DEVELIN CREEK BASE METAL DEPOSITS, CENTRAL QUEENSLAND

K.M. Scott1, S.J. Fraser2, D. Horton3 and D. Milburn3

1CRC LEME c/- CSIRO Exploration and Mining, PO Box 136, North Ryde, NSW 1670
2CSIRO Exploration and Mining, QCAT, PO Box 883, Kenmore, QLD 4069
3formerly Queensland Metals Corporation Limited, Toowong, QLD 4066

LOCATION

The Develin Creek Cu-Zn-Ag-Au deposits are located 15 km S of Marlborough and 70 km NW of Rockhampton at 23°02'S, 149°49'E; Duaringa (SF 55-16) 1:250 000 map sheet.

DISCOVERY HISTORY

The Develin Creek deposits are only 80 km NW of the major volcanogenic Mt Morgan Cu-Au deposit (Figure 1; Messenger et al., 1998). Although the Palaeozoic volcanic rocks of the region have been prospected for volcanogenic deposits since the late 1970s, Queensland Metals Corporation Ltd only commenced exploration for volcanogenic deposits in the region during 1986, following the discovery of the Kunwarara magnesite deposit in 1985 (50 km to the E; Milburn and Wilcock, 1998). This ultimately led to the discovery of the Develin Creek deposits in late 1992.

No significant anomalies were found after a semi-regional stream sediment programme in 1988 (Horton et al., 1994), but weakly mineralized float (Au, Ag and As) was traced to a small window of highly weathered Palaeozoic volcanic rock within lateritized Tertiary sediments (Queensland Metals Corporation Limited, 1993). Poorly outcropping gossanous breccias within this window were investigated by costeans and shallow percussion drilling which intersected only intensely weathered volcanic rocks. However, in late 1992, deeper percussion drilling intersected 25 m of sulphides (2.87% Zn, 0.49% Cu and 14 g/t Ag) below 38 m. Subsequent percussion and diamond drilling intersected high grade Cu and Zn mineralization striking for 200 m in a submarine talus breccia, hosted by andesites and basalts (Queensland Metals Corporation Limited, 1993).

Various geochemical sampling media were evaluated. Although stream sediment sampling was ineffective (Horton et al., 1994) probably due to the strong leaching of Cu and Zn during weathering, multi-element soil and rock geochemistry reflects the mineralization (Scott, 1994). The geophysical response of the mineralization (gravity, magnetic and IP) is largely obscured by conduetive weathered cover but basement structures can be interpreted (Queensland Metals Corporation Limited, 1993).

PHYSICAL FEATURES AND ENVIRONMENT

The climate is subtropical, subhumid with hot, wet summers and warm, dry winters and a few frosts (Bureau of Meteorology, 2003). The mean annual rainfall of 820 mm falls mainly during December-March. The mean daily maximum and minimum temperatures are 32°C and 22°C in January and 23°C and 9°C in July. The vegetation is brigalow forest, which is about 40 m higher than the surrounding country. Small ephemeral stream channels, including one which cuts through altered volcanic rock, deeply incise the mesa.

GEOLOGICAL SETTING

The Lower Permian Rookwood Volcanics, comprising spilite pillow lava, agglomerate, volcanic breccia, chert, vitric tuff and tuffaceous sandstone/siltstone, unconformably overlie older Permian and Siluro-Devonian rocks. They form an elongate N striking belt on the E edge of the Permian Bowen Basin, in Central Queensland. The Develin Creek deposits occur within these andesites and basalts. During the Tertiary, the prospective Palaeozoic rocks were unconformably overlain by flat-lying freshwater sandstones, siltstones and conglomerates of the Duaringa Formation (Dickson et al., 1996). This unit contains fossilised trees at its base. The Duaringa Formation is extensively ferruginized near the Develin Creek deposits.

MINERALIZATION

The Develin Creek deposits occur in two discrete centres (Window-Scorpion and Sulphide City, Figure 3) within 500 m of each other in the andesites and basalts of the Rookwood Volcanics. The Window-Scorpion deposit occurs in a 400 x 200 m zone in altered volcanic rocks astride a NE trending fault (Ron’s Fault). The more northerly Scorpion mineralization has an E strike of 200 m and consists of brecciated massive sulphides that grade to 6% Cu, 9% Zn, 43 g/t Ag and 1 g/t Au. The southerly and highly weathered Window mineralization is chalcopyrite massive sulphides and sulphidic breccias with a 2 mm thick supergene blanket of covellite-chalcocite at 50 m depth (Queensland Metals Corporation Limited, 1994). The Sulphide City mineralization, NE of the Window-Scorpion deposit, consists of stockwork, disseminated and massive sulphide mineralization in a structurally complex area. The massive sulphides (12 m @ 2.1% Cu and 3.2% Zn in broader zones of lower grade mineralization) occur over 300 x 150 m beneath 100 m of unaltered volcanics. Extensive
chlorite-pyrite alteration underlies the Window-Scorpion and Sulphide City mineralization (Queensland Metals Corporation Limited, 1994; Horton et al., 1994) but hangingwall alteration is subtle andrestricted to slightly elevated abundances of Ba, S, Cu and Zn (Scott, 1994).

**REGOLITH EXPRESSION**

Weathering of pyrite, chalcopyrite and sphalerite mineralization in the Window-Scorpion deposit has incorporated As, Mo, Pb, Cu and Zn into neo-formed Fe oxides and alunite-jarosite minerals (Scott, 1994) above 40 m. However, the amounts are generally <500 ppm, so near-surface saprolites are generally depleted (<70 ppm Cu and <10 ppm Zn). Nevertheless, an alunite-rich sample from the creek bank in the Window area contains 530 ppm Cu and 11 ppm Zn and subcrop from the Scorpion area contains up to 390 ppm Zn and 40 ppm Cu. Barium, occurring in micas and possibly as primary barite, and $S$ are concentrated in the saprolite. Because As, Cu, Mo, Pb, S and Zn are preferentially incorporated into Fe oxides, ferruginous saprolite or ferruginous parts of saprolitate samples should be specifically targeted.

In the Window area, residual soils have similar compositions to the bedrocks, i.e., low Cu and Zn but elevated As contents (see table). Hydromorphic dispersion into the Tertiary sediments does not seem to have occurred. However, because the float samples, which led to the discovery of the Window mineralization, contained elevated Au, Ag and As, mechanical dispersion into the cover is possible and interface sampling should be evaluated here.

**REFERENCES**


**SAMPLE MEDIA - SUMMARY TABLE**

<table>
<thead>
<tr>
<th>Sample medium</th>
<th>Indicator elements</th>
<th>Analytical methods</th>
<th>Detection limits (ppm)</th>
<th>Background (ppm)</th>
<th>Maximum anomaly (ppm)</th>
<th>Dispersion distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary mineralization</td>
<td>As, Cu, Zn</td>
<td>AAS</td>
<td>20</td>
<td>2</td>
<td>500</td>
<td>4.2%</td>
</tr>
<tr>
<td>Subcrop</td>
<td>As, Cu, Zn</td>
<td>ICP MS</td>
<td>1</td>
<td>3</td>
<td>860</td>
<td>5.67%</td>
</tr>
<tr>
<td>Soil</td>
<td>As, Cu, Zn</td>
<td>AAS</td>
<td>2</td>
<td>7</td>
<td>170</td>
<td>10% (mechanical dispersion)</td>
</tr>
</tbody>
</table>

AAS and ICP analysis after dissolution with HClO4/HF/HNO3/HCl.