QUASAR GOLD DEPOSIT, MT MAGNET, WESTERN AUSTRALIA
I.D.M. Robertson, J.D. King, R.R. Anand and C.R.M. Butt

1CRC LEME, CSIRO Exploration and Mining, Perth, Western Australia
2Weston Consultancy Group, P.O. Box 64, Maylands, 6931, Western Australia

LOCATION

The Quasar Au deposit is about 5 km SW of Mt Magnet, Western Australia, at 28º05'39"S, 117º47'40"E (Figure 1); Kirkalocka 1:250 000 map sheet (SH50-03).

DISCOVERY HISTORY

The Mt Magnet district has been a Au producer since 1888, yielding about 70 t Au from about a dozen mines in outcropping areas around the edges of the Boogardie Synform. The core of the Boogardie Synform initially remained unexplored due to the cover of colluvium-alluvium, although the Synform contains potential host lithologies (ultramafic schists and dacitic quartz porphyry; Marjoribanks, 1989), and known mineralized structures (Vann, 1989; Perriam, 1990). Exploration was hampered by the extent of this transported cover, which has a high Au-background (55 ppb Au) due to its derivation from Au-bearing rocks. The underlying residual regolith is intensely weathered and variably eroded, commonly with very localized anomalies and, in places, Au depletion from upper horizons. Exploration began in the 1980s, with intensive programs by Carpentaria Exploration Co Ltd, Renison Goldfields Consolidated Ltd, Metana Minerals NL Pty Ltd and WMC Resources (as Hill 50 Gold Mine NL). Metana Minerals NL, using systematic RAB drilling on 400 m centres through the colluvium-alluvium to recognizable bedrock, discovered the Quasar Deposit in 1989. Similar methods by Renison Goldfields Consolidated Ltd, targeting buried laterites and mottled zones, discovered Au deposits at Stellar, Milky Way and Andromeda.

PHYSICAL FEATURES AND ENVIRONMENT

Quasar is situated in an almost flat depositional plain, with a barely perceptible N-trending rise over the centre of the deposit and a slight slope to a palaeochannel to the SE. The nearest outcrops are about 3 km to the NNE, where low hills of weathered volcanic rocks and ridges of banded iron formation (BIF) form the rim of the Boogardie Synform. The climate is semi-arid with a mean annual rainfall of 234 mm. Average temperature ranges are 22-34°C in January and 7-19°C in July. Vegetation is mainly Acacia spp., poverty bush and turpentine (various Eremophila spp.), with isolated kurrajong (Brachychiton spp.).

GEOLOGICAL SETTING

The Archaean greenstone belt at Mt Magnet consists of ultramafic, mafic and felsic volcanic rocks with subordinate sediments, BIF and chert. The greenstones have been deformed into a domal structure with a steeply plunging synformal configuration - the Boogardie Synform (Figure 1). This comprises tacle-carbonate and other Mg-rich rocks cut by felsic intrusives of the Boogardie Formation and BIFs, mafic, ultramafic and felsic flows and felsic tuffs of the Sirdar Formation. In the core of the Synform, this sequence has been overlain by at least two cycles of Tertiary sedimentation.

REGOLITH

Regionally, erosional regimes comprise about 25% of the area, and are largely restricted to outcropping, semi-continuous BIF ridges on...
the margins of the Synform, flanking upland slopes and, in the NE, breakaways on the northern margin of the BIF ridges. Scattered patches of lateritic duricrust are preserved. Depositional regimes occupy the remaining 75% of the area, mainly in the core of the Synform. The colluvium-alluvium, which is locally underlain by palaeochannel sediments, obscures most of the Boogardie Formation. The thickness of the colluvium-alluvium generally increases away from the enclosing BIF ridges. It has a local to distal provenance and is up to 20 m thick, overlying both complete and variably truncated lateritic profiles (Robertson et al., 2001).

Locally, at Quasar (Figure 2A), the hardpanized colluvium-alluvium has a fairly uniform thickness of 4-8 m. It is largely composed of lateritic nodules and pisoliths, with and without cutans, fragments of quartz and ferruginous saprolite, in a silty-clay matrix. The upper part of the transported cover consists of poorly sorted gravel with coarse, angular fragments of quartz and lithic material, typical of colluvium. At lower levels, it is mainly matrix dominated, Mn oxide-stained, lateritic debris. Towards the base, coarse, poorly-sorted gravel lenses, consisting of rounded quartz pebbles and lateritic debris, indicate an alluvial environment.

The transported overburden overlies a truncated regolith and, in the SE, it overlies sediments filling a shallow, arcuate palaeochannel (Figure 2A and B). Drilling has indicated that the palaeotopography, beneath the colluvium at Quasar, slopes gently towards the palaeochannel. The northern bank of the palaeochannel is steep, the southern more gradual. Sediments in the palaeochannel are generally 3-6 m thick and consist of mottled, white, kaolinitic clays with layers of lateritic gravel. The underlying residual profile consists of weakly mottled, clay-rich saprolite derived from ultramafic rocks and silicified, kaolinitic saprolite derived from felsic porphyry. The weathering front on the ultramafic rocks is at about 35 m depth and, on the felsic rocks, it ranges from a few metres to over 40 m near the sheared contact, where the saprolite is weakly mottled.

MINERALIZATION

Gold mineralization at Quasar is associated with ductile shearing in high-Mg mafic-ultramafic rocks that have been altered to talc-chlorite-sericite schists at the contact with a felsic porphyry stock. Mineralization is sulphide-poor (quartz-chlorite-pyrite±carbonate) and has little quartz veining. Weakly mineralized quartz-tourmaline veining is restricted to the felsic porphyry, occurring marginal to the contact. The Quasar Au deposit yielded 21,094 oz Au (111,755 t of ore at 5.87 g/t; S Huffadine, personal communication 2003) and was mined as an open pit by Hill 50 Gold Mine NL.

REGOLITH EXPRESSION

Available materials

A suite of lag and RAB-drilled orientation samples was taken by WMC Resources just prior to mining (Robertson et al., 1994). This provided samples of colluvium-alluvium, the colluvium-basement interface and the top of the weathered basement. The interface sample (Figure 3) is considered to be a highly effective medium in this environment (Robertson, 2001).

Comparison of upper residuum with colluvium-basement interface

Gold. There are no significant anomalies within the pit, despite the close (50x100 m) drill spacing. There is a single point anomaly of 1460 ppb at the top of the residual profile, above the sheared contact immediately S of the pit (Figure 4A). Lower, single point anomalies of 330-460 ppb occur further SW and SE. Adjacent drilling revealed background abundances (<20 ppb). In contrast, in the interface sample, there is a much broader anomaly of about 35 m depth and, on the felsic rocks, it ranges from a few metres to over 40 m near the sheared contact, where the saprolite is weakly mottled.

Bismuth shows a localized concentration of 6 ppm to the ESE of the pit at the top of the residual profile (Figure 4C). Lesser anomalies (about 1 ppm) occur at the SW end of the pit and immediately to the S. Anomalies are of similar strength but are more widespread in the interface over the W part of the pit (Figure 4D).
Lead shows a single point anomaly of 200 ppm at the top of the residual profile at the W side of the pit (Figure 4E), coinciding with the Bi anomaly. Again, the interface sampling has a broadened target over most of the pit, with an anomaly of 35-40 ppm against a background of 10 ppm (Figure 4F).

Using the interface sample data, a linear combination (CHI) of Bi, Pb and Zn was investigated (Figure 5). Gold was excluded because its distribution is extremely skewed. Threshold abundances (in ppm) were subtracted and the remainders scaled by relative abundance so that the ranges (above threshold) were approximately equal. These products were then summed:

\[\text{CHI} = 100(\text{Bi-1}) + 2(\text{Pb-10}) + 2.2(\text{Zn-30}) \]

This combination of pathfinder elements increased the size of the interface anomaly and accurately targeted the mineralization. Apart from highlighting the multi-element nature of the geochemical halo, this additive technique allowed neighbouring anomalies in different elements to reinforce one another, which is not achieved by processing single element data. It is a similar technique to that used by Smith and Perdrix (1983).

Conclusion

Sampling the colluvium-basement interface (unconformity) would have readily detected the Quasar Deposit using relatively shallow open-spaced drilling. Deeper, close-spaced drilling would only have been necessary into saprolites beneath palaeochannel sediments. The interface at this site is readily identified due to the contrast between the granular and ferruginous colluvium-alluvium and the underlying weathered felsic and ultramafic rocks, which retain their lithic fabrics.

REFERENCES

SAMPLE MEDIA - SUMMARY TABLE

<table>
<thead>
<tr>
<th>Sample medium</th>
<th>Indicator elements</th>
<th>Analytical methods</th>
<th>Detection limits (ppm)</th>
<th>Background (ppm)</th>
<th>Threshold (ppm)</th>
<th>Max anomaly</th>
<th>Dispersed distance (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top of basement</td>
<td>Au</td>
<td>ICP*</td>
<td>0.001</td>
<td>0.020</td>
<td>0.100</td>
<td>1.46</td>
<td>10</td>
</tr>
<tr>
<td>Bi</td>
<td>ICP**</td>
<td>0.1</td>
<td>0.4</td>
<td>0.7</td>
<td>2.6</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td>ICP**</td>
<td>2</td>
<td>15</td>
<td>50</td>
<td>480</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Colluvium-basement interface</td>
<td>Au</td>
<td>ICP*</td>
<td>0.001</td>
<td>0.020</td>
<td>0.100</td>
<td>0.35</td>
<td>100</td>
</tr>
<tr>
<td>Bi</td>
<td>ICP**</td>
<td>0.1</td>
<td>0.3</td>
<td>0.8</td>
<td>2.3</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td>ICP**</td>
<td>2</td>
<td>8</td>
<td>10</td>
<td>60</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Colluvium-alluvium</td>
<td>Au</td>
<td>ICP*</td>
<td>0.001</td>
<td>0.055</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bi</td>
<td>ICP**</td>
<td>0.1</td>
<td>0.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td>ICP**</td>
<td>2</td>
<td>22</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Maxima: *3 7; **6.7; 7.0; 150

* Probably graphite furnace after aqua regia digestion ** After HF/HNO3/HClO4 digestion