 35 63 5 1070
14 5 5563 70 20 22 40 4 <2 44 10 840
15 5 560 62 18 1 360 5 2 54 8 1090
16 6 1701 46 18 26 691 175 <1 15 7 1
17 6 885 406 31 5§92 723 32 <1 1 <4 19
18 7 670 27 30 24 612 74 <1 10 6 <8
Typ: Index of Typicality
PstP: Posterior Probability
Group 1 Group 2 Group 3 Group 4 Group 5

Sample Group Typ PstP Typ PstP Typ PstP Typ PstP Typ PstP
1 1 9977 9447 0001 .0553 .0060 .0000 .0000 .0000 .0000 .0000
2 1 7882 2757 2717 7243 0113 .0000 .0000 .0000 .0000  .0000
3 1 .8246 .9837 .0000 .0156 .5490 .0003 .0000 .0000 .3659  .0003
4 1 3244 9772 0000 .0020 .0003 .0001  .0000 .0000 5722  .0208
5 1 7610 .9940 .0000 .0036 .0000 .0000 .0000 .0000 .6941  .0024
6 6 .8809 8776 .0043 .1224 .3032 .0000 .0000 .0000 .0166  .0000
7 7 9889 .9794 .0000 .0206 .0000 .0000  .0000 0000 4652 .0000
8 7 4519 7719 .0000 2251 .3265 .0030 .0000 .0000 .0010  .0000
9 2 5972 .0232 9166 .9768 .0000 .0000  .0000 .0000 .0000  .0000

10 2 7951 .0984 9135 9016 .0528 .0000  .0000 .0000 .0000 .0000
11 3 9133 9632 .0000 .0367 .0195 .0001  .0000 .0000 .0003 .0000
12 3 .0044 4529 .0000 .0002 .6910 .3867 .0000 .0000 .6201 .1602
13 4 .0000 .0000 .0000 .0000 .0000 .0000 .8776 1.0000 .0000 .0000
14 5 .0000 .0016 .0000 .0000 .7036 9766 .0000 .0000 8750 .0218
15 5 .0000 .0000 .0000 .0000 .0000 .0679 .0000 .0000 9927 .9320
16 6 .0000 .2486 .0000 .0010 .0000 .0000  .0000 .0002 0000 .7502
17 6 .0000 9610 .0000 .0000 .0000 .0000 .0000 .0000 0000 .0390
18 7 .0000 .9399 .0000 .0483 .0000 .0000 .0000 .0000 0000 .0118
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CONCLUDING REMARKS - A SUGGESTED SEQUENCE OF DATA
INTREPRETATION FOR ANOMALY RECOGNITION

Following the AEG workshop on Thresholds and Anomaly Interpretation, an appendix was assembled by
Mellinger et al. (1984) which provided a suggested sequence of investigation for the anomaly interpretation
based on the integration of geochemical, geographical, and geophysical data.

Three critical steps were defined: preliminary data analysis, descriptive multivariate analysis, and

specific multivariate analysis. For the evaluation of geochemical data in laterites of the Yilgarn Block, the
following sequence of investigation is recommended:

1) Preliminary Data Analysis

Examine each element with histograms, box & whisker plots, Q-Q plots, scatter plot matrix, data ranking.
Prepare summary statistical tables, plot elements onto maps.

Trim the distribution of each element of gross outliers.

Investigate outliers for each element; analytical error or atypical abundance?

Adjust data for censored values if required.

Transform each element with Box-Cox power transformations using samples below the 95th-98th
percentile. This depends upon a prior visual examination of Q-Q plots or histograms.

Create a scatter plot matrix for transformed data. Look for trends/associations.

Techniques such as PROBPLOT (Stanley, 1987) or the Gap statistic (Miesch, 1981) can be used to dissect
multiple populations.

Set thresholds for elements after transformation.

2) Exploratory Multivariate Data Analysis

The use of robust estimates to compute means and covariances to enhance the detection of outliers.
Application of dimension reducing techniques, such as principal components analysis to show systematic
linear relationships of the variables and the samples. The use of robust methods on transformed data
assists in detecting outliers. Dimension-reducing techniques also indicate which elements are associated
with commodity elements. Maps of the component scores can assist in outlining regional lithological
variation and areas that are anomalous.

The use of methods to delineate structure in the data. Methods such as cluster analysis, multidimensional
scaling, non-linear mapping, and projection pursuit isolate groups of samples with similar characteristics.
Atypical samples stand out as single outliers. Target groups can often be isolated using these methods.
Maps of the locations of the groups can help to isolate mineralized areas.

The use of 2 plots applied to transformed data to isolate outliers based on all of the elements of interest.
The use of Xz plots assists in the elimination of outliers for the creation of background and target groups
which can subsequently be used in canonical variate analysis and for allocation/typicality procedures.
Maps of large Mahalanobis distances (>95th percentile) may identify anomalous areas.

3) Specific Multivariate Data Analysis and Modelled Multivariate Analysis

The calculation of empirical indices can be used as methods which are specifically tailored to areas in
which multi-element associations are well understood. The indices are based on a linear combination of
pathfinder elements with coefficients that are selected for each area and the commodity being sought.
Samples with high indices can be investigated for mineralization potential.

The use of multiple regression can be applied to areas where a linear model of the multi-element
association can be computed with good results (high R? coefficients). Residuals can be examined for the
potential of association with mineral deposits.

Once target and background groups have been established, the use of analysis of variance and canonical
variate analysis test the statistical uniqueness of the groups. Groups that are statistically distinct can be
used as reference groups against which unknown samples may be compared.

The use of all possible subsets can be applied to compare the reference groups with each other and
determine which group of elements enhances the group separations.

The application of allocation/typicality procedures can test the samples used to make up the reference
group populations. Additionally, unknown samples from a regional exploration programme can be used to
assign the probability of belonging to one of the reference groups. Maps of tyicality or posterior
probability can be made to indicate group membership.
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