The Penny West gold deposit in Western Australia is located at 28°51'13"S, 118°48'28"E; Youanmi 1:250 000 map sheet (SH50-04). It is approximately 115 km SSW of Sandstone and 28 km S of the old mining centre of Youanmi (Figure 1).

PHYSICAL ENVIRONMENT

The deposit occurs on a low, N trending ridge that rises to about 20 m above the recent alluvial plains to the E. The area is covered by a climax vegetation of Acacia aneura with scattered eucalyptus trees and a few sandalwood trees (Santalum sp.). It receives 200-250 mm of rain per year, mostly in winter associated with passing cold fronts. Maximum temperatures range from 15°C in winter to 30°C in summer. The deposit is on Youanmi Downs pastoral station, subject to low density sheep grazing.

Infill soil sampling confirmed the anomaly that is parallel to interpreted geological structures in the area. Follow up vacuum drilling proved very difficult. An apparent abundance of rocks and stones continually impeded the narrow diameter vacuum drill after a few metres. This was abandoned and a program of vertical RAB drilling successfully reached saprolite, and recorded sporadic Au concentrations up to 1.5 ppm. RAB drilling in June 1990 was on five E-W oriented lines 100 m apart, N-S across the target with holes angled 60° to the W. This assumed that, with the granite contact to the W, the regional dip would be easterly. To ensure overlap, holes were drilled on 25 m centres to a depth of 50 m. The drilling intersected significant sulphidic and gossanous quartz with high grade Au in three holes on two adjacent lines, and intersected the vein in consecutive holes on the northern line, confirming the dip. The highest grade was 339 g/t Au over 1 m. The RAB drilling was infilled on 50 m line spacing at Penny West, and extended at 100 m line spacing for a kilometre S in September 1990. The infill RAB drilling confirmed the mineralisation over approximately 400 m of strike, but at a lower grade than the original intersections. Subsequent RC and limited diamond drilling delineated a mineralized quartz vein striking roughly N. Highest Au grades occurred where the strike of the quartz vein swung by approximately 10° to the NNE. The deposit was mined in 1991-1992, and treated through the Youanmi plant, some 28 km N. It produced approximately 150 000 oz of gold from 200 000 t of rock at an average grade of 22 g/t.

GEOLOGICAL SETTING

The deposit is situated at the southern extremity of the Youanmi-Sandstone greenstone belt, which is classified as the northern extension of the Southern Cross Province of the Archaean Yilgara Craton (Hughes, 1990). Locally referred to as the Youanmi Greenstone Belt, the belt comprises predominantly metamorphosed tholeiitic basalts and intrusives, with minor banded iron formation, porphyries and felsic, pyroclastic rocks. The Youanmi Intrusive complex of layered mafic and ultramafic rocks occurs to the immediate W of the N-S striking greenstone belt. The greenstones are generally metamorphosed to greenschist facies, and strongly deformed close to the dominant regional structure, the Youanmi Fault, which occurs some 3 km E of the Penny West deposit (Munro, 1990).

A quartz vein up to 5 m thick, but commonly less than 3 m thick hosts the Penny West gold deposit. This is contained in weakly sheared meta-basalts. Alteration includes weak development of carbonates (calcite and possibly ankerite) and sericitization.
REGOLITH

Drilling revealed that the top 10 m was composed principally of gravel and sand, with saprolite below 10 m vertical depth. Exposures in the open pit showed layers of imbricate gravel in the lower portion of the alluvial profile. A stone line, dominated by white vein quartz, marks the unconformity. Saprolite extends to about 50 m vertical depth. Fresh rock predominates below 60 m vertical depth, although oxidation extends to at least 80 m in fracture zones.

MINERALIZATION

The auriferous vein is hosted by Archaean meta-basalts. In the centre of the mineralized zone, as indicated by the soil anomaly, the vein changes direction by some 5 to 10 degrees, and along that flexure high of the mineralized zone, as indicated by the soil anomaly, the vein extends to at least 80 m in fracture zones. Fresh rock predominates below 60 m vertical depth, although oxidation extends to at least 80 m in fracture zones.

The auriferous vein is hosted by Archaean meta-basalts. In the centre of the mineralized zone, as indicated by the soil anomaly, the vein extends to at least 80 m in fracture zones. Fresh rock predominates below 60 m vertical depth, although oxidation extends to at least 80 m in fracture zones.

MINERALIZATION

The auriferous vein is hosted by Archaean meta-basalts. In the centre of the mineralized zone, as indicated by the soil anomaly, the vein changes direction by some 5 to 10 degrees, and along that flexure high of the mineralized zone, as indicated by the soil anomaly, the vein extends to at least 80 m in fracture zones. Fresh rock predominates below 60 m vertical depth, although oxidation extends to at least 80 m in fracture zones.

REGOLITH EXPRESSION

Ten metres of alluvium on top of the saprolite profile was unexpected. During mining, layers of imbricate gravel were found immediately above the base of the transported overburden (L. Hill, pers. com.). At that time it was normal practice to avoid soil sampling areas of transported overburden. Had the alluvium, subsequently defined by absence of quartz lag, been recognised, almost certainly soil sampling would not have been used. So a surface anomaly in transported overburden, directly over the ore body, was unexpected and exciting, causing much speculation about its source. Attempts were made to optimise both surface sampling methods and to examine possible mechanisms for Au mobility in transported overburden before the deposit was mined.

Typically, Au concentrations above detection limit (5 ppb) were found in the first metre of each hole, confirming the soil anomaly. Below this, Au concentrations decreased to below detection until the stone line at the interface was reached. Gold concentrations in the grams per ton range were common in the stone line vertically beneath the peak soil anomaly. A massive, 0.5-5.0 m thick quartz vein was intersected in the centre of each traverse, more or less beneath the peak of the surface soil anomaly. Gold in this vein reached 200 ppm along with sporadic concentrations of Cu, Pb and Zn reaching 5000 ppm.

Two lines 100 m apart were soil sampled at 25 m centres over mineralization and at 50-100 m centres further away (Radford, 1991b). At each site, two samples were taken for Au-in-soil analysis, a fine fraction (<150 µm) and a lag sample (>500 µm) and analysed by aqua regia, with an AAS finish for Au and Pb. In each fraction, the Au anomaly was about 200 m wide across strike (Figure 2), compared with the maximum vein width of 5 m in saprolite. Values in the fine soil and lag, were similar, with peak values of 350 ppb against a background of <5 ppb. It was concluded that a robust Au-in-soil anomaly would have been detected using either fine fraction or lag sampling at 100 m centres over this orebody.

Samples of vegetation were collected along these two orientation lines. Two distinctly different mulga (Acacia) species were identified, but only the more abundant was sampled, believed to be Acacia aneura. Bushes up to 2 m grew at a density of 1 per 5 m linear distance. Sandalwood and eucalypt trees were too scarce to provide anything other than sporadic coverage. Mulga leaves were ashed and digested in aqu regia prior to carbon rod AAS determination for Au and Pb. The background for Au was about 1-2 ppb, whereas, over mineralization, somewhat erratic values up to 4 ppb occurred on both lines. There was no systematic variation in Pb content.

REFERENCES

<table>
<thead>
<tr>
<th>Sample medium</th>
<th>Indicator elements</th>
<th>Analytical methods</th>
<th>Detection limits</th>
<th>Background</th>
<th>Threshold</th>
<th>Maximum anomaly</th>
<th>Dispersion distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary mineralization</td>
<td>Au, Pb, Zn, Cu</td>
<td>Total acid AAS</td>
<td>1ppb, 5ppm, 5ppm</td>
<td><5ppb, <5ppm</td>
<td>300ppm</td>
<td>5%</td>
<td>All within quartz vein lode</td>
</tr>
<tr>
<td>Soil</td>
<td>Au, Pb</td>
<td>Aqua regia AAS</td>
<td>1ppb, 5ppm</td>
<td><1ppb, <5ppm</td>
<td>5ppb</td>
<td>10ppm</td>
<td>300ppb across strike</td>
</tr>
<tr>
<td>Interface/unconformity</td>
<td>Au</td>
<td>AR AAS</td>
<td>1ppb</td>
<td><5ppb</td>
<td>10ppb</td>
<td>1.5ppm</td>
<td>unknown</td>
</tr>
<tr>
<td>Vegetation</td>
<td>Au</td>
<td>Ashed sample AR AAS</td>
<td>0.1ppb</td>
<td>Approx 1ppb</td>
<td>2.0ppb</td>
<td>4.2ppb</td>
<td>Approx 100m</td>
</tr>
</tbody>
</table>