The Pinnacles deposits (Pinnacles Southern Trenches mine, and small workings at Thomas’ Tunnel, Brown’s Tunnel and Leo’s Find) strike along 1400 m on the western flanks of Burns Peak (Figure 1). They are located some 10 km N of Rosebery at 41°40’S and 145°32’E; Tasmania North West (SK55-01) 1:250 000 map sheet.

Figure 1. Pinnacles area: prospect locations and geology (after Corbett and McNeill 1986).

PHYSICAL FEATURES AND ENVIRONMENT

The Middle Cambrian Central Volcanic Complex of the Mount Read Volcanic Sequence hosts most of the sulphide mineralization of Western Tasmania. In the Pinnacles area, the footwall consists dominantly of dacitic and rhyolitic volcanics, with minor andesites and andesitic volcanics. At Southern Trenches, both the footwall and the hangingwall rocks are ignimbrite. Dacitic lapilli tuffs and andesite form the hanging wall to a barite-rich lens and galena-rich veining at Thomas’ Tunnel. This andesite, in part, forms the footwall to massive sulphide mineralization at Brown’s Tunnel (Collins et al., 1981). The host rock consists of variously silicified siltstone with minor sand- and ash-beds (Gregory 1986). Cleavage and fold axial planes turn from NW and N in the S to NE in the Pinnacles area. Stacking of massive sulphide lenses and/or feeder systems occurs at slightly different levels. Some hundred metres to the W, the Rosebery Fault, intersected by drill holes, separates the volcanic rocks from Late Cambrian shales, sandstones and tuffs (Figure 1).

LOCATION

The area was glaciated during the Pleistocene and is mantled by shallow (<0.5 m) lithosols over relatively unweathered bedrock (Figure 2).

MINERALIZATION

Mineralization consists of small pods of massive, stratiform Zn-Pb-Cu-Ag-Au sulphides and sulphide breccia, rare stringer veins and widespread disseminated and veinlet mineralization. The sulphide pods rest on the near-vertical NW limb of an anticline. All mineralization occurs 100 m from the Pinnacles Shear. The massive sulphide contains clasts and intervals of chert and is surrounded by a siliceous envelope up to 8 m wide that extends along strike for 200 m. The massive sulphides comprise medium-grained bedded sphalerite, pyrite and chalcopyrite with accessory tetrahedrite and Au. The gangue is quartz, barite and minor siderite, kutnohorite (Ca(Mn,Mg,Fe)(CO3)2) and ankerite (Gregory 1986). There are traces of fuchsite in the footwall at Brown’s Tunnel.

Alteration related to mineralization consists of a proximal siliceous envelope with sericite, pyrite, chlorite and patchy, strong, pervasive ankerite alteration. At the surface, at the Southern Trenches, this envelope strikes 60 m and is up to 9 m wide. This is surrounded by a sericite-silica-pyrite-chlorite-ankerite assemblage, extending 25 m into the footwall and approximately 35 m into the hangingwall. Common cubic casts after pyrite occur up to 80 m E and at least 25 m W of the host horizon. Small-scale open-cut mining in the Southern Trenches area in 2000-2001 produced 14 100 t of ore at 11.9% Zn, 7.9% Pb, 1.3% Cu, 55 g/t Ag and 8.9 g/t Au (Mineral Resources Tasmania, 2001).

REGOLITH EXPRESSION

Bedrock

The distributions of Zn, Pb, Cu, Fe, Au and Ag at Southern Trenches have been determined by surface rock chip sampling (Woolford, 2000). The Pb (Figure 3) and Zn (not shown) data are closely matched, with the highest abundances occurring around the main sulphide pods. Gold dispersion in the regolith is very restricted. Whole rock geochemistry by Stevens (1974), McKibben (1993) and Woolford (2000) shows the...
rocks at the Southern Trenches are similar to the pumiceous footwall of the Rosebery Mine sequence. There are no regional alteration patterns related to sericitization (i.e., enrichment of K and Rb) or plagioclase destruction (i.e., depletion of Na, Ca and Sr).

Wall-rock alteration in a 500 x 1800 m area straddling the Leo’s Find, Browns Tunnel, Thomas’ Tunnel and Southern Trenches was studied using the acid-insoluble residues of 64 pulped surface and near-surface rock samples. The pulps were leached with hot HNO₃ to remove oxides, hydroxides, carbonates, sulphates, sulphides and chlorites. The residue of primary and secondary quartz/chalcedony, feldspar and sericite was analysed by PIXE-PIGME for 20 elements. Background abundances are very low, because the material is dominantly silica. The Ba abundance is >500 ppm in minor mineralized areas but not at Southern Trenches (Figure 4). However, the Ba x Mn index reaches >10 in all mineralized areas. In combination with the Zn x Pb mineralization index, these define the location of the workings quite well (Figure 5), but have a smaller areal extent at the Pinnacles than at Rosebery and Hercules (van Moort and Aung Pwa, 2005; Briggs and McNeill, 2005). Moreover, the Rb/Al and Rb/K ratios do not have the magnitude and extent of the sericitic alteration zones at the Rosebery and Hercules deposits.
Figure 7. Element concentrations as a function of depth in shallow lithosol south of Pinnacles Southern Trenches (after Beamish 1978). The lines are the least squares fit.

The lines are the least squares fit.

Figure 8. Concentrations of Cu, Pb and Zn in the <180 µm fraction of active stream sediments in the Southern Pinnacles area (after Beamish 1978).

TABLE 2
SAMPLE MEDIA – SUMMARY TABLE

<table>
<thead>
<tr>
<th>Primary mineralization</th>
<th>Zn, Pb, Cu, Ag, Au and Ba in gangue.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wallrock alteration</td>
<td>VHMS deposits expressed in acid insoluble residue: bents and remnants of Mn bearing carbonates and further sericiotisation and feldspar destruction. Criteria* for VHMS deposits are Ba>500 ppm and Mn>100 ppm, an index of Zn/Pb >50 (ppm)</td>
</tr>
<tr>
<td>Panning and sluicing</td>
<td>Fine gravel and sand of quartz, feldspar, biotite, muscovite</td>
</tr>
<tr>
<td>Active stream sediments</td>
<td>The 180 µm fraction is the best compromise between sample availability and contrast.</td>
</tr>
<tr>
<td>Soil</td>
<td>Preferably C horizon; Cu, Pb, Zn, Ni, Ag, As, Au, Ba, Fe, Mn (after dry-ashing)** G on separate samples by Leco gas analyser</td>
</tr>
<tr>
<td>Vegetation</td>
<td>Dry-ashed material; detection limits**</td>
</tr>
<tr>
<td>Channel sampling</td>
<td>Cu, Pb, Zn, Fe, Ag, Au, Au, Mi, Ba. Detection limits* Cu 4 ppm, Pb 5 ppm, Zn 5 ppm, Ag 2 ppm, Ba 30 ppm and Mn 50 ppm. Au by fire assay 5 ppb.</td>
</tr>
</tbody>
</table>

* Detection limits for XRF are Ba 30 ppm, Mn 60 ppm, Zn 5 ppm, Pb 5 ppm, K 3 ppm, Rb 5 ppm and Al 100 ppm. Detection limits for PIXE/PIGME on bulk samples are Ba 50 ppm, Mn 7 ppm, Zn 2 ppm, Pb 4 ppm K 35 ppm, Rb 3 ppm and Al 400 ppm

** Detection limits in ppm for AAS are: Cu 1, Pb 5, Zn 2, Ni 5, Ba 10, Fe 5, Mn 2

Soil
Farrell and Orr (1980) presented data for a 470 m EW orientation traverse in the Southern Trenches area. They analyzed the minus 175 µm fraction of the A0 and C horizons for Cu, Pb and Zn (HNO3/HClO4 digestion), Ba (HNO3/HClO4/H2PO4 digestion) and Hg (acid digestion, hydride reduction and flameless AAS). Copper, Pb and Zn were found to be concentrated in the A0 horizon (Figure 6), presumably as organo metallic complexes and thereby resisting solution and downward leaching. In comparison, Ba is concentrated in the C horizon, whereas Hg is variable. Subsequently, a similar fraction of the A0 horizon was sampled over an 1100 x 1400 m area on a 20 x100 m grid (Hall, 1978; Farrell and Orr, 1980). This survey showed discontinuous base metal anomalies that were shown by subsequent costeining and drilling to reflect, in part, mineralization. As part of the same program, two soil profiles over mineralization were investigated in pits at Southern Trenches by Beamish (1978). Samples from below 25 mm depth were crushed to <180 µm and analysed for Cu, Pb, Zn, Mn, Ni and Ba. The soil profile is given in Figure 2. The two pits are almost identical, with the highest abundances of Cu, Pb and Zn in the ash of black decay material of the A0 horizon. Concentrations sharply decrease in A1, A2 and C horizons (Table 1 and Figure 4), possibly increasing in the saprolite. The decrease may be explained if the profile is likened to an exchange column, fed by material from decaying organic material from fallen leaves. Water percolating through the A0 horizon, is enriched in carbonic and humic acids. Although weak, these acids are in continual supply from the decomposing humus. and leach the horizons below. Soil sampling in western Tasmania is generally confined to the C horizon (saprolite/saprock; in practice as deep as the auger can penetrate). Because the B horizon is generally absent, sampling at constant depth (0.1-0.2 m) results in meaningless data. Further discussion of element mobility and dispersion in these lithosols is given by Russell and van Moort (1981).

Over past decades, analysis of tens of thousands of soil and auger samples in the Pinnacles area have discovered no new targets, other than those originally found. The soil anomalies above the two pyritiferous shale zones in the headwaters of Boco Creek had saprock abundances of >220 ppm Pb and >130 ppm Zn. The corresponding A0 horizon anomalies are displaced down-slope.

Vegetation
Element distributions shown by analysis of leaves of Nothofagus cunninghamii in the Boco area are in general agreement with A0 horizon soil sampling.

Stream sediments
Beamish (1978) collected stream sediment samples (200 g) at approximately 100 m intervals from active streams draining Thomas’ Tunnel and Southern Trenches (Figure 5). Samples were taken immediately upstream and downstream of creek junctions. Three fractions (850–450 µm, 450–180 µm and <180 µm) were analysed for Cu, Pb, Zn, Mn, Fe, Ni and Ba. The <180 µm fraction returns more abruptly to background and provides the best compromise between sample availability and contrast. R-mode factor analysis of each fraction produced element associations in Factor 1 consistent with the primary mineralization; for the <180 µm fraction, it is Ba-Cu-Pb-Zn. Plotting of Pb/Fe and Zn/(Mn+Fe) ratios magnifies the footprint of the
mineralization at the Pinnacles by removing the effects of scavenging by Fe and Mn oxides.

Subsequent stream sediment sampling in the headwaters of Boco Creek traced a Cu-Pb-Zn anomaly upstream. Soil sampling and trenching located two pyritiferous, weathered, grit-like shale horizons, with 300 and 735 ppm Pb, 30 and 70 ppm Zn, 30 and 70 ppm Cu, and 500 and 700 ppm respectively. However, Ba is <500 ppm (Beamish prospect, Figure 1).

Soil samples along line 4400mN across the Southern Trenches mineralization were collected within the variably organic sandy loam layer, below the root mat zone, at 50-250 mm below surface (soil pH <5). Samples were sieved to <5 mm, dried and were leached with a very weak ion-exchange agent, a strong ion-exchange agent and a non-specific chelating/complexing agent for Ba and base metals. The abundances of Zn extracted by these three MMI leaches are similar and show a pronounced peak above the mineralization (Figure 9). Follow up by Bettenay (1998) showed that Zn and Cd best define the Southern Trenches mineralization, presumably due to their mobility or preference for the soil bonding sites accessed by the leaching solutions.

REFERENCES

Figure 9. Abundances of Zn extracted by individual MMI “Deepleach” extractions Line 4400N, Southern Trenches (Dronseika, 1998).