

Cooperative Research Centre for Landscape Environments and Mineral Exploration

GEOLOGY, GEOCHEMISTRY AND MINERALOGY OF THE MURRIN MURRIN NICKEL LATERITE DEPOSIT

M.A. Wells and C.R.M. Butt

CRC LEME OPEN FILE REPORT 207 / CSIRO REPORT P2006/549

August 2006

(CRC LEME Report 126R, 2nd Impression 2006)

RCLEM

CRC LEME is an unincorporated joint venture between CSIRO-Exploration & Mining, and Land & Water, The Australian National University, Curtin University of Technology, University of Adelaide, Geoscience Australia, Primary Industries and Resources SA, NSW Department of Primary Industries and Minerals Council of Australia, established and supported under the Australian Government's Cooperative Research Centres Program.

Cooperative Research Centre for Landscape Environments and Mineral Exploration

GEOLOGY, GEOCHEMISTRY AND MINERALOGY OF THE MURRIN MURRIN NICKEL LATERITE DEPOSIT

M.A. Wells and C.R.M. Butt

CRC LEME OPEN FILE REPORT 207 / CSIRO REPORT P2006/549

August 2006

(CRC LEME Report 126R, 2nd Impression 2006)

© CRC LEME 2006

CRC LEME is an unincorporated joint venture between CSIRO-Exploration & Mining, and Land & Water, The Australian National University, Curtin University of Technology, University of Adelaide, Geoscience Australia, Primary Industries and Resources SA, NSW Department of Primary Industries and Minerals Council of Australia.

Copies of this publication can be obtained from:

The Publications Officer, CRC LEME, c/- CSIRO Exploration & Mining, PO Box 1130, Bentley WA 6102, Australia. Information on other publications in this series may be obtained from the above, or from http://crcleme.org.au

Cataloguing-in-Publication

Geology, Geochemistry and Mineralogy of the Murrin Murrin Nickel Laterite Deposit

M.A. Wells & C.R.M. Butt
ISBN 1 921039 44 2
1. Geology
2. Geochemistry - Analytical
3. Mineralogy
I. M.A. Wells & C.R.M. Butt
II. Title
CRC LEME Open File Report
ISSN 1329-4768

Addresses and affiliations of authors

Martin R. Wells	Charles Butt
Cooperative Research Centre for	Cooperative Research Centre for
Landscape	Landscape
Environments and Mineral	Environments and Mineral
Exploration, University of	Exploration
Canberra	c/- CSIRO Exploration & Mining
c/- CSIRO Exploration & Mining	PO Box 1130
PO Box 1130	Bentley
Bentley	WA 6102
WA 6102	Western Australia
Western Australia	

DISCLAIMER

The user accepts all risks and responsibility for losses, damages, costs and other consequences resulting directly or indirectly from using any information or material contained in this report. To the maximum permitted by law, CRC LEME excludes all liability to any person arising directly or indirectly from using any information or material contained in this report.

© Cooperative Research Centre for Landscape Environments and Mineral Exploration 2006

Execu	tive summary		
1.0 Int	troduction		
	1.1 Backgroun	d	
	1.2 Geological	setting	
		blogy	
	1.4 Climate and	d vegetation	
		of Ni-Laterites	
		rrin Ni-laterite	
		ectives	
	1.8 Specific pr	oject objectives	
		rk program	
	-	earch projects	
		Palaeomagnetic dating	
		Stable O-isotope dating	
		ogy	
		Infrared analysis	
		3-D Modelling (MVS)	
		Limitations to MVS modelling	
		Geochemistry X-ray diffraction	
		Mass balance	
		Stable O-isotope analysis of kaolinite; preparati-	
		Cluster analysis	
·		Normative mineral analyses	
t vie vyšeja – t		ns of the study	
2.0 M	urrin Murrin reg	ion regolith-landform map	
	2.1 Introduction	n	
	2.2 Regolith m	apping and terminology	
	2.3 Methodolo	gy	
		Aerial photographs	
	2.3.2	Magnetic and radiometric data	
	2.3.3	Digital elevation model	
	2.3.4	Landsat thematic data	
	2.4 Remote set	nsing of regolith-landform units	
	-	undform units and relationships	
	2.5.1	Relict regime	
	2.5.2	Erosional regime	
	2.5.3	Depositional regime	
3.0 R	-		
		DN	
		ology and site description	
	3.3 Mineral id	entification	
	3.3.1	PIMA-II.	
	3.3.2	X-ray diffraction analysis	
	3.4 Regolith s	tratigraphy	

Table of Contents

Ũ	odels for MM2 and MM3	-
3.5.1	Bedrock geology	
3.6 CIPW-Norn	n abundances	53
	Criteria and order of element allocation for calculations of CIPW-Norm abundances for MM2 and MM3.	
	Criteria and order of element allocation for calculations of CIPW-Norm abundances for the channel-clay unit, MM2	
3.7 Normative r	nineralogy for MM2 and MM3	
	Normative mineralogy of channel clays for MM2	
4.0 Geochemistry: Elen	nent-regolith associations	75
4.1 Introduction	1	75
4.2 MVS model	lling: block models for MM2 and MM3	75
	MM2	
4.2.2	MM3	
4.3 MVS model	lling: slices and regolith surfaces	
4.3.1	MM2	79
4.3.2	MM3	
4.4 Cluster Ana	lysis	
	Cluster analysis: global and individual deposits	
4.4.2	Cluster analysis; regolith geochemistry	
4.5 Mass balance	ce analysis	
4.6 Mass balance	ce profiles: MM2 and MM3	
4.7 Summary		
5.0 Summary and discu	ssion	
 6.0 Aknowledgements.		
7.0 References		

EXECUTIVE SUMMARY

A regional and deposit scale examination was undertaken of the characteristics and factors controlling enrichment of Ni and Co within the Ni-laterite deposits at Murrin Murrin. Compilation of a 1:50000 regolith-landform map by a combined approach that incorporated aerial photographic interpretation and magnetic, radiometric and Landsat TM image analysis established the regional regolith-landform setting of the deposits within the north and south tenements at Murrin Murrin. The regolith-landform map is also available as a separate report (Wells, 1999) and is available on CD as a MapInfo project.

Examination of the factors controlling Ni and Co enrichment at the deposit scale was achieved by characterization of element-regolith associations for two sites, MM2 and MM3, within the north and south tenements, respectively. Regolith characteristics of the Ni-laterite profiles at the two sites were modelled using the Mining Visualization Software (MVS) system, mass balance studies cluster analysis and from determinations of CIPW-Norm mineral abundances.

The mineralogy and element associations within regolith units at depth for both sites was similar because of the similar bulk chemistry (*i.e.*, high Mg; low Si, Al and Fe) of the underlying serpentinized cumulate and because of the minimal effect of weathering at these depths. The greater effect of weathering in the upper portion (*i.e.*, near surface) of profiles highlighted differences in the chemistry of the underlying cumulate bedrock, which were expressed as relative differences in CIPW-Norm abundances of chlorite, saponite and nontronite between MM2 and MM3. Understanding of the variations in regolith mineralogy within and between deposits may have important metallurgical implications for ore processing.

The prevailing landform processes also influence element-regolith associations within the deposit and expression of the Ni-laterite profile at the surface. Introduction of locally derived felsic sediments (high in Al, Si, Ca and Ti) at the surface of the laterite profile at MM2 confused the element-regolith associations expected in profiles formed from weathered ultramafics. The depositional landform regime that prevails at MM2 is reflected in the subdued relief and minimal outcrop of laterite, which hinders exploration in the area. The more prominent relief at MM3 is a reflection of the prevailing relict and erosional landforms of the area that provides a better exposure of the laterite profile.

Mineralization of Ni and Co at MM2 is strongly controlled by structural overprinting of underlying ortho- and mesocumulates, which is expressed as a normally displaced, intersecting fault-set. Nickel and Co occur mainly within the nontronite unit in profiles formed over variably weathered ortho- and mesocumulates along the fault planes. Probable reactivation during weathering resulted

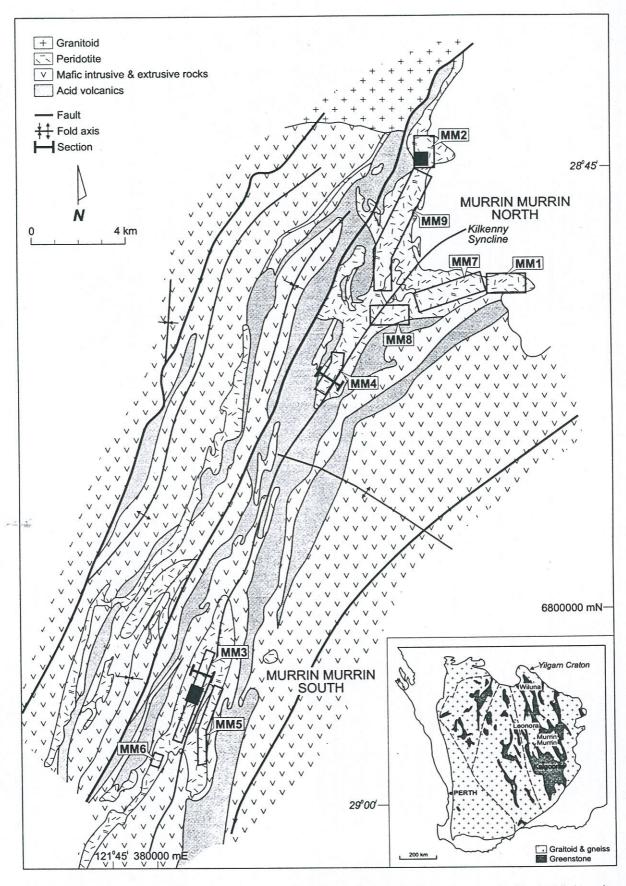
in the localized depletion of Ni and Co (and other metals) along fault shear planes. Threedimensional modelling, using MVS, of the fault-set within the regolith at MM2 was important to understanding the distribution of Ni and Co.

Enrichment of Ni and Co at MM3 is controlled strongly by lithology; variations in cumulate lithology were well correlated to values of the Ni/Ni+Al ratio. Mineralization occurs mainly within the nontronite unit of profiles developed from ortho- and mesocumulates where the nontronite unit was thickest, presumably because leaching was minimal. Ortho- and mesocumulates have weathered to variable depths that possibly reflect local variations in porosity of the serpentinized cumulate. Regolith profiles over adcumulates were more uniformly developed but to a shallower depth. Secondary silicification associated with initial stages of adcumulate weathering probably inhibited extensive profile development by impeding drainage. This also prevented enrichment of Ni and Co over adcumulates due to silicification either diluting enrichment or impeding the mobilization of Ni and Co within the profile.

1.0 INTRODUCTION

1.1 Background

The Murrin Murrin Ni-laterite deposit is situated approximately 60km east of Leonora within the north-eastern Yilgarn Craton of Western Australia (Figure 1.1) at 28° 50'S and 121° 54'E on the Laverton 1:250 000 (SH/51-2) map sheet.

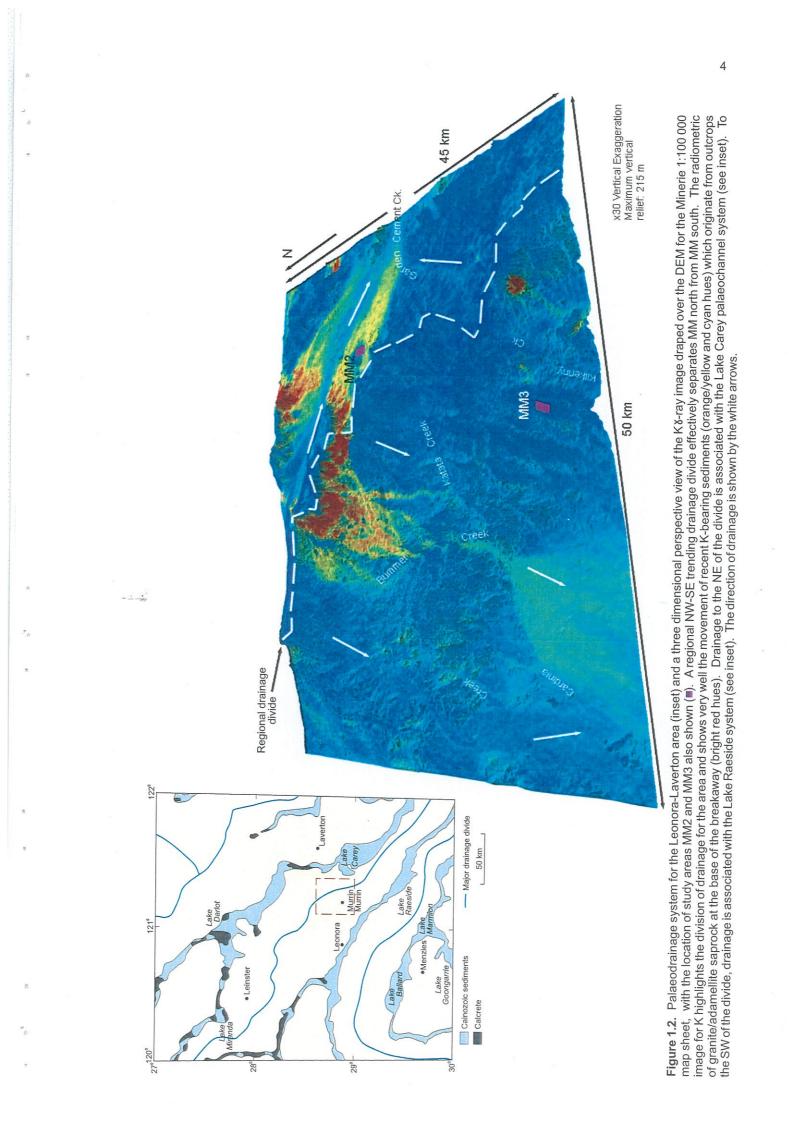

The area has experienced an extensive and varied exploration and mining history with early gold prospecting and mining beginning in the 1890's. This was followed by the production of copper between 1899 and 1908 from the Anaconda, Rio Tinto and Nangeroo mines after the discovery of small Cu-Zn sulphide deposits (Gower, 1976). Exploration for Ni commenced some 60 years later for Ni-sulphide hosted deposits, which although unsuccessful, realized the smectite hosted Ni-laterite deposits in the area (Monti and Fazakerley, 1996). These deposits were to wait nearly 30 years before undergoing commercial development by Anaconda Nickel NL. These deposits are one of three Ni-laterite deposits in the northeastern Yilgarn Craton that began production in 1999.

1.2 Geological setting

. . .¹

A detailed account of the regional and ore-deposit geology is beyond the scope of the present study. Hallberg (1985) and Hammond (1996), as summarized by Monti and Fazakerley (1996), provide a more detailed account of the geological and structural setting of the Murrin Murrin Ni-deposits. However, a summary of the main geological features is provided in the following discussion. A generalized geological and structural setting of the deposits is given in Figure 1.1.

The Murrin Murrin deposits are formed from serpentinized peridotite (*i.e.*, komatiitic olivine cumulates) host rocks within the Archaean Norseman-Wiluna greenstone belt (Monti and Fazakerley, 1996). These tend to form the lower stratigraphic sequences with feldspathic, clastic and volcaniclastic sedimentary rocks, and mafic volcanics and intrusives tending to comprise the upper units (Monti and Fazakerley, 1996). Granite, granodiorite and adamellite rocks have also intruded the sequence.


Figure 1.1. Location and generalized geological and structural setting for the Murrin Murrin Ni-deposits (modified from Monti and Fazakerley, 1996). Two areas (■) were selected within the MM2 and MM3 deposits for further detailed study.

A regional scale, north plunging anticlinorium to the east of the Murrin Murrin ultramafic sequences and a synclinorium, developed on a similar scale to the west, have constrained the Murrin Murrin ultramafic rocks to a NNE-SSW striking sequence (Hammond, 1996). The sequence is further constrained by regional scale NNE striking, westerly dipping faults (Fig. 1.1) which are offshoots of the NW striking Keith-Kilkenny fault to the SW (Monti and Fazakerley, 1996). Emplacement of felsic (*i.e.*, granite, granodiorite) intrusives has further complicated the deformational history of the greenstone belts with tightly folded synclinal features (*i.e.*, the Kilkenny syncline) that shows plunge reversals (Fig. 1.1). This has ultimately resulted in the formation of two outcrops of serpentinized peridotite designated as Murrin Murrin North and Murrin Murrin South (Fig. 1.1). These areas will hereafter be referred to throughout this report as MM North and MM South.

1.3 Geomorphology

The Murrin Murrin Ni-laterite deposits occur within a gently undulating terrain of generally low relief. Weathered ultramafic sequences generally provide the few high points in the landscape consisting of sub-parallel, elongated ridges and hills, and isolated hills (*i.e.*, mesas and buttes) and minor breakaways capped by ferruginous duricrust. To the north granite-granodiorite-adamellite rocks (*i.e.*, East Terrace area and Minerie Hill) have formed significant, residual breakaways with extensive plateau surfaces and associated backslopes.

Extensive depositional sediments as alluvial and colluvial plains blanket large areas to the NW, SW and ESE of the Ni deposits. These alluvial sediments form part of an extensive NW-SE trending, sub-parallel palaeodrainage system (Fig. 1.2) which drains to the SE bounded by the Lake Carey palaeochannel system to the NE and the Lake Raeside system to the SW (Pringle *et al.*, 1994). The NNE-SSW striking ultramafic sequences have formed a drainage divide in the north of the area and are part of a regional NW – SE striking drainage divide (Fig. 1.2) (Pringle *et al.*, 1994). Katata Creek has made a westerly incision into the ultramafic sequences and connects with Maleta and Bummer Creeks, which drain to the south-west. Kilkenny Creek, which runs sub-parallel to the strike of the ultramafic sequences that outcrop in MM south, also drains to the SW. These systems ultimately drain into the Lake Raeside palaeochannel system. The main drainage system to the NE of MM north (*i.e.*, Garden Cement Creek) runs to the east and ultimately flows into Lake Carey.

1.4 Climate and vegetation

The climate is semi-arid, with generally hot, dry summers and cool, wet winters. The mean annual rainfall for both Leonora and Laverton is 222 mm (Pringle *et al.*, 1994). Summer rainfall does occur from sporadic thunderstorms associated with cyclonic depressions. An average maximum temperature for January of 37.1° C with an average minimum of 21.5° C is recorded for Leonora. The coolest month for Leonora is July with mean maximum and minimum temperatures of 18.2 and 6.0° C, respectively (Pringle *et al.*, 1994).

Vegetation is mainly open woodland dominated by acacia (e.g., Acacia aneura – mulga) and eremophila species (e.g., poverty bush). Low shrublands are also present characterized by *Maireana sedifolia* (pearl bluebush), *M. pyramidata* (sago bush), *Casuarina cristata* (black oak tree), *Ptilotus obovatus* (cotton bush) and Wanderrie grasses (Pringle et al., 1994). Various eucalypts (e.g., Eucalyptus camaldulensis - river red gum) can be found in the area but these are restricted to the main drainage lines. Salt-tolerant shrubs are also present occurring mainly in open alluvial plain areas and include various saltbush (atriplex) species (e.g., Atriplex bunburyana - silver saltbush). Isolated populations of the declared rare flora (DRF) *Hemigenia exilis* occur in the MM south area restricted mainly to duricrust ridges and hills, but also occur in down slope positions along creek lines.

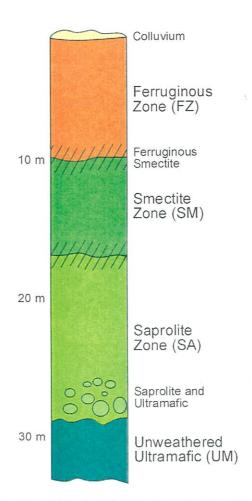
a de marco

1.5 Formation of Ni-Laterites

Lateritic Ni-deposits form by the chemical weathering of ultramafic Ni-host rocks. Most Nilaterites of commercial significance appear to have formed from serpentinized peridotite, containing forsteritic (Fo) olivine as the main Ni source, and their metamorphic derivatives having a minimum Ni content of >2500 ppm (Burger, 1996).

Nickel laterite profiles are zoned consisting of a general sequence from bedrock to surface of: unweathered serpentinized ultramafic; saprolite zone; clay (smectite-rich) zone; ferruginous zone and soil cover. Brand *et al.*, (1998) have classified lateritic Ni-deposits into three main groups on the basis of the dominant mineralogy of the main Ni-bearing phases:

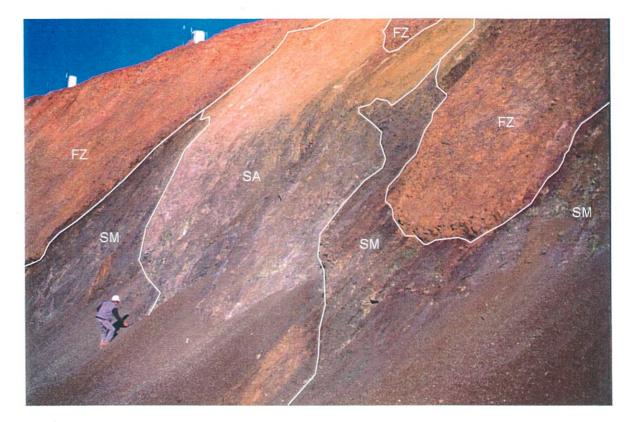
A. Garnieritic silicates. Dominated by 'garnierite-like' phases (essentially hydrated Mg-Nisilicates) that occur generally deep in the saprolite. High grade: global mean 1.53 % Ni. *Examples*: Thio-Nakety districts, New Caledonia; Cerro Matoso, Colombia; Marlborough, Qld (Butt, 1974; Golightly, 1979, 1981; Parianos and Rivers, 1996).


- B. Smectite silicates. Consisting mainly of smectitic clays (e.g., nontronite), commonly occurring in the upper saprolite and/or pedolith. Low grade: global mean 1.21 % Ni. Examples: Brazil; Murrin Murrin, W.A.; Bulong, W.A. (Monti and Fazakerley, 1996; Monti. 1999; Burger, 1996, 1999; de Oliveira et al., 1992).
- C. Oxide. These are dominated by Fe oxides (e.g., goethite and hematite), commonly occurring in the upper saprolite and/or pedolith. They are characterized by low Ni grades with a global mean of 1.06 % Ni. Examples: Goro, New Caledonia; Moa Bay, Cuba; Ivory Coast, west Africa; Cawse, W.A.; Ravensthorpe, W.A. (Brand et al., 1996; Denn, 1999; Lipton et al., 1999; Nahon et al., 1982).

The presence of Co in these deposits is associated with Mn oxides (Mn being derived from primary Mn-bearing pyroxene in the host rock) which occur generally higher in the profile under suitable conditions of Eh and pH near the smectite/ferruginous zone contact. The Mn oxides account for only a minor amount of Ni within these deposits but appear to be the main host for Co (Butt and Nickel, 1981; Elias *et al.*, 1981: Llorca, 1993).

The characteristics of each Ni-laterite type, including Ni-grade and mineralogy are the result of the combined interaction of a range of climatic, geomorphological and geological (*i.e.*, lithology, structure) factors. Garnieritic silicate Ni-deposits account for the majority of continental Ni-deposits and are developed mainly from obducted Miocene and Pliocene ophiolite sequences, mainly harzburgite-olivine dunite cumulates (Brand *et al.*, 1998). Examples include, the Ni-deposits of Philippines and Australia (*e.g.*, Marlborough), and some deposits of New Caledonia. These deposits are characterized by typically high Ni-grades (2.5-5.0% Ni), in areas of very high relief in seasonally humid, tropical climates. In contrast, lateritic Ni-deposits such as Murrin Murrin are generally characterized by low Ni-grades (1.0-1.2% Ni) developed from weathered ultramafics (*i.e.*, komatiitic olivine cumulates) in a now, semi-arid environment of low relief.

1.6 Murrin Murrin Ni-laterite


Monti and Fazakerley (1996) and Camuti and Riel (1996) have described a generic profile for the Murrin Murrin Ni-laterite with a detailed description of unit mineralogy provided by these authors. A diagrammatic representation of the Murrin Murrin Ni-laterite profile is given in Figure 1.3. The Ni-laterite profile 'stratigraphy' has been compiled by Anaconda Exploration Staff with unit identification based on the criteria outlined in the Murrin Murrin Murrin Feasibility study (Volume 2).

1 1

However, this profile is not a 'regolith' profile as such. Criteria used for unit classification relied mainly upon logging in the field of RC drill pulps by identification of colour and texture variations. Some unit identification criteria are open to subjective interpretation by the observer/s. For example, identification of the SM zone relied upon identification of moderate levels (*i.e.* >25%) of smectite (Murrin Murrin Feasibility study, Volume 2, Section 3, p3-37). This approach, although suitable for general descriptive purposes of identifying relative trends in profile mineralogy in two dimensions, is not suitable for an objective examination of the structural and lithological factors that control the distribution of Ni and Co in these deposits in three dimensions. This is particularly important in light of the, at times, highly variable nature of the Ni-laterite profile at Murrin Murrin. For example, the complex contact between the FZ and SM zones as shown in Figure 1.4 which may also cause problems in volume estimates for grade control calculations.

Figure 1.4. View of the western face of the trial pit at MM2 illustrating the highly variable and complex nature of the weathering profile at Murrin Murrin, in particular the contact between the ferruginous zone (FZ) and underlying smectite (SM) and saprolite (SA) zones (Anaconda Nickel unit classification terminology).

1.7 Project objectives

To determine the characteristics and distribution of nickel and cobalt enrichment in smectitic Murrin Murrin Ni-laterite deposit, and to determine its origin in terms of regolith and landform evolution.

1.8 Specific project objectives

- 1. Determine the evolution of the Murrin Murrin deposits within the context of their local and regional landscape setting.
- 2. Establish the mineralogical and geochemical characteristics of the Murrin Murrin Ni-deposits.
- 3. Determine the mineralogical controls on Ni/Co distribution within the deposits.
- 4. Evaluate the primary controls (*i.e.*, lithology/structure) to the distribution of Ni and Co and other elements.

- 5. Develop 3-D visualization models of the bedrock and regolith.
- 6. Establish a chronology of Ni-laterite formation in terms of local and regional landscape evolution by dating suitable primary and secondary mineralogical assemblages.

1.9 Project work program

A combined regional to local site scale approach was used to address each of the project objectives. A regional scale, regolith-landform map was compiled at 1:50 000 of the Murrin Murrin Ni-laterite deposits and surrounding tenements. This was to aid in establishing a regional landform setting for the evolution of the Ni-laterite deposits. The regolith-landform map was compiled from aerial photographic interpretation in conjunction with remotely sensed, reflected and emitted data. A detailed discussion of the regolith-landform map produced is provided in the following chapter. This was also provided as a separate report (Wells, 1999).

Two study areas were selected within the Murrin Murrin deposits (Fig. 1.1) to provide local-scale examination of the mineralogical and chemical factors influencing Ni and Co enrichment. A 600 x 900 m area within the MM2 deposit (9200 to 9800 mE; 26000 to 26900 mN) and a 500 x 800 m area within the MM3 deposit (9100 to 9600 mE; 71700 to 72500 mN) were selected to provide a comparative study of factors influencing mineralization at Murrin Murrin. The two study areas are hereafter referred to throughout this report as MM2 and MM3, respectively.

MM2 occupies part of the western limb of the northern expression of the Kilkenny syncline (Fig. 1.1) and is underlain by predominantly olivine ortho- and mesocumulates (Hill *et al.*, 1996). MM3 occupies part of the western limb of the southern expression of the Kilkenny syncline (Fig. 1.1). The ultramafic sequence here consists of a tightly folded (isoclinal?), olivine cumulate that grades from orthocumulate on the western margin of the limb to meso- and adcumulate lithologies in the centre, through to meso- and orthocumulates on the eastern margin of the limb towards the centre of the fold (Hill *et al.*, 1996). A more detailed summary of individual deposit geology is provided in the Murrin Murrin Feasibility Study (Volume 2).

Investigation of the regolith mineralogy and geochemistry for each of the study areas was conducted using a combination of x-ray diffraction (XRD), infrared analysis (IR) and x-ray fluorescence (XRF). Most analyses were performed on RC drill sample pulps, prepared according to the guidelines and procedures used by analytical laboratories Analabs and UltraTrace as outlined in the Murrin Murrin Feasibility Study (Volume 2).

Bulk, 'grab-bag' samples were collected from RC riffle split samples at the MM2 and MM3 sample farms on site. Northing transects of 200 m line spacings were taken across the MM2 and MM3 study areas with selected holes sampled for bulk density, XRD and some infrared analyses. Drill holes selected in transects depended primarily on the condition of the plastic sample bags at the sample farms. Three-dimensional models of Ni/Co (and other element) distributions in relation to regolith mineralogy were visualized from combining IR analyses and geochemical data, provided by Anaconda, using the Mining Visualization System (MVS).

1.10 Other research projects

Collaborative research programs were established to help address the final objective of the research project; establishing a chronology of weathering events and dating of the Ni-laterite deposits. This was undertaken by two methods:

1. Paleomagnetic dating.

2. Stable oxygen isotope dating of clay minerals (e.g., kaolinite).

1.10.1 Palaeomagnetic dating

Dating of suitable material collected during field trips to the MM2 and MM7 trial was conducted by Dr. Brad Pillans (Australian National University). A report of the research undertaken and results obtained is presented in Appendix 1.

1.10.2 Stable O-isotope dating

Stable oxygen-isotope dating of suitable, kaolinite-rich material collected during a number of field trips to the trial pits at MM2 and MM7, and from RC drill pulps was conducted by Dr. Yves Noack and Dr. Alain Decarreau both of the Centre European de Recherches et d'Enseignement des Geosciences de l'Environment (CEREGE), France. Research undertaken by Drs Noack and Deacarreau also included detailed crystal-chemical investigations of smectite-rich, core samples using x-ray diffraction (XRD), Fourier transform infrared (FTIR) analysis and scanning electron microscopy (SEM). A report of the research undertaken and results obtained is presented in Appendix 2.

Kaolinite-rich samples, selected from RC bulk samples, were prepared for isotopic dating in the CSIRO laboratories at Floreat Park.

The results of both collaborative studies have been integrated within the final discussion of the report, particularly in relation to the evolution of the Murrin Murrin deposits.

1.11 Methodology

1.11.1 Infrared analysis

Accurate logging of regolith mineralogy in the MM2 and MM3 study areas was achieved using the Portable Infrared Mineral Analyzer (PIMA-II), N^{o.} 37 instrument. Infrared analysis of RC pulp samples using PIMA was selected as the primary means of mineralogical characterization as analysis is rapid (approximately 45 seconds per measurement), semi-quantitative and required minimum sample preparation unlike more traditional methods of analysis such as x-ray diffraction (XRD) and thermal analysis, which are more costly and time consuming.

Reflected infrared measurements were determined between the 1300 and 2500 nm wavelength region relative to an internal, sputtered gold standard. Contact measurements were made with the sample placed in a small petri dish against a 10 mm diameter viewer port. The instrument was calibrated prior to spectra capture and spectra were obtained using an Enhance (*i.e.*, sensitivity) value of 1. Each one-metre interval composite sample for RC holes drilled to a 50 x 50 m grid within MM2 and MM3 was analyzed. In order to keep the number of samples analyzed to a manageable level, it was not possible for every drill hole within the selected study areas to be analyzed. A list of the drill holes selected for MM2 and MM3 is provided in Appendix 3.

Logging of infrared spectra was achieved using the Windows based software program, The Spectral Geologist (TSG), version 2.0. The raw spectra were processed using the Hull Quotient technique which was used to enhance small variations within the spectra. An example of a mineralogical logging profile is presented in Figure 1.5. Classification of the main regolith units was made primarily on the dominant mineral (*i.e.*, silicate) phase identified. Kaolinite was identified from Al-OH absorption peaks at 1390 and 1410 nm, and 2208 nm. A Mg-OH absorption peak between 2290 and 2300 nm indicated the presence of Nontronite. A shift in the Mg-OH absorption peak to between 2300 and 2317 nm indicated the presence of saponite.

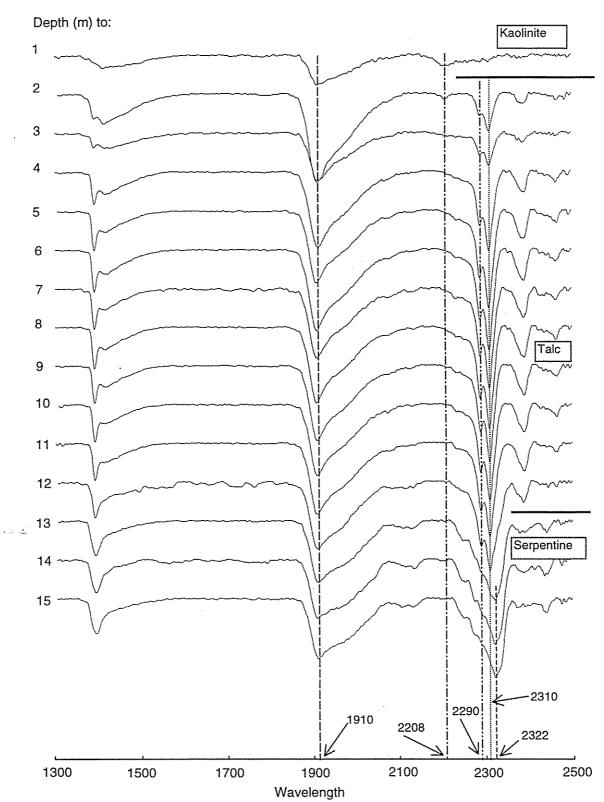


Figure 1.5. Infrared logging profile for RC hole ARC0601, MM3 (9099 mE, 71700 mN, 421 RL) showing some of the absorption features discriminated by PIMA. Spectra are presented as the Hull Quotient of the raw spectra, which flattens the background and enhances variations in the spectra. The absorption feature at 2208 nm is the AI-OH band for kaolinite. Talc is indicated by Mg-OH bands at 2290 and 2310 nm, whereas serpentine is indicated by an absorption band at 2322 nm. The feature at 1910 nm is adsorped water. Features near 1400 nm, for this drill hole, are related to talc or serpentine. The main regolith units have been marked according to the main AI-Mg-silicate identified in the spectra.

Serpentine was identified by the Mg-OH absorption peak occurring between 2317 and 2323 nm. These somewhat arbitrary criteria for mineral identification were necessary and take into account the variable hydration and base exchangeable cation saturation state of, in particular, smectitic clays.

Opaline-Si was also detected by the presence of a broad absorption feature between 2210 and 2270 nm. Large amounts of opaline-Si acted as a diluent strongly reducing the infrared signal of other silicate phases, in particular smectitic clays.

A comparison of PIMA spectra for RC drill pulps and bulk, grab-bag samples for the same drill hole showed no significant difference in the positions of Al-OH/Mg-OH absorption bands, for the purposes of this study, as a result of the methods used (*i.e.*, drying at 110° C and pulverizing) by Analabs and UltraTrace to prepare the pulps.

1.11.2 3-D Modelling (MVS)

Interpreted regolith mineralogy profiles for MM2 and MM3 were imported into MVS through the KRIG_3D_GEOLOGY module as separate Excel .geo files. Multi-element geochemical data, as obtained from Anaconda Nickel NL, were prepared and tabulated as Excel .csv files. Minimum element concentrations were set to half the detection limit of each element as indicated in Tables 3.4.8 and 3.4.9 for assays performed by Analabs and UltraTrace, respectively (Murrin Murrin Feasibility study, Volume 2, p 3-26) to remove any zero assay values. Kriging of geochemistry with mineralogy for both MM2 and MM3 was facilitated through the MVS KRIG_3D module based on a 15 m grid mesh (*i.e.* approximately 1/3 of the spacing of RC drill holes). Block models for MM2 and MM3 were generated with XYZ (*i.e.*, eastings, northings, RL) resolutions of 48 x 68 x 74 m and 39 x 61 x 72 m, respectively. Regions of low confidence were removed using the MVS SELECT_CELLS and ISOVOLUME modules using arbitrarily determined confidence limits. For example, in the case of Ni for MM2 and MM3, only concentrations with a confidence of greater than 99.9999% are presented. Confidence limits for each element within the 3-D models generated for MM2 and MM3 are presented in Table 1.1.

1.11.3 Limitations to MVS modelling

The geochemical data set provided by Anaconda Nickel NL for MM2 and MM3 was incomplete. Abundances of elements other than Ni and Co were determined only where either Ni or Co grades were greater than 0.7 and 0.05%, respectively (Murrin Murrin Feasibility study, Volume 2, page 3-25). Consequently, up to 20 to 30% of samples in the MM2 and MM3 study areas do not have a complete geochemical data set. Samples for which no data were recorded were removed prior to kriging being initiated. This partly accounts for the low confidence limits indicated for most of the elements (Table 1.1). In the case of Co, however, even though an assay was recorded for all samples within the study areas, the low C.L. is a reflection of the marked heterogeneous or localized distribution of Co within the regolith. Nickel is much more evenly distributed throughout the profiles, which accounts for the very high C.L. obtained.

MM2		М	M3
Element	%C.L.	Element	%C.L.
Ni	99.9999	Ni	99.9999
Со	8.5	Co	8.5
Mg	31.0	Mg	21.0
Fe	9.0	Fe	7.0
AI	9.0	AI	7.0
Ca	9.0	Ca	7.0
Mn	7.5	Mn	6.3
Cr	(unfiltered)	Cr	73.0
Zn	7.5	Zn	5.8
Cu	(unfiltered)	Cu	(unfiltered)
As	(unfiltered)	As	5.8

Table 1.1. Confidence limits (% C.L.) for kriged element concentrations for study areas MM2 and MM3.

1.11.4 Geochemistry

Samples pulps from selected intervals from RC drill holes (analyzed by PIMA) for geochemical analysis by x-ray fluorescence (XRF) were prepared by SGS Australia Pty. Ltd., by fusion of approximately 6.6 g of lithium metaborate 12:22 flux with 1.0 g of pulverized sample at 1100° C for 12 minutes in platinum crucibles. Major and trace elements were determined for a total of 495 samples using a Philips PW1220C XRF in the CSIRO analytical laboratories at Floreat Park. Elements determined and detection limits are presented in Table 1.2. A list of the RC drill holes analyzed and element abundances is provided in Appendix 4.

Loss on drying was determined gravimetrically using 1 g samples after drying in a muffle furnace at 105° C for one hour. Loss on ignition was determined on the sample after heating to 1050° C.

1.11.5 X-ray diffraction

X-ray diffraction (XRD) analysis was performed on a selected number of pulps from RC drill holes (analyzed by PIMA) to provide a check on the mineralogical logging using PIMA and as a means verifying CIPW-norm calculations performed using the XRF data. Random powder diffraction patterns were obtained using a Philips PW1050 goniometer with CuK α radiation and a graphite beam monochromator. Diffraction patterns were obtained by scanning from 2 to 65° 2 θ in 0.01° 2 θ increments scanning at 1.0° 2 θ /min.

	Element	Detection	Element	Detection
	(Majors)	Limit (%)#	(Trace)	Limit (ppm)
	Ċ.	0.01	De	00
	Si	0.01	Ba	20
	AI	0.01	Ce	15
	Fe	0.005	CI	20
	Mn	0.002	Cr	10
	Mg	0.01	Со	10
	Ca	0.001	Cu	10
	Na	0.01	Ga	3
	К	0.001	La	10
	Ti	0.003	Ni	10
, , , ,	Р	0.002	Nb	4
			Pb	5
			Rb	5
			S	10
			Sr	5
			V	5
			Y	5
			Zn	5
			Zr	5

Table 1.2. Elements and detection limits for multi-element suite determined by XRF analysis.

Detection limits for major elements are for their respective oxides (e.g., D.L for Si as SiO₂ equals 0.01%).

1.11.6 Mass balance

Determinations of the relative accumulation or depletion of elements within the regolith at MM2 and MM3 were calculated, assuming the immobility of Zr in the laterite profile by the equation (Porto and Hale, 1995):

$$E = [C_w.C_{pi}/C_p.C_{wi}] - 1$$

Where:

E = Enrichment factor. A negative value for E indicates depletion, whereas positive values indicate accumulation of the element in question.

 C_w = Element concentration in the weathered material.

 C_{pi} = Immobile element concentration (*i.e.*, Zr) in the weathered material.

 C_p = Element concentration in bedrock.

 C_{pi} = Immobile element concentration (*i.e.*, Zr) in bedrock.

Assays for Zr and other elements were obtained from the XRF analyses of 495 samples of selected RC drill pulps (Section 1.11.4). The geochemical data supplied by Anaconda Nickel NL was not used because of the absence of several important elements (*e.g.*, Zr) required to perform the mass balance calculations.

1.11.7 Stable O-isotope analysis of kaolinite; preparation.

Initial XRD analysis identified the presence of kaolin in pulps of four RC drill holes selected for preliminary PIMA spectroscopy. The presence of kaolin was confirmed by XRD analysis of K-saturated and K-saturated, oriented clay plates heated to 550° C for 2 hours. Identification of kaolinite from halloysite was obtained using the formamide intercalation method of Churchman *et al.*, (1984). Subsequent analysis by PIMA confirmed the presence of kaolinite from Al-OH absorptions at 1396, 1412 and 2208 nm in drill holes CBRC 0724, CBRC 0796, ARC 0786 and ARC 1008. Drill holes CBRC 0724 and CBRC 0796 were selected for isotope analysis, which contained kaolinite to depths of 16 and 11 m, respectively.

Samples for isotope analysis were taken from drill hole splits collected in the field. A representative sub-sample was riffle-split and gently crushed to obtain the <2 mm fraction. Kaolinite was concentrated by removal of iron oxide and smectite clay contaminants. Iron oxides, mainly as goethite, hematite and minor amounts of maghemite were removed by treatment with citrate-bicarbonate-dithionite (CBD) according to the method of Jackson *et al.*, (1986), incorporating modifications to the method as outlined by Stace (1956). Removal of iron oxides was indicated by samples obtaining a pale blue-grey-green colour. Treatment with CBD is not considered to have a significant effect on the stable-isotope composition of clay minerals (Yeh, 1980; McMurty *et al.*, 1983; Bird and Chivas, 1989).

Smectite clays were removed by the method of Gibbs (1967). Smectite clays were converted to Na-saturated forms and removed by centrifuging samples solvated in a 15% ethanol solution. Na-saturated smectite has a lower specific gravity than kaolinite (and illite) in ethanol and can, therefore, be removed by centrifugation (Gibbs, 1967).

The purity of the resulting residues was tested by XRD which indicated that the samples consisted of >95% kaolinite. Trace amounts of smectite were detected in the kaolinite-rich concentrates but this was considered not significant. Isotope analysis was conducted in the CEREGE analytical laboratories, France according to the methods outlined by Clayton and Mayeda (1963) and Girard *et al.*, (1997).

1.11.8 Cluster analysis

Cluster analysis of the geochemical data provided by Anaconda Nickel NL for drill holes within the MM2 and MM3 study areas was performed using STATISTICATM (Volume III) for Windows. Zero assay values were removed from the data set before analysis. In order to reduce the effect of the magnitude of element concentration (*i.e.*, % versus ppm) the data was standardized using the Data Management Module within STATISTICATM by the equation:

$$x_{SD} = (x - x_{AV})/\sigma$$

Where:

.

 x_{SD} = Standardized assay value for the element.

x = The concentration of the element, either as % or ppm.

 x_{AV} = The average element abundance (% or ppm).

 σ = Standard deviation.

1.11.9 Normative mineral analyses

Determination of CIPW-Norm mineral abundances were calculated from XRF analyses of samples from selected intervals for RC drill holes (see Section 1.11.4). Normative abundances of up to 19 phases were calculated from concentrations of Si, Al, Fe, Mn, Mg, Ca, Na, K, Ti, P, S, Co, Cr and Ni according to the guidelines in Ragland (1989), with elements allocated to phases identified from XRD and PIMA logging of RC pulps. A detailed discussion of the criteria used and assumptions made in order to complete the calculations is given in Chapter 3.

1.12 Limitations of the study

Infrared analysis using PIMA is not sensitive to very dark (*i.e.*, black) minerals such as Mn oxides. This is not a significant problem as Mn oxides generally occur as small, localized bodies and do not comprise a significant unit within the regolith. The presence of very bright (*i.e.*, white) minerals such as carbonates may cause problems due to their very high albedo and oversaturate the detector. This may be a problem, particularly towards the base of profiles in regard to misidentification of the carbonate mineralogy and where high amounts of carbonate (*i.e.*, magnesite and dolomite) may dilute the signal of associated silicate phases. In addition, the characteristic absorption bands of common Fe oxides, such as goethite, hematite and maghemite, occur within the short-wave infrared region (*e.g.*, 400 to 1000 nm), outside the wavelength range covered by PIMA. This is not a significant problem for smectite hosted Ni-deposits with a mineralogy dominated by Al-Mg-clay silicates (*e.g.*, serpentine, chlorite, talc, smectite and kaolinite) which all show characteristic Al-OH, Mg-OH absorptions within the wavelength range 1300 to 2500 nm.

As a result of the initial assaying procedures (Murrin Murrin Feasibility Study, Volume 2) adopted by Anaconda Nickel NL, abundances of elements other than Ni or Co were incomplete. This is a major limitation to the 3-D modelling performed using MVS and may have caused artefacts during kriging and it is not known whether areas of low confidence in the data are a result of missing data or not.

Due to budget and time constraints only a select number of samples could be analyzed by XRF. This was to supplement the geochemical data supplied and to provide abundances for additional, important elements, such as Si, Zr, Ti, K and Na. In addition, no LOI (as total weight loss, SO_2 or CO_2) data were available for the geochemical data supplied by Anaconda Nickel NL. As a result of this, no CIPW-Norm calculations could be made using the Anaconda data.

It could be argued that the spacing of RC drill holes selected for MVS modelling (*i.e.*, $50 \times 50 \text{ m}$) was too coarse considering that in some areas within the MM2 and MM3 study areas RC holes were drilled to a grid of 6.25 m. The 50 x 50 m spacing was selected to, firstly, provide a consistent density of drilling over the areas of interest, and secondly, to keep the number of samples analyzed by PIMA to a realistic and manageable level.

Despite these limitations the results of the project do provide valuable information regarding the evolution of the Murrin Murrin Ni-deposits and the factors influencing Ni-Co mineralization within these deposits.

2.0 MURRIN MURRIN REGION REGOLITH-LANDFORM MAP

2.1 Introduction

A map of the regolith-landform (RL) relationships at 1:50 000 of the tenement areas surrounding and including Murrin Murrin has been produced. The RL map (Map 1) covers an area of some 660 km² and is located on the Minerie 1:100 000 sheet (Sheet 3240) within the Laverton 1:250 000 sheet (SH/51-2).

This discussion is a reproduction of the RL map report, previously submitted to Anaconda Nickel NL (Wells, 1999). The RL map is also available as a hard copy and in digital, GIS format on CD as a Map Info project.

2.2 Regolith mapping and terminology

Regolith-landform mapping attempts to define areas of similar regolith and landform characteristics that can be represented at the scale of mapping. The term regolith includes all weathered and eroded material the covers the underlying bedrock. Other definitions of regolith are given in Pain *et al.*, (1991). Specific regolith materials (*e.g.*, duricrust, alluvium) can be related to particular landforms (*e.g.*, breakaways, depositional plains) and it is these associations that are identified and recognized to define a regolith-landform mapping unit (RLU) (Anand *et al.*, 1993). Due to the compositional and spatial variability of most regolith materials, the purity or homogeneity of the RLU being defined is very much dependent on the scale of mapping. The larger the scale (*i.e.*, the more detailed the observation) the greater the variability that can be represented.

The boundary that delineates each RLU is referred to as a polygon. The position of the polygon boundary on a regolith-landform map defines the greatest rate of change in characteristics between adjacent RLU's (Anand *et al.*, 1993).

2.3 Methodology

A number of data types were used to compile the RL map, the principle data type among these being interpretation from aerial photographs supplemented with field mapping and observations.

Other data types were used as an adjunct to aerial photographic interpretation and included remotely sensed reflected and emitted data (*e.g.*, radiometric and Landsat Thematic Mapper data).

2.3.1 Aerial photographs

Colour, and black and white (B/W) 1:50 000 aerial photographs were purchased from the Department of Land Administration (DOLA). The colour photographs, flown by TS and Environs in January 1998, covered only the central and western region of the mapped area. The B/W photographs, flown in May 1996, were purchased to extend coverage to the eastern margin of the surveyed area. Flight lines for each of the series of colour and B/W photographs are shown in Figure 2.1.

Regolith-landform units were identified and interpreted using stereoscopic photographic pairs and mapped using a x3 magnification binocular eyepiece to give an effective scale of observation of approximately 1:17 000. Regolith-landform units were interpreted from tonal and textural variations in the aerial photographs with confirmation by field mapping. Unit boundaries were then modified and take into account additional information obtained from radiometric and Landsat TM imaged data. RLU classification followed that recommended by Pain *et al.*, (1991).

-- 2.3.2 Magnetic and radiometric data

Fully rectified, airborne geophysical and radiometric images were supplied by Anaconda Nickel NL, covering the Minerie 1:100 000 sheet (3240). About 90% of total gamma-ray radiation emanates from within the top 30-45 cm of surficial cover or exposed bedrock (Gunn *et al.*, 1997; Wilford *et al.*, 1997). Radiometric imaging can thus provide some information regarding the affects of near surface weathering and pedogenesis.

2.3.3 Digital elevation model

A digital elevation model (DEM) of the Minerie 1:100 000 sheet was also obtained from Anaconda Nickel NL. The DEM has a pixel xy resolution of 50 m on the ground and a vertical z resolution of 5 m. The DEM was used to generate three-dimensional perspective images of the Landsat TM and radiometric images, which greatly enhanced interpretation of the regolith distribution within the landscape.

2.3.4 Landsat thematic data

Landsat LS5 satellite thematic (TM) band data (*e.g.*, bands 1 to 7), covering a 26 x 26 km area of the Minerie 1:100 000 sheet was purchased from the Australian Centre for Remote Sensing (ACRES) through World Geoscience Corporation. The Landsat TM image sampled was taken in January 1997 to ensure that there was little vegetative cover, thus minimizing any interference to reflected band data from surface vegetation.

Table 2.1. Expected response of surface mineralogy and vegetation for interband ratios 5/7, 4/7 and 4/2(from Tapley and Gozzard, 1992).

Ratio 5/7		Ratio 4/7		Ratio 4/2		
High Low	Clay-rich Clay-poor	High Med-High Medium Medium Low-Med. Low	Low Fe Low Fe Low Fe Med. Fe High Fe High Fe	High clay Med. clay Low clay Med. clay High clay Low clay	High Low	High Fe Low Fe
Green ve	getation has a me	l dium response	in all ratios		1	

Previous studies using remotely sensed data imaged for deeply weathered terrains in Australia have demonstrated the usefulness of applying interband TM ratios to interpreting surface geological information (Fraser *et al.*, 1986; Cudahy, 1989). Ratios of bands 2, 4, 5 and 7 as 5/7, 4/7 and 4/2 presented as a false colour red, green and blue image have been used to map the surface distribution of iron and clay-rich materials in weathered felsic and mafic terrains of the north eastern Yilgarn (Drury and Hunt, 1988; 1989; Tapley and Gozzard, 1992). One main advantage of using interband ratios is in reducing the influence of topography to the spectral reflectance characteristics of the area being imaged. Similar materials will show the same spectral response regardless of differences in brightness in the original image caused by variations in topography (such as aspect and slope) (Tapley and Gozzard, 1992). Table 2.1 shows the type of response expected for each band ratio. Table 2.2 shows the expected colour response for different surface materials and vegetation.

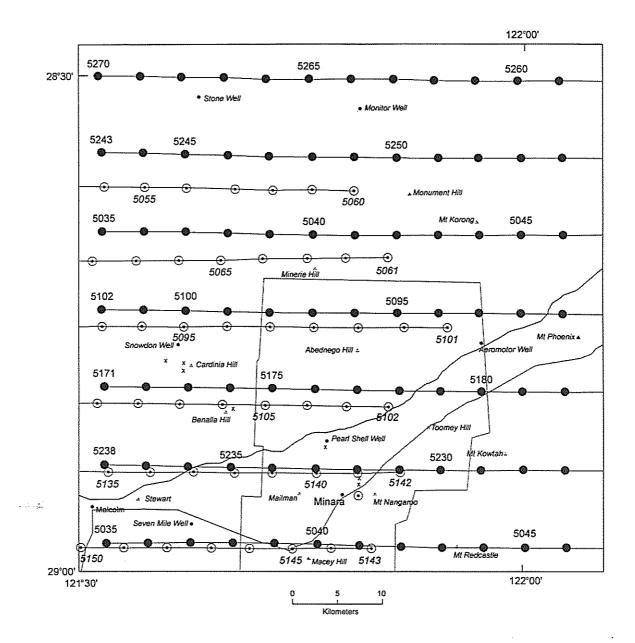
Band data were initially corrected for any atmospheric interference and processed to produce an unrectified, false colour red, green, blue image using band ratios 5/7, 4/7 and 4/2, respectively. Referencing to a 1:50 000 base drainage map was used to rectify the resulting image. This was

performed using the Digital Image Resampling, Rectification and Registering software program, RIFT, within ArcView, version 3.0. Ground control reference points (GCP) were located within the TM image to be rectified and the base map. A nearest neighbour, 3rd order polynomial function was applied to warp the TM image when a sufficient number of ground control pairs were located (about 50 pairs were used). A check of the root mean square error (RMS) associated with each GCP pair identified the least reliable points, which were removed before final rectification of the TM image. A final RMS of approximately 30 m was obtained (*i.e.*, equivalent to one pixel resolution of the TM image). A map-image (Map 2) of the TM scene with interband ratios 5/7, 4/7 and 4/2 as false colour red, green and blue, for the Minerie sheet is available on CD, to be printed as a hard copy if desired, within the Map Info project.

Image	· 5/7	4/7	4/2	Mineralogy	
(RGB)	(Red)	(Green)	(Blue)	Fe-O	Clay
Block	L	1	L	L	
Black White	L M-H	L M-H	L M-H	L Green bion	L
Red	Н	L	L	М-Н	Н
Orange	Н	М	L	М	H-M
Yellow	M-H	М	L	L	M-H
Green	L	н	L	L	М
Green (dark)	L	L-M	L	L-M	L-M
Green (Olive)	L-M	L-M	L	М	L
Blue	L	L	Н	Н	L
Purple (dark)	L-M	L	L-M	L-M	L
Purple (light)	L-M	L	Μ	Μ	L-M
Magenta	М	L	М	Μ	М
Cyan	L	М	М	L-M	М
Brown	L-M	L-M	L-M	L-M	L-M

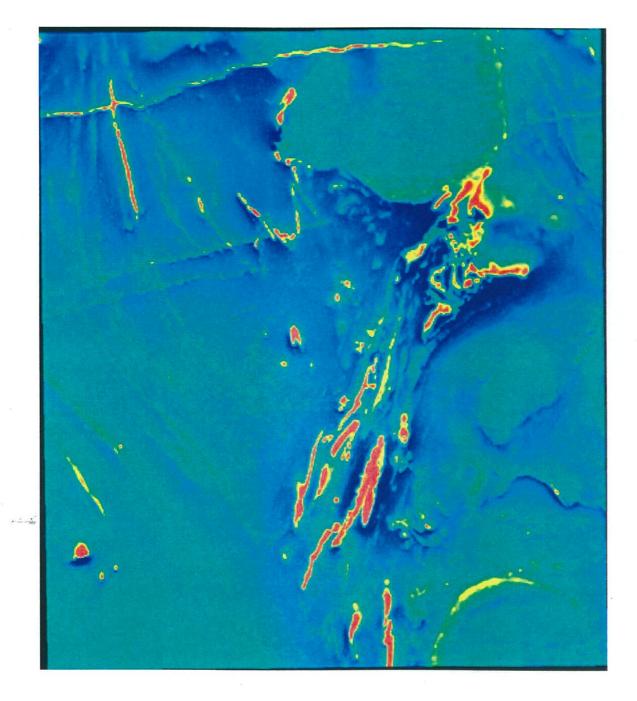
Table 2.2. Expected colour (i.e., hue) of surface mineralogy and vegetation for the composite image a	ind for
individual interband ratios (from Taplev and Gozzard, 1992).	

2.4 Remote sensing of regolith-landform units

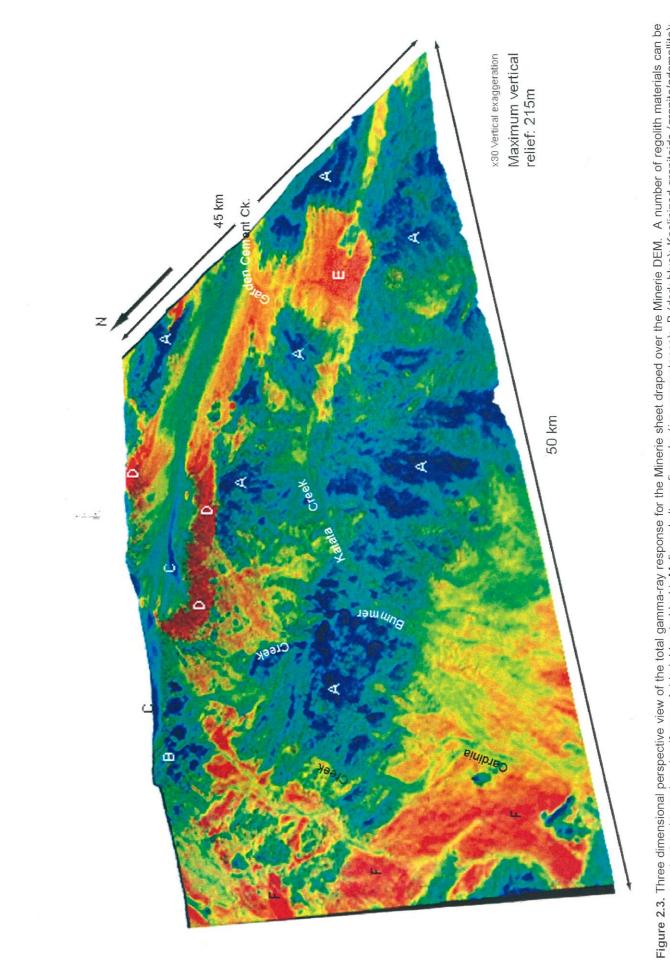

The following discussion relates the types and distribution of surficial weathered materials as revealed by remotely sensed aeromagnetic, Landsat TM and radiometric imaging to regolith-landform units within the surveyed area.

Greenstone belts within the Murrin-Murrin area are easily identifiable in the aeromagnetic data as elongated, high amplitude (*i.e.*, red hues) anomalies (Fig. 2.2). These result from serpentinized ultramafics and ferruginous duricrust, which may cap the weathered greenstones. Greenstone belts outcrop as sub-parallel, elongated ridges and minor, Relict breakaways and generally comprise the few high points in the mapped area. Felsic rocks (*e.g.*, granite, adamellite, and granodiorite) occur as subdued, low contrast blues and blue-green (cyan) colours in the aeromagnetic data. These tend to show a subdued relief or form elevated, relict plateaux bounded by significant breakaways developed to the north of the surveyed area (*e.g.*, at Minerie Hill).

Ultramafic rocks are also easily identified in remotely sensed radiometric and TM images. As mafic and ultramafic rocks are typically depleted in K, Th and U (Gunn *et al.*, 1997) these show as dark blue to black hues in the ternary gamma-ray response image (Fig. 2.3 A). Landsat TM imaging also shows greenstone belts as dark blue to purple colours (Fig. 2.4 A). Scree and colluvial material derived directly from exposed mafic and ultramafic saprolite, on lower erosional slopes, also shows as dark blue-purple to lilac colours (Fig. 2.4 A). These correlate to the erosional low hills (RL map unit, *Wel12*) and rise units (RL map unit, *SSer11*) as mapped on the regolith-landform map with a surrounding apron of scree material (RL map unit, *CMel/er9*).


Ferruginous duricrust that caps weathered ultramafic profiles with a mineralogy dominated by goethite and hematite and only minor clays (*i.e.*, kaolinite) present in the TM image as magenta to pale red hues (Fig. 2.4 B). Lag derived from these ferruginous duricrusts will also appear as magenta to red in the TM image. Duricrust associated with minor breakaways also show as magenta-pale red hues. However, lag and soils developed on the backslopes, due to the increased quartz and clay content (*i.e.*, kaolinite and gibbsite), appear as dark green hues. Thicker vegetative cover on breakaway backslopes may also be a component of the green colour in these areas. Both duricrust types are commonly associated with an apron of clay rich, Fe-poor material that appears as a rim of pale yellow hues (Fig. 2.4 C) which confuses with felsic saprolitic material (Fig. 2.4 D).

Deep weathering of granite to granodiorite rocks (Gower, 1976) to the north of the mapped area, encompassing the area known as the East Terrace, has also resulted in a total radiometric depletion


Figure 2.1. Flight line diagram for the surveyed area. Open circles (photo numbers in Italics) represent colour aerial photographs, whereas solid circles represent black and white aerial photographs. Colour aerial photographs were used for the bulk of the interpretation. Some B/W photographs were used for interpreting the eastern margin of the mapped area.

giving the dark blue-black hues (Fig. 2.3 B) which can be confused with greenstone outcrops. The deeply weathered plateau surface developed from more radiometrically active granite/adamellite, which encompasses Minerie Hill, also shows dark blue to black hues due to the leaching of K-bearing phases, such as K-feldspar (orthoclase, KAISi₃O₈) and K-mica (muscovite,

Figure 2.2. Aeromagnetic image for the Minerie 1:100 000 map sheet. Greenstone belts are easily distinguished, appearing as high contrast, red anomalies. Granitoid rocks appear as more subdued, low contrast blue and cyan colours.

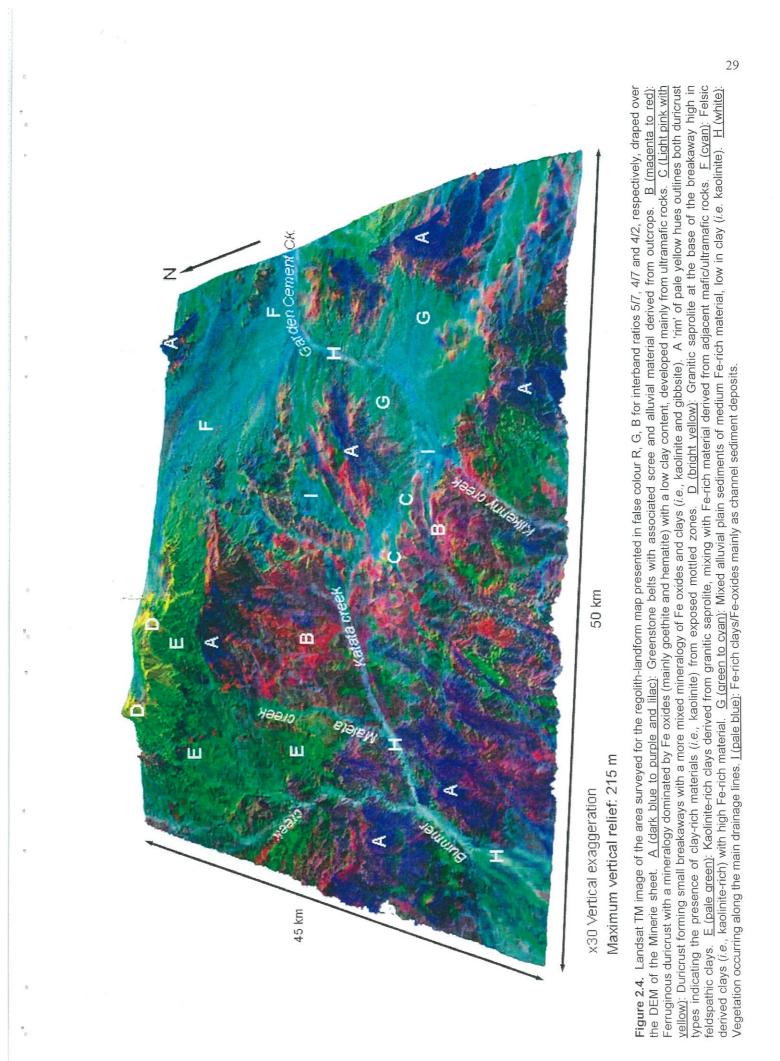
 $K_2Al_4(Si_6Al_2O_{20})(OH,F)_4)$, and the removal Th and U-bearing minerals, such as zircon and monazite ((Ce,La,Th)PO₄), from the upper part of the weathering profile (Fig. 2.3 C).

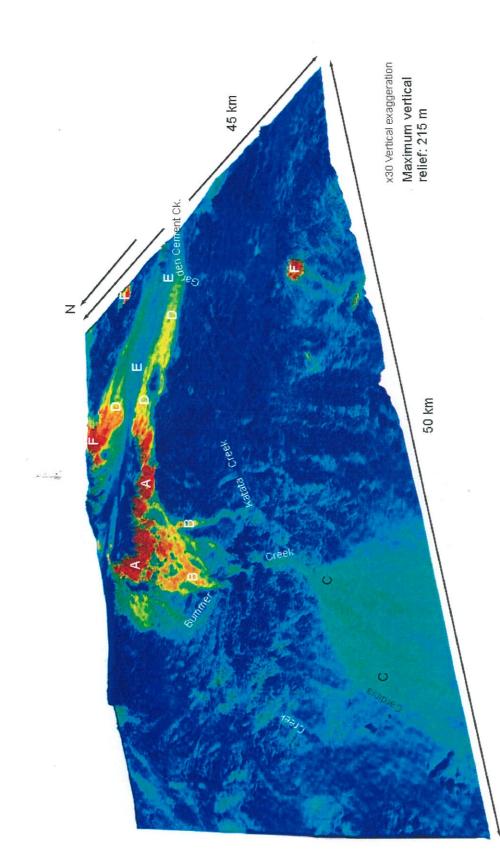
distinguished and related to various landforms. A (dark blue to black): Mafic and ultramafic rocks (i.e., greenstones); B (dark blue): Kaolinized granitoids (granite/adamellite); C (blue): Weathered upper surface of plateau, <u>D (bright red)</u>: Exposed granite/granodiorite saprolite. <u>E (red-orange)</u>: Weathered sediments of a likely, mixed Fe-oxide/carbonate dominated mineralogy. <u>F (orange)</u>: Weathered sediments of a mixed origin consisting of clays, of a felsic origin, and Fe-oxides with near surface carbonate. Dark red colours in the total radiometric image at the base of the breakaway relate to outcrops of granite/adamellite saprolite or saprock (Fig. 2.3 D) that have not undergone significant weathering. Granitic saprolite is also indicated by bright yellow hues in the TM image indicating high amounts of feldspathic derived clays (*e.g.*, kaolinite) (Fig. 2.4 D).

Examination of the radiometric images for K and U (Figures 2.5 and 2.6, respectively) reveals areas that indicate more recent sediment movement within the landscape. Bright red hues in the K and U gamma-ray image indicate outcrops of granite, at the base of the breakaway, containing Kbearing phases (e.g., feldspar and mica) (Fig. 2.5 A) and U-bearing minerals such as zircon (Fig. 2.6 A). The gamma-ray response for K shows very well the movement of felsic derived material onto lower erosional slopes below the breakaway, shown as yellow-orange hues (Fig. 2.5 B), that feed into the catchment of Bummer Creek and, to a lesser extent, Maleta Creek. The K response decreases due to the combined effects of the leaching of K-bearing phases as material is transported as channel sediments and due to the introduction of more Fe-rich material from mafic and ultramafic sources. In addition, most K-bearing phases are shown to concentrate in the coarser sized sand and silt fractions (Wilford et al., 1997) so that increasing distance from the source would decrease the contribution of these coarser, K-bearing sediments to the gamma-ray signal. This is shown in the TM image as pale green hues (Fig 2.4 E) due to the mixing of feldspathic clays (i.e., kaolinite-rich) and Fe-rich material derived from ultramafic rocks adjacent to Maleta Creek, for example. Final deposition occurs in the lower reaches of Bummer Creek, shown in cyan hues (Fig. 2.5 C), which forms a broad, deltaic, alluvial plain. Retention of K in this area may be associated with the formation of secondary K-bearing phases such as illite $(K_2Al_4(Si_6Al_2)O_{20}(OH)_4).$

To the north-east of Minerie Hill an additional granite/adamellite outcrop (Fig. 2.5 F) encompassing Monument Hill, outlines a catchment area with K-bearing felsic material, as orange-yellow hues mixing with Fe-rich material (Fig. 2.5 D) feeding into the alluvial plain that drains to the east into Garden Cement Creek. This is also shown in the TM image as cyan and pale blue hues (Fig. 2.4 F), which results from the mixing of feldspathic (*i.e.*, kaolinitic) clays and Fe-rich materials.

Several smaller felsic (*i.e.*, granite/granodiorite) outcrops are also indicated in the south east of the mapped area, shown as isolated red 'patches' in the K gamma-ray image (Fig. 2.5 F), although these are not revealed in the TM image. Movement of felsic derived sediments are also clearly shown being restricted to localized, recent channel deposits.


White hues in the TM image (Fig. 2.4 H) indicate areas of vegetative cover restricted to the main drainage lines (*e.g.*, Bummer, Kilkenny, Garden Cement and Katata creeks) and to alluvial plain areas (*e.g.*, the deltaic fan of Bummer Creek). Pale blue colours of recent channel sediments (*e.g.*, Kilkenny and Garden Cement creeks) are consistent with a mineralogy dominated by quartz and Fe-oxides and with a low clay content (*i.e.*, kaolinite).

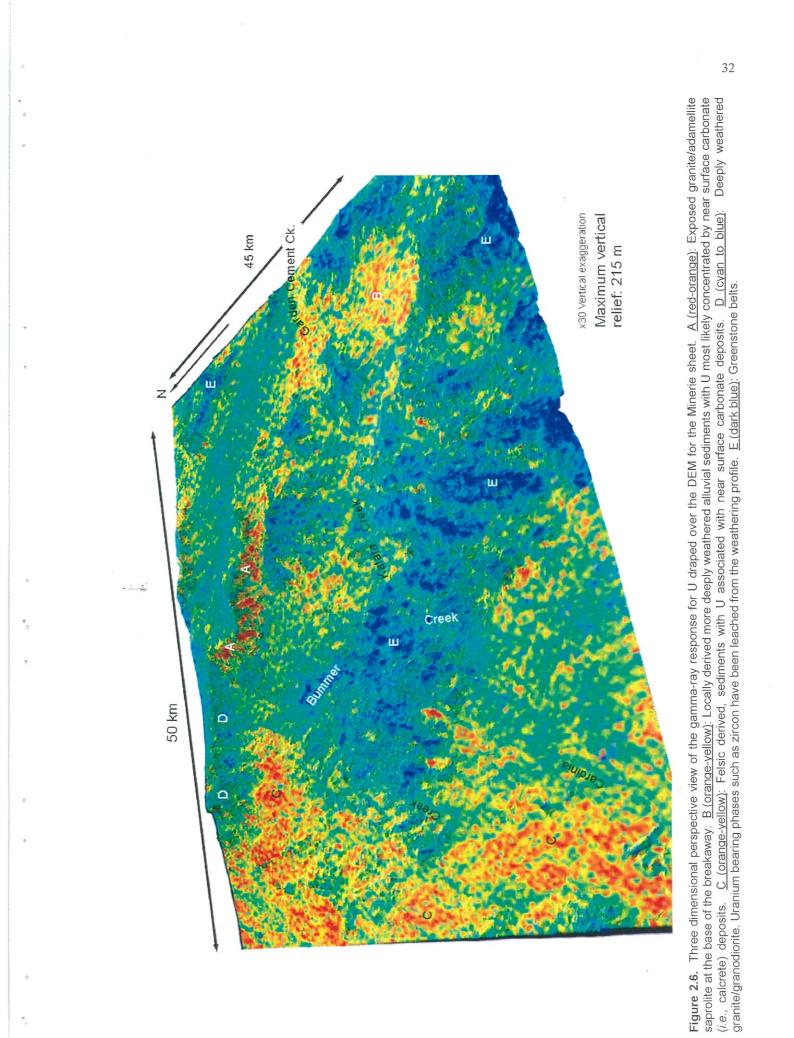

Bright orange-red hues in the ternary gamma-ray image in the area west of Mt Kowtah (Fig 2.3 E) result from a low to medium Th response (cyan hues, Fig. 2.7 A) and a high U gamma-ray response (orange-yellow hues, Fig. 2.6 B). This suggests that the surface materials consist of a mixed Fe-oxide/carbonate mineralogy. Surface concentrations of U and Th indicate the presence of resistate minerals such as xenotime, zircon and monazite. However, once released U tends to associate and be concentrated in calcrete deposits (Deutscher *et al.*, 1980) and Th associates mainly with Fe-oxide/oxyhydroxide phases (Short *et al.*, 1989; Dickson and Scott, 1990). Green to cyan hues in this area of the TM image are consistent with a surface mixed clay/Fe-oxide mineralogy (Fig. 2.4 G) consisting of a mixed lag of Fe-rich nodules, quartz and carbonate over a depositional, alluvial plain.

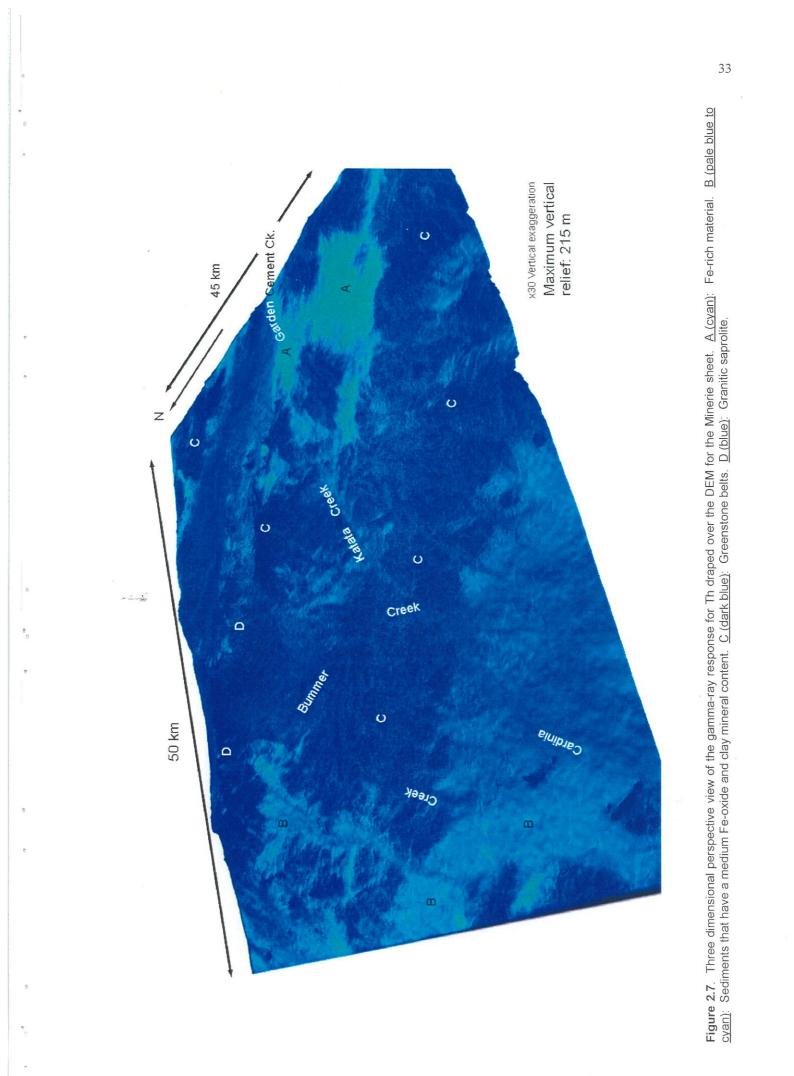
Red-orange and yellow hues for the total gamma-ray image (Fig. 2.3 F) along the western margin of the survey area, including Cardinia Creek and other drainage lines further to the west, reflect the felsic lithology of the source material. This most probably originates from granite/granodiorite outcrops to the north at East Terrace. The low K response for this area (Fig 2.5) reflects the deep weathering overprint of the felsic source rocks (*i.e.*, granite/granodiorite at the East Terrace). Uranium and Th have most probably been concentrated by Fe oxides (Th) and near surface carbonate (*i.e.*, calcrete) deposits (U). The main response in this area appears to originate from U associated with calcrete deposits. The more deeply weathered surface materials intermix with the western margin of the broad alluvial, depositional plains of Bummer Creek. This area was not covered in the Landsat TM image.

2.5 Regolith-landform units and relationships

A total of 17 units were identified within the mapped area (Map 1). These have been classified within the Relict, Erosional and Depositional (RED) landscape scheme (Anand *et al.*, 1993). Relict landform regimes are defined as those areas where lateritic residuum has been preserved. For example, duricrusts and breakaways which are expressions of an ancient, weathered landscape (Anand *et al.*, 1993). Erosional landform regimes are characterized with erosion as the main

indication of the movement of more recently derived (i.e., of felsic origin), poorly weathered materials within the landscape. Primary K-bearing minerals such as orthoclase are fan of K-depleted sediments. <u>D</u> (orange-vellow): K-bearing, felsic sediments outwashing onto the broad alluvial plain that feeds into the Garden Cement Creek. <u>E (cyan to pale</u> <u>blue</u>): Sediments depleted of K due to the leaching of primary K-bearing phases and due to the incorporation of Fe-rich materials. <u>F (bright red)</u>: Other localized outcrops of Figure 2.5. Three dimensional perspective view of the gamma-ray response for K draped over the DEM for the Minerie sheet. The γ -ray response for K can provide a good blue colours. B (orange-yellow): K-bearing sediments derived from granite saprolite washing onto lower erosional slopes below the breakaway. C (cyan): Depositional alluvial Granite/adamellite saprolite exposed at the base of the breakaway. Potassium bearing phases in the plateau surface of the breakaway have been leached producing the dark comparatively easily weathered and do not persist in weathering profiles. Secondary bearing K-phases such as illite are also comparatively short-lived. A (bright red): fresh or saprolitic granitoid rock. geomorphological process. Overlying material has been removed to a level that exposes the underlying weathered material and/or fresh bedrock. A thin, locally derived sediment cover may also be present in these regimes (Anand *et al.*, 1993). These sediments may overlie complete or partly eroded deep weathering profiles or fresh rock. Depositional regimes include those areas where the deposition and accumulation of eroded material (*i.e.*, sediment) is the dominant landform process and produces an overlying sediment cover that can be many tens of meters thick (Anand *et al.*, 1993).


A description of each regolith-landform unit is given in the legend accompanying the RL map. Regolith-landform units identified within the RED classification scheme can be broadly grouped as comprising mainly ferruginous duricrusts and gravel (*i.e.*, relict), saprock and saprolite (*i.e.*, erosional), and alluvial and colluvial material (*i.e.*, depositional). The following is a summary of the regolith-landform units identified in the surveyed area.


2.5.1 Relict regime

Four units were identified within the relict regime with RL map units *Wl1*, *RFel2*, *Rel3* and *SVee4* (Map 1, legend). Dark red-brown to black, well indurated, ferruginous duricrust occurs as a localized capping, up to 4-5 m thick but generally 2-3 m in thickness, of weathering profiles developed from mafic and ultramafic rocks (RL map units, *RFel2* and *Wl1*). These tend to form isolated mesas and buttes of low relief (about 30 m) but also may occur as minor breakaways. The upper slopes of isolated hills and slopes immediately below the breakaway escarpment line are covered by boulders of duricrust and nodules which fine to a thin veneer of polished black, Fe-rich gravel (< 10 mm) on the lower footslopes.

The mineralogy of duricrust that caps ultramafic rocks is dominated by Fe-oxides as hematite and goethite with maghemite, rutile, kaolinite and quartz as minor phases. For duricrusts forming minor breakaways, goethite and hematite are the main Fe oxides with kaolinite and gibbsite, and trace amounts of quartz and rutile. The mineralogy of scree and lag of Fe-rich gravel reflects the mineralogy of the duricrust from which they are derived.

There are elongated relict ridges of chert and BIF (RL map unit, *Rel3*). These consist of outcrops to 5-10 m wide of highly indurated, cryptocrystalline quartz with angular to blocky quartz gibber covering the immediately adjacent upper scree slopes. Less coarse, slightly more rounded, Festained quartz cobbles cover the lower slopes. Thin mammilliary forms of hematite and goethite stain on exposed fracture surfaces. These ridges constitute only a minor relict landform element within the mapped area and are not well delineated in either the TM or radiometric images.

2.5.2 Erosional regime

The main erosional landform elements comprise profiles of weathered ultramafic rock, expressed as a series of sub-parallel hills of low relief (*i.e.*, 9-30 m, Pain *et al.*, 1991) and broad, rounded rises of subdued relief (*i.e.*, <9 m, Pain *et al.*, 1991) developed mainly from mafic rocks (*i.e.*, gabbro and basalt). These are represented by map units, *Wel12* and *SSer11*, respectively. Low hills developed from ultramafic rocks may be capped by a relict, ferruginous duricrust generally 2-3 m thick, that helps to preserve the weathering profile, in which case these hills may occur in isolation as mesas and buttes, as previously discussed.

Erosional rises are marked by very coarse (20-30 cm) lag of angular, blocky cobbles of basalt or gabbroic saprock. These broad, low rises are covered by thin, immature soils on the lower slopes. Sub-crops of basalt and gabbro saprock/saprolite also occur in gently undulating, erosional plain areas (RL map unit, *SSep7*) which generally show an extensive cover of fine, mixed quartz and polished, black Fe-rich lag covering poorly developed soils.

Mafic and ultramafic saprolite is also exposed on a more local scale in minor outwash areas where drainage lines have dissected the weathering profiles.

-----2.5.3 Depositional regime

Alluvial and colluvial channel sediments are restricted to drainage lines and adjacent areas throughout the mapped area. These are represented by map units *Aa13* and *Cfc16* (Map 1, legend). Alluvial plains (units, *Aap14* and *Aap15*) form extensive covers of sediment in the NW, NE to E and SE areas of the mapped area (Map 1) and represent the main depositional landform in the area.

Alluvial plain surfaces are covered with a polymictic lag of variable amounts of angular quartz fragments and coarse, ironstone gravel indicative of the locally derived nature of these deposits. Sheet-wash flooding is the main erosional element in this part of the landscape. Locally, Wanderrie banks may be developed particularly in the east and southeast of the mapped area (RL map unit, *Aap15*). Wanderrie banks are micro-topographical relief features generally less than 30 cm in height and are usually found in the lower portions of alluvial plain areas (Mabbutt, 1963). They generally consist of fine to coarse sands deposited parallel to local topographic contours by the combined action of wind and sheet-wash erosion (Mabbutt, 1963; Pringle *et al.*, 1994).

Uniform, orange-brown, sandy-clay sediments, of variable thickness to about 30 cm, and containing many fine (*i.e.*, < 2mm) ironstone gravel give way to hardpanized (*i.e.*, hyalite, SiO₂)

alluvial sediments also containing many fine, ironstone gravel. The mineralogy of the hardpanized sediments is dominated by quartz with minor plagioclase, goethite, hematite, maghemite, kaolinite, illite/mica, talc and rutile. The presence of plagioclase and talc in the near surface sediments reflects the recent and locally derived nature of the alluvial cover most probably derived from exposed mafic and ultramafic saprolite or saprock.

Channel sediments (RL map unit, *Aa13*) associated with shallow, open creeks and streams are similar to alluvial plain deposits. These consist of unconsolidated, red-brown clayey-sands with many polished black Fe-stone gravel/nodules overlying hardpanized (*i.e.*, hyalite, SiO₂) clayey-sands. The absence of cutans coating the Fe-stone nodules and gravel is also testament to the transported nature of the channel sediments (Anand *et al.*, 1991). The hardpanized sediments are dominated by quartz with plagioclase, hematite and kaolinite as minor phases, and rutile in trace amounts.

In more deeply incised channels, poorly developed soil profiles with immature horizons may form. A general profile consists of 0–30 cm of red-brown, fine clayey-sands, dominated by quartz with minor plagioclase, kaolinite, hematite and rutile, overlying calcareous sandy-clays to about 60-70 cm. A stone line of angular, quartz and lithic fragments to 50 mm appear to mark the transition to the lower calcareous horizon. The mineralogy of the pedogenic carbonate horizon consists of calcite and quartz as the main phases with minor hematite, plagioclase, kaolinite and gypsum.

3.0 REGOLITH UNITS

3.1 Introduction

This chapter provides a discussion of the regolith characteristics of the two study areas, MM2 and MM3, that were selected to provide deposit and profile scale examination of the regolith mineralogy at Murrin Murrin. Investigation of the regolith at MM2 and MM3 was conducted mainly by reflected infrared analysis (*e.g.*, PIMA) of RC drill pulps supplemented by X-ray diffraction (XRD) analysis. This helped to establish the weathering profiles or regolith stratigraphy for MM2 and MM3, which, in conjunction with geochemical data supplied by Anaconda, was used as the basis for developing 3-D models using the visualization software MVS.

3.2 Geomorphology and site description

MM2 occurs mainly within a depositional landform regime with dominantly alluvial and colluvial surficial material. Regolith-landform units *Aa13*, *Aap14* and *Cfc16* cover approximately 75% of the area (Fig. 3.1). The high total radiometric response for the area, shown in red-orange hues in Figure 3.1, is due mainly to γ-ray responses for K and U associated with recent felsic sediments that originate from granite/adamellite outcrops that occur to the NW of the area (see Fig. 1.2). MM2 is located to the NE of a regional drainage divide with local drainage associated with the Lake Carey palaeochannel system (Fig. 1.2). Deposition of felsic sediments along drainage lines that feed into Garden Cement Creek has blanketed the area resulting in a more subdued expression of relief.

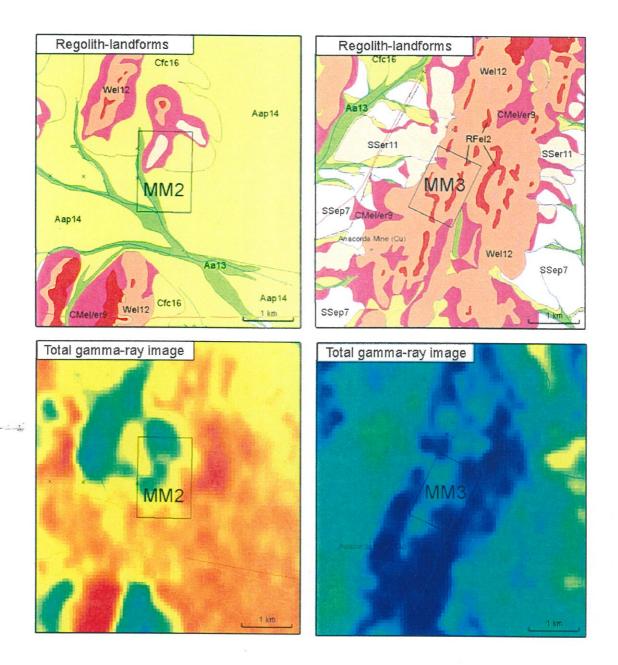
In contrast, MM3 occurs within an area of more prominent relief characterized by relict and erosional landforms with low hills (<30 m) of weathered ultramafics that may be capped by a ferruginous duricrust; regolith-landform units *Wel12* and *RFel2*, respectively (Figure 3.1 and Chapter 2). Ultramafic rocks have low radiometric signatures and show as dark blue to blue hues (Fig. 3.1). The low total γ -ray response for the area (*i.e.*, green colours in Figure 3.1) is due mainly to low concentrations of U associated with drainage lines and erosional landforms that may have a thin cover of deposited material. Uranium is probably associated with near surface pedogenic carbonate and groundwater calcrete deposits in valley areas. MM3 occurs to the SW of the main drainage divide with local drainage associated with the Lake Raeside palaeochannel system (Fig. 1.2). Locally, drainage has developed sub-parallel to strike of the greenstone belts, which has resulted in the more prominent relief for the area.

3.3 Mineral identification

Reflected infrared analysis of RC pulps using the PIMA-II instrument, as described in Section 1.11.1, was used as an objective and efficient means of drill hole logging. This enabled the regolith mineralogy to be more precisely determined and allowed a high degree of uniformity to descriptions of the regolith within and between the study areas.

3.3.1 PIMA-II

Logging of RC drill pulps using PIMA identified several mineralogically distinct regolith units based upon the dominant clay silicate phase present. For MM2 and MM3, the main minerals were from the base of profiles to the surface: serpentine, talc, saponite, nontronite and kaolinite. Other phases identified included gibbsite and alunite but these were present in only minor amounts and were only locally developed being restricted to the near surface of profiles.


Within MM2, drill holes CBRC 0721 (with a depth of 36 m), 1384 (12 m), 1387 (30 m), 1391 (30 m), 1392 (39 m), 1393 (27 m) and 1395 (33 m) were distinguished by a near monotonous mineralogy of well crystalline (*i.e.*, well ordered) kaolinite as indicated by resolution of the Al-OH absorption doublets at 1390-1410 nm and 2162-2208 nm (Appendix5). Minor amounts of Fe replacing Al were indicated by the presence of an absorption feature at 2240 nm. Illite and smectite (montmorillonite) were locally developed but only at depth for some of these drill holes.

The well crystalline kaolinite was different from that identified in all other RC holes logged within MM2 and MM3. In this case the kaolinite was generally not as well ordered (*i.e.*, absorption doublets were poorly developed in PIMA spectra) and kaolinite also generally occurred in association with smectite and/or opaline silica (Appendix 5).

Within MM3, serpentine was identified in surface and sub-surface samples for RC holes ARC 0049 (to a depth of 6 m), 0050 (3 m), 0120 (1 m), 0128 (1 m), 0132 (2 m) and 0134 (11 m). This is unexpected, as serpentine is commonly destroyed during weathering and, indeed, was absent in units overlying serpentine in most profiles.

Crossover contamination of consecutive RC holes during drilling was eliminated as a possible source of serpentine for some of the holes. Serpentine is not likely to have been mis-identified and PIMA is not over sensitive to serpentine. Identification of serpentine as silicified and ferruginized olivine cumulate in outcrops confirmed the PIMA results. Serpentine generally occurred in ferruginous duricrust on hill crests and adjacent upper slope positions. Primary serpentine may

have been coated with secondary silica and Fe oxides enabling its preservation to, in some cases, considerable depth (*e.g.*, to 11 m for ARC0134).

Figure 3.1. Regolith-landform units for the MM2 and MM3 study areas and the corresponding total radiometric γ -ray response for the areas. Regolith-landform images were taken from the regolith-landform map. Red-orange hues for the total γ -ray image of MM2 indicate a high response mainly from K and U associated with felsic sediments derived from granitic outcrops to the NW of the area. Radiometrically poor greenstone belts present as very low response, dark blue hues in the total γ -ray image for MM3. Cyan hues for the γ -ray image of MM3 indicate a low response mainly for U associated with thin covers of surface material in erosional landforms. Refer to the Regolith-Landform map legend and Chapter 2 for a more complete description of each regolith-landform unit.

3.3.2 X-ray diffraction analysis

Random powder X-ray diffraction (XRD) analysis of selected RC drill holes representative of the main changes in mineralogy, as identified by PIMA, provided a more comprehensive examination of regolith mineralogy and was used to establish the mineral 'suite' for calculations of normative abundances (Section 3.6). Drill holes CBRC 0724 and 0796 were selected as representative of MM2 (Table 3.1). For MM3, drill holes ARC 0786 and 1008 were selected for examination. The mineralogy for these drill holes with the units identified by PIMA is presented in Table 3.2. Changes in clay silicate mineralogy as identified by XRD generally coincided with the units as distinguished using PIMA.

The clay silicate mineralogy of the serpentine unit, as identified by PIMA, is comprised mainly of serpentine with lesser amounts of chlorite and, in some profiles, minor amounts of talc. Although magnesite and dolomite can occur with serpentine, magnesite occurs mainly with talc and, with dolomite comprises the main non-silicate phase for the talc unit (Table 3.2). The presence of talc, in association with ultramafic rocks, most probably occurs by the alteration (*i.e.*, steatization) of serpentine (Deer *et al.*, 1980):

$$Mg_{3}Si_{2}O_{5}(OH)_{4} + 3CO_{2} \rightarrow Mg_{3}Si_{4}O_{10}(OH)_{2} + 3MgCO_{3} + 3H_{2}O$$
(Serpentine) (Talc) (Magnesite)

Talc may also form by the addition of Si and removal of Mg (Deer *et al.*, 1980). Calcium present during alteration may form, with excess Mg, as dolomite. The presence of minor amounts of talc within the serpentine unit and, conversely the presence of minor amounts of serpentine within the talc unit (Table 3.2) for some profiles, suggests that in these cases talc may be of secondary origin.

Iron released during the serpentinization of primary olivine is generally not incorporated to any great extent within serpentine (Deer *et al.*, 1980; Delvigne, 1998) and forms, instead magnetite (FeO.Fe₂O₃). Subsequent oxidation of magnetite (*i.e.*, martitization) forms maghemite (γ Fe₂O₃) and/or hematite (α Fe₂O₃). Maghemite is the main Fe oxide that occurs within the serpentine unit, whereas hematite is the main Fe oxide in that occurs in association with talc (Tables 3.1 and 3.2).

Chlorite is the main Al-bearing phase within the serpentine, talc and saponite units and continues up the weathering profile into the lower portion of the nontronite unit where it may represent the main alumino-silicate (Tables 3.1 and 3.2). Kaolinite replaces chlorite in the upper portion of the nontronite unit and the former mineral then continues to the surface as the main Al-bearing phase. Chlorite was not easily identified in PIMA spectra.

Table 3.1. Mineralogy for RC holes CBRC0724 and CBRC0796 for MM2 by XRD, with the main regolith units identified using PIMA.

Kaolinite (PIMA)

Nontronite

Sample ID Depth Clay silicates (m) 37969 1 K. sm (tr). tal								
(m)	silicates	Oxide phases		Sample ID	Depth	Depth Clay silicates	Oxide phases	
					٦ ٤			
•	K, sm (tr), talc (tr)	Qtz, Gth, Hm, mgh, clt, gb		83610		K, sm? (tr)	Gth, Qtz, hm	(aol PIN
37970 2 K, talc, sm	c, sm	Qtz, rt, clt, hm, gth, mst, gb (tr)		83611	2	K, sm? (tr)	Gth, hm	
37971 3 Talc, (Talc, cht, sm (tr)	Mst, Dmt, qtz, hm		83612	ო	K, Sm, 11	Gth, Dmt, hm	e
37972 4 Talc, (Talc, cht, sm (tr)	Mst, Dmt, hm		83613	4	Sm, ill, k	Gth, Otz, Dmt, hm	
37973 5 Talc, (Talc, cht, sm (tr)	Mst, Dmt, hm	Talo (PIN	83614	ഗ	Sm, ill, k	Qtz, gth, hm (tr)	
37974 6 Talc, (Talc, cht, sm (tr)	Mst, Dmt, hm		83615	ç	Sm, k? (tr)	Gth, hm, mgh	
37975 7 Talc, o	Talc, cht, sm (tr)	Mst, Dmt, hm (tr)		83616	7	Sm, k? (tr)	Gth, hm, mgh	
37976 8 Talc, (Talc, cht, sm (tr)	Mst, Dmt, hm (tr)		83617	8	Sm, k? (tr)	Gth, Qtz, hm, mgh	No (P
37977 9 Talc, (Tatc, cht, sm	Mst, Drnt, hm (tr)		83618	თ	sm (tr)	Qtz, gth (tr), hm (tr)	ontr IM/
37978 10 Talc, (Talc, Cht, sm	Mst, Dmt, hm (tr)		83619	P	Sm	Gth, qtz, hm, mgh (tr)	oni \)
37979 11 Talc, 1	Talc, Spt, Cht	Mst, Dmt, hm (tr), mgh (tr)		83620	;	Sm, k? (tr)	Gth, hm, qtz, mgh	te
37980 12 Spt, C	Spt, Cht, talc	Mst, Dmt, hm	s ^{(F}	83621	Ř	Sm	Gth, hm, mgh	
37981 13 Cht, S	Cht, Spt, talc	Dmt, Mst, mgh, hm (tr)	erp PIM	83622	13	Sm, k? (tr)	Gth, Hm, Mgh, qtz	
37982 14 Spt, cht	, tr	Mst, dmt, mgh? (tr)	enti A)	83623	14	Sm, spt	Gth, Mgh, hm	
37983 15 Spt, c	cht	Mst, dmt, mgh? (tr)	ne	83624	15	Spt, sm	Hm, Gth, mgh	
				83625	16	Spt, cht, sm (tr)	Mgh, gth, hm	
				83626	17	Spt, cht, sm (tr)	Mgh, hm, qtz (tr)	
				83627	1 8	Spt, cht, sm (tr)	Mgh, hm	S (F
				83628	19	Spt, cht, sm (tr)	Mgh, Hm	erp PIM
				83629	20	Spt, cht, sm (tr)	Hm, mgh	ent A)
				83630	5	Spt, cht, sm (tr)	Hm, mgh	ine
				83631	22	Spt, cht, sm (tr)	Hm, mgh	
				83632	23	Spt, cht, sm (tr)	Hm, Mst, mgh	
				83633	24	Spt, cht, sm (tr)	Hm, mgh	
				83634	25	Spt, cht, sm (tr)	Hm, mgh	
				83635	26	Spt, cht, sm (tr)	Hm, mgh	
				83636	27	Spt, cht, sm (tr)	Hm, mst, mgh, dmt (tr)	
				83637	28	Spt, cht, sm (tr)	Hm, mgh	

Table 3.2. Mineralocy of RC drill holes ARC0786 and ARC1008 for MM3 by XRD, with the main regolith units identified using PIMA.

.

Smectite, as nontronite and minor, locally developed montmorillonite are the main clay-silicate phases within the nontronite unit, particularly for the middle to upper portion of the unit (Tables 3.1 and 3.2). As is the case for chlorite, maghemite may also continue into the lower portion of the nontronite unit as the main Fe oxide phase, but is replaced by goethite in the upper portion of the unit and, with minor amounts of hematite, comprise the main Fe-bearing phases (Tables 3.1 and 3.2).

The clay mineralogy of the kaolinite unit (PIMA) is dominated by kaolinite with minor amounts of smectite and lesser amounts of illite, if present. The oxide mineralogy of the kaolinite unit is dominated by goethite with minor hematite and trace amounts of maghemite.

Near surface samples contain accessory rutile, gibbsite, calcite, dolomite and bassanite, $Ca_2(SO_4)_2.H_2O$ (Table 3.1). Bassanite may be present in significant amounts: *e.g.*, it is a major phase in RC hole CBRC0796 (Table 3.1). Bassanite has probably formed by the partial dehydration of original gypsum, as a result of the methods used by Analabs and UltraTrace to prepare the sample pulps (*i.e.*, drying at 110° C). Dehydration of gypsum can be initiated at temperatures above 80° C. Dolomite and calcite also occur in near surface samples, associated with the kaolinite/nontronite contact. Dolomite may also be present locally throughout the profile.

Quartz generally occurs as a minor phase of the oxide mineralogy, being present sporadically throughout the profiles (Table 3.1 and 3.2). High amounts of quartz may be present locally (*e.g.*, for RC hole ARC1008, sample 83618) where it may comprise the major phase but, the vertical distribution of quartz is generally limited. Opaline silica was not detected by XRD because it is x-ray amorphous.

For MM2, drill hole CBRC0721 was selected as representative of the well crystalline kaolinite as identified by PIMA. Results of the XRD analysis of RC pulps are presented in Table 3.3. Quartz is the major oxide phase present throughout the profile. Plagioclase and K-feldspar occur as the other main oxide phases, which decrease in abundance towards the surface of the profile.

Illite or muscovite occur as the main Al-bearing clay silicate phases at depth which are replaced by kaolinite as the main alumino-clay silicate moving up the profile. Minor amounts of smectite and illite occur in the central portion of the profile. Goethite is present in minor amounts as the only Fe oxide phase identified (Table 3.3).

The mineralogy of this profile is distinct and is representative of a weathering profile of either *in*situ felsic bedrock or of material originating from a felsic source, rather than having an ultramafic origin. The presence of nontronite at the base of some drill holes identified with this mineralogy suggests that the profile is depositional in origin. The location of RC holes identified with this mineralogy at 9200 to 9275 mE and 26300 to 26500 mN, on the western margin of MM2, indicates that these profiles are associated with either current surface drainage or is a palaeochannel remnant associated with the Lake Carey palaeochannel drainage system (Fig. 1.2). The source of the felsic material is most probably derived from granitic outcrops that form the prominent breakaway to the NW (see Figure 1.2).

Sample ID	Depth	n Clay silicates	Oxide phases	
	(m)			
26821	1	Kaolinite	Quartz, goethite, calcite	
26823	З	Kaolinite	Quartz, goethite, hematite? (tr)	
26826	6	Kaolinite	Quartz, goethite	
26829	9	Kaolinite, illite*	Quartz, plagioclase, goethite (tr)	
26832	12	`Kaolinite, smectite?	Quartz, goethite (tr), calcite (tr)	
26835	15	Smectite, Kaolinite	Plagioclase, K-feldspar?	
26839	18	Kaolinite, smectite, illite*	Quartz, plagioclase	
26842	21	Kaolinite, smectite, illite*	Quartz, goethite (tr)	
26845	24	Kaolinite, smectite	Quartz, plagioclase, K-feldspar	
26848	27	Kaolinite, smectite, illite*	Quartz, K-feldspar	
26851	30	Illite*, Kaolinite, smectite	Quartz, K-feldspar	
26854	33	Kaolinite, smectite, illite*	Quartz,	
26857	36	Illite*, smectite, kaolinite	Quartz, Plagioclase, K-feldspar, calcite	

Table 3.3. Mineralogy of RC drill hole CBRC0721.

Mineral names shown with the first letter in capitals (*e.g.*, Kaolinite) indicates that the mineral is present in major amounts. Mineral names in lower case (*e.g.*, plagioclase) indicate that the phase is present in minor amounts. For the XRD analysis of these samples illite* is used as a general term that includes muscovite and K-depleted forms such as illite, proper.

3.4 Regolith stratigraphy

Profiles of the regolith 'stratigraphy' for MM2 and MM3, compiled based mainly on PIMA spectroscopy with some XRD analysis, are presented in Table 3.4. Regolith developed at MM2 and MM3 shows a very similar stratigraphy, as would be expected from the weathering of ultramafic rocks (*i.e.*, peridotites) that have a similar bulk chemical composition (*i.e.*, high Mg and low Si, Al, and Fe contents, Hill *et al.*, 1996). However, small variations in the chemistry of the underlying bedrock are reflected in the relative abundances of minerals that form in the regolith. This is discussed in more detail in Section 3.5 and 3.6.

		Inter	preted units*
MM2: PIMA unit	Description and comments	Anaconda	Generic
#0: Kaolinite-1	Well crystalline kaolinite, with some illite and minor smectite at depth.	FZ or PC	Channel clays
#1: Kaolinite-2	Poorly crystalline kaolinite with locally developed opaline-Si. Gibbsite an alunite occur as local, minor phases.	FZ	Fe-rich, partially collapsed saprolite
#2: Nontronite	Locally developed opaline-Si, with minor amounts of kaolinite. Minor montmorillonite also locally present.	SM	Smectite
#3: Saponite	Some nontronite may occur with some locally developed opaline-Si.	SM/SA?	Saprolite
#4: Talc	Mainly talc with minor amounts of kaolinite, smectite (as nontronite and montmorillonite) and opaline-Si.	SA	Saprolite
#5: Serpentine	Dominantly serpentine with some local alteration to saponite.	SA/UM	Saprock to fresh ultramafic
#6: Mixed serpentine	Variably weathered serpentine, with local alteration to saponite and talc.	SA/UM	

Table 3.4. Regolith stratigraphy for MM2 and MM3, as identified by PIMA and interpreted regolith units.

MM3: PIMA unit

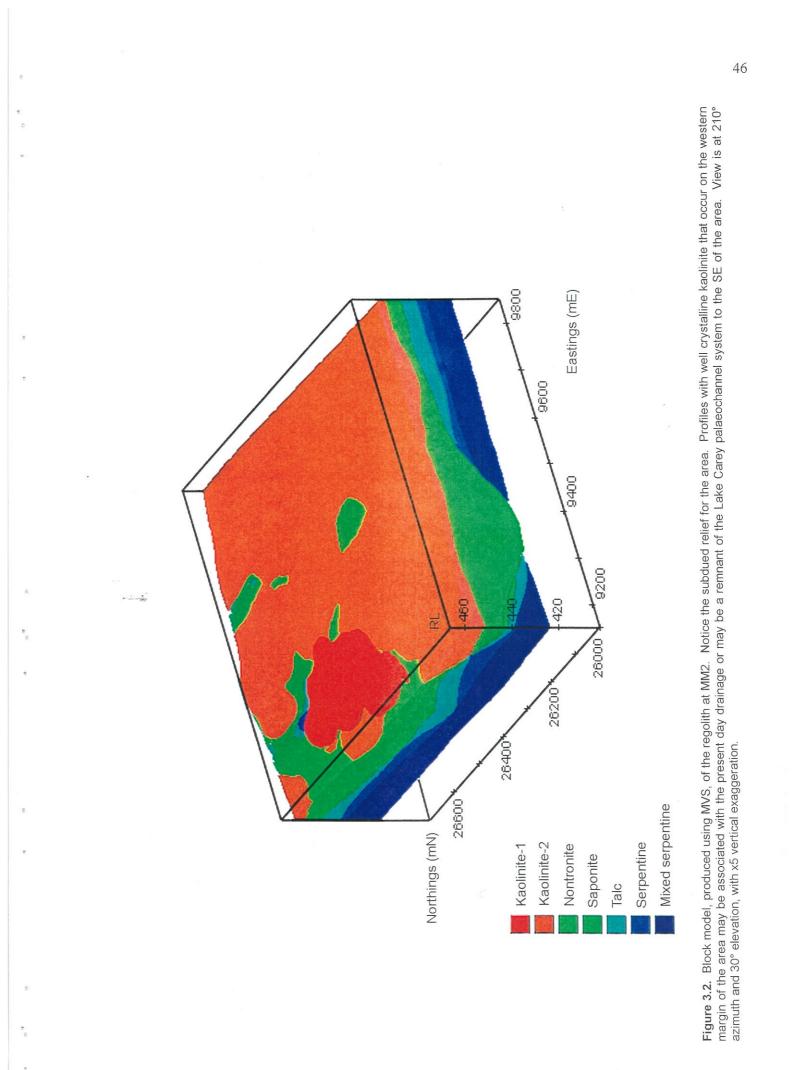
WIVIS: PIWA UTII			
#0: Kaolinite wit serpentine	h Mainly kaolinite with minor serpentine preserved at the surface.	FZ	Lateritic duricrust and preserved saprolite
#1: Kaolinite	Dominantly kaolinite with variably developed local opaline-Si.	FZ	Fe-rich, partially collapsed saprolite
#2: Nontronite	Locally developed opaline-Si, kaolinite and minor talc.	SM	Smectite
#3: Saponite	Mainly saponite with locally developed opaline-Si.	SM/SA?	Saprolite
#4: Talc	Local kaolinization and minor amounts of smectite (as nontronite with some saponite).	SA	Saprolite
#5: Serpentine	Mainly serpentine with some minor, variable alteration to saponite and talc.	UM	Saprock to fresh ultramafic

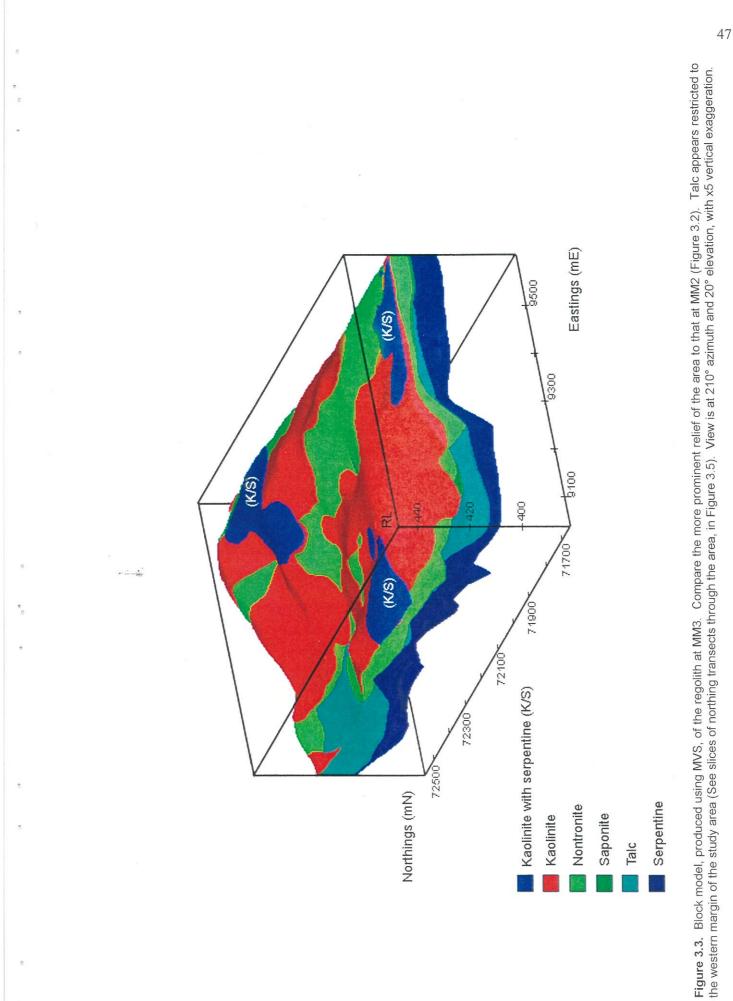
*Terms used by Anaconda for profile description: PC = plastic clays; FZ = Ferruginous zone; SM = smectite zone; SA = saprolite; UM = ultramafic.

In addition, the influence that local geomorphological factors (*i.e.*, drainage, topography) have to profile development is reflected mainly in the upper portion (*i.e.*, kaolinitic units) of the profiles for the two sites. Interpretation of the kaolinite units is complex with the regolith having both a transported and residual component. At MM2, the well crystalline kaolinite is associated with deposits of channel clay sediments of felsic origin. Kaolinite associated with weathered ultramafics may also have a transported component, particularly in the upper portion of the unit. This is most evident at MM2, where input of Al (which may account for the presence of gibbsite within kaolinite, Table 3.4) and Si-rich material at the surface occurs, due to location of the site within the outwash of granitic material that feeds into the Lake Carey palaeodrainage system (Fig. 1.2).

Regolith boundaries within the weathering profiles at MM2 and MM3 are somewhat gradational with some phases continuing into overlying units. Locally, development or alteration occurs

within regolith units, which complicates the profile stratigraphy. Development of opaline-Si from the central portion of the profiles through to the surface is a feature of the profiles at both sites (Table 3.4).


The descriptive scheme used by Anaconda to describe the Ni-laterite profiles is generally too broad and does not permit detailed discrimination of units within the regolith. For example, in the case of the kaolinite units at MM2, Anaconda's classification scheme does not enable discrimination of the genetic significance of these units (Table 3.4). This is important when considering the influence of local site factors to the formation of the deposits.


3.5 Regolith models for MM2 and MM3

The regolith profiles for MM2 and MM3, as presented in Table 3.4, were subsequently used as the basis for developing three-dimensional block models using the 3-D visualization program MVS. Block models of the regolith stratigraphy for MM2 and MM3 are presented in Figures 3.2 and 3.3, respectively. Initial comparison of the two areas emphasizes the subdued relief of MM2 relative to MM3. This is a reflection of the depositional landforms that dominate at MM2 (Section 3.2). Drainage incision running sub-parallel to the strike of ultramafic rocks has produced the more prominent relief at MM3 (Fig 3.3), which is characterized by relict and erosional regolith-landform regimes (Chapter 2).

Northing slices through the block models provide a better indication of the variation in, and complex nature of, the regolith stratigraphy for MM2 (Fig. 3.4) and MM3 (Fig. 3.5). Nontronite appears as a significant unit at both sites. Fault planes or fractures are evident in MM2 for transects at 26700 mN and 26500 mN (Fig. 3.4). Within MM3, talc appears restricted to the western margin of the deposit (Fig. 3.5). In comparison, talc shows a more uniform distribution within MM2, particularly in the northern part of the area (*i.e.*, transects 26700 and 26500 mN, Fig. 3.4).

As a means of enabling a semi-quantitative comparison of regolith developed at both sites, the volume of each unit at MM2 and MM3 was determined using the SELECT_CELLS and VOLUME_MASS modules in MVS, and is expressed as a percentage of the total regolith volume in Figure 3.6. Such calculations can, however, be biased by the, somewhat, arbitrary depth of drilling at the two sites. Despite this, the comparison in this case remains valid because, if the

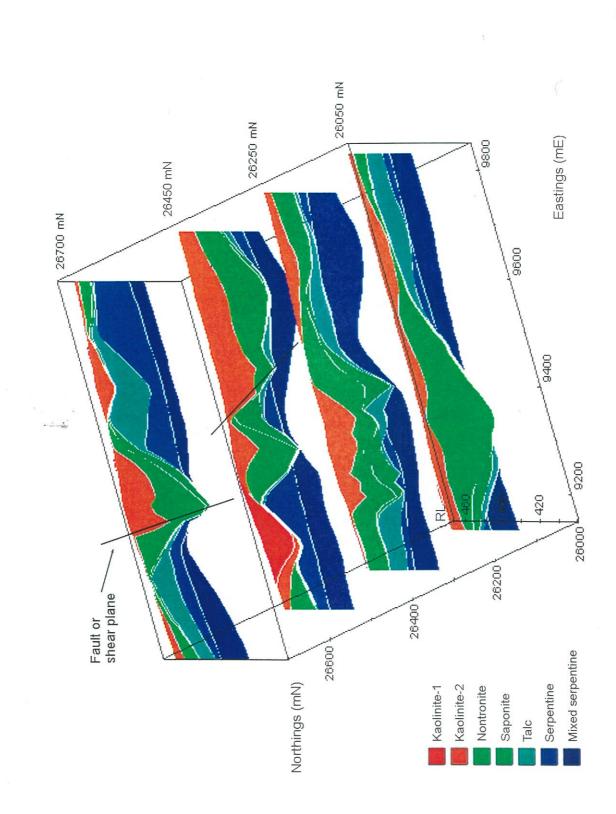


Figure 3.4. Northing slices through the regolith at MM2. A shear or fault plane is evident in transects 26700 and 26500 mN, offsetting the nontronite unit. Regolith units have been separated (*i.e.*, white lines in slices) to show individual units. View is at 200° azimuth and 50° elevation, with x5 vertical exaggeration.

Figure 3.5. Northing slices through the regolith at MM3. Talc appears mainly along the western margin and may reflect differences in the underlying lithology (see discussion in Section 4.4). Regolith units have been separated (*i.e.*, white lines in slices) to show individual units. View is at 195° azimuth and 40° elevation, with x5 vertical exaggeration.

serpentine and mixed serpentine units at MM2 are considered as a single unit, then values of the volume% that serpentine occupies at MM2 and MM3 are very similar, at 39 and 41%, respectively (Figure 3.6). Overall, the proportions of the other units at the two sites are similar, except that MM2 has a slightly greater proportion of kaolinitic material (channel clays and kaolinite units), at the expense of the nontronite unit. This may, in part, reflect the input of Al-rich sediments derived from granitic outcrops to the NW of MM2.

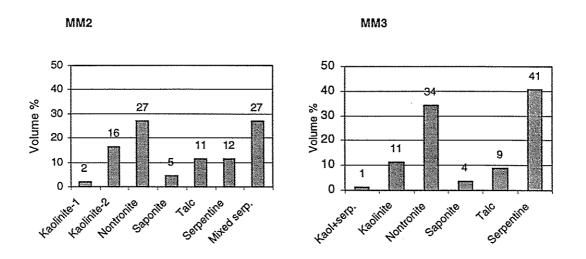


Figure 3.6. The volume % of regolith units at MM2 and MM3 as a percentage of the total regolith volume.

3.5.1 Bedrock geology

· ····

In a separate study of the bedrock geology at Murrin Murrin, Hill *et al.*, (1996) distinguished olivine cumulate lithologies (*i.e.*, ortho-, meso- and adcumulates) based on their Ni/Ni+Al ratios (Table 3.5). This classification groups all other lithologies (*e.g.*, basalt, gabbro, felsic volcanics) into the one unit 'Felsic volcanics'.

The Ni/Ni+Al ratio was used for distinguishing fresh rock but it appears that it may also provide useful results when applied to the regolith. Similar volume calculations performed using MVS were undertaken to estimate the lithological content to profile development and regolith units at MM2 and MM3. Use of this lithological discriminant in the present study is based purely on geochemical grounds and takes no account of any possible lateral or vertical dispersion of either Ni or Al (*i.e.*, assumes that they are immobile during weathering).

Distribution of the Ni/Ni+Al ratio at MM2 and MM3 was modelled using MVS and the volume percentage that each of the rock types listed in Table 3.5 occupies within MM2 and MM3 was determined (Fig. 3.7). The dominant lithology at MM2 consists of olivine ortho- and meso-

cumulates, which occupy about 82% of the total volume, with a minor amount of felsic volcanic rocks (Fig. 3.7). In contrast, olivine meso- and adcumulate lithologies are the main rock types at MM3 occupying 86% of the total volume, with adcumulates alone comprising 50% of the total volume (Fig. 3.7). These findings are consistent to the 'bottom-of-hole' geological logging observations of Hill *et al.*, (1996), which reported the underlying bedrock for tenements MM2 and MM9 as consisting of predominantly ortho- and meso-cumulates. For MM south, a more or less complete gradational sequence of ortho-cumulates through to adcumulates was recorded (Hill *et al.*, 1996).

Table 3.5. Distinction of different rock types based on their (Ni/Ni+Al) ratio.

Rock type	(Ni/Ni+Al) ratio
'Felsic volcanics'	<0.05
Olivine orthocumulate	0.05 - 0.2
Olivine mesocumulate	0.2 - 0.4
Olivine adcumulate	>0.4

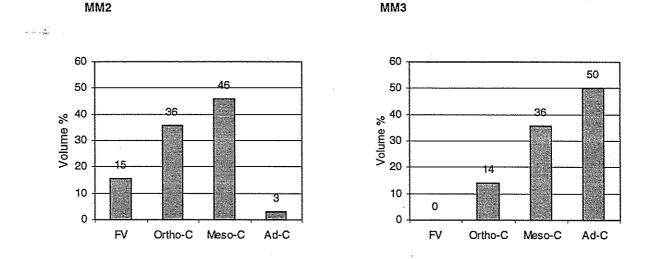
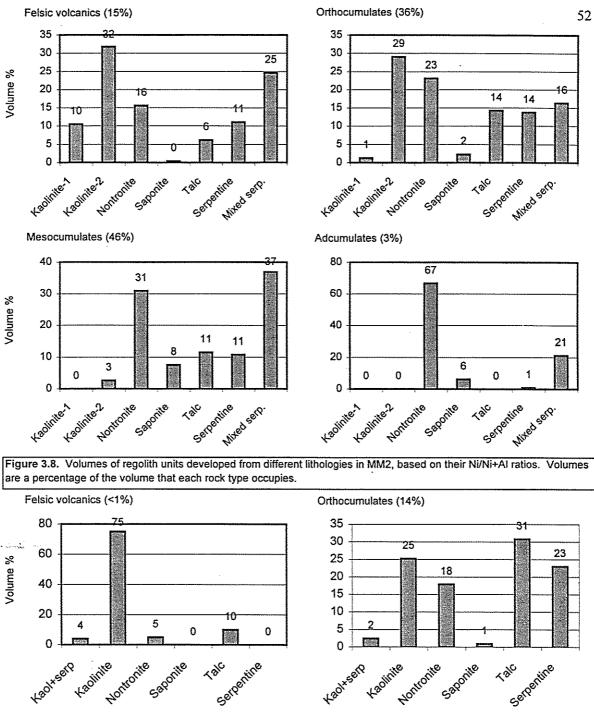



Figure 3.7. Volume % of rock types, distinguished on the basis of their (Ni/Ni+AI) ratios (Hill *et al.*, 1996), as a percentage of the total volume of regolith at MM2 and MM3.

The volume of each regolith unit (Table 3.4) as a percentage of the volume of each rock type is presented in Figures 3.8 and 3.9 for MM2 and MM3, respectively. Surprisingly, regolith developed with 'felsic volcanic' rocks at MM2 is comprised mainly of kaolinite and serpentine

Kaolinite Nontronite 4301×581P Serpentine 4-aolinite Saponite 4201×5elf Adcumulates (50%) Mesocumulates (36%) 40 60 34 50 30 Volume % 40 20 30 9 20 10 3 10 1 0 0 Nontronite Serpentine 430Hrself **Facilitie** Saponite 4-a01+self Kaolinite 1 alc

Figure 3.9. Volumes of regolith units developed from different lithologies in MM3, based on their Ni/Ni+Al ratios. Volumes are a percentage of the volume that each rack type occupies.

(Fig. 3.8). According to average geochemical compositions of cumulate lithologies for the Norseman-Wiluna belt, komatiite rocks tend to have very low Ni/Ni+Al values of about 0.03 (Hill *et al.*, 1996). Serpentine developed from rocks with Ni/Ni+Al values of <0.05 suggests the presence of komatiitic lithologies at MM2. This may also account for the talc and nontronite units also associated with the felsic volcanics in MM2 (Fig. 3.8). At MM3, FV rocks comprise <1% of the total rock volume, with the kaolininte as the dominant unit (75%, Fig. 3.9).

Regolith units over the different cumulate lithologies are very similar in both deposits, particularly for olivine meso- and adcumulate lithologies. Orthocumulates alter to a generally mixed regolith profile. Mesocumulates and, in particular, adcumulates alter to regolith dominated by nontronite and serpentine units in which talc is a major component (Fig. 3.9). The saponite unit is only a minor component in both areas.

3.6 CIPW-Norm abundances

To provide a more detailed examination of regolith mineralogy at MM2 and MM3 than can be provided by infrared analysis (*e.g.*, PIMA is not sensitive to Fe oxides) and that is cost effective (the cost of XRD analysis of a large number of samples would be prohibitive), mineral abundances were calculated as CIPW-Norms on the basis of the XRF analysis of 495 samples from selected RC drill pulps (Section 1.11.4). The geochemical data supplied by Anaconda was not used as it did not have assays for several important elements including, in particular, Si. Minerals used in the calculations are based on the 19 phases identified from XRD analysis of sample pulps from RC drill holes CBRC0721, CBRC0724, CBRC0796, ARC0786 and ARC1008, and from PIMA logging of pulps. Results are presented in Appendix 6, Tables A6.1, A6.2 and A6.3.

Weight loss attributed to volatilization of CO_2 during fusion of pulps for XRF analysis was not determined and hence was not included in the calculations. This causes problems with samples that have high carbonate contents (*i.e.*, > 10%) as dolomite and magnesite contain 47 % and 52 % CO_2 , respectively. Consequently, where high amounts of carbonate occur (as shown in Appendix 6, with the regolith unit highlighted in bold) abundances of other minerals should be considered as overestimates. It also must be noted that CIPW-Norm determinations can only provide an indication of the phases that <u>may</u> be present not what <u>is present</u>.

The Norm set of minerals for MM2 and MM3 included: bassanite, alunite, chromite, rutile, apatite, asbolan, illite, nontronite, saponite, chlorite, kaolinite, gibbsite, magnesite, dolomite, calcite, talc, serpentine, opaline-Si/quartz and Fe oxides. As the mineralogy for the channel clay sediments in

MM2 was distinct, a separate mineral set was required and included: chromite, rutile, asbolan, vermiculite, nontronite, illite, muscovite, plagioclase, magnesite, dolomite, calcite, kaolinite, gibbsite, opaline-Si/quartz and Fe oxides.

Several assumptions regarding the composition of some minerals and the association of minerals within some of the regolith units were required. The following discussion provides an outline of the assumptions made and presents a general order in which mineral abundances were calculated.

3.6.1 Criteria and order of element allocation for calculations of CIPW-Norm abundances for MM2 and MM3.

- Sulphur was initially assigned to bassanite, Ca₂(SO₄)₂.H₂O, the intermediate phase of the gypsum-anhydrite dehydration series. Remaining S was assigned to alunite KAl₃(SO₄)₂(OH)₆. Other S-bearing phases such as jarosite, KFe₃(SO₄)₂(OH)₆, and the Na-rich equivalents of alunite and jarosite were not considered. No other discrete Na phases such as halite, NaCl, were detected in either XRD patterns or PIMA spectra.
- 2. All Cr was allocated to chromite, FeCr₂O₄.
- All Ti was presented as rutile, TiO₂. Rutile is generally pure although substitution of Fe²⁺/Fe³⁺ and major amounts of Nb and Ta can occur. Tantalum rich varieties may also contain Sn, Cr, and V (Deer *et al.*, 1980). In practice, Ti may also present as anatase, TiO₂, in the regolith, but the assumptions, calculations and results are the same, regardless. It is noted, however, that only rutile was detected in samples by XRD.
- 4. Mn was assigned as asbolan, (Co,Ni)Mn₂O₄(OH)₂.xH₂O, with x = 2. Random powder XRD of Mn-rich samples collected from the trial pits at MM2 and MM7 confirmed the presence of asbolan. Co and Ni were assigned in equivalent amounts to asbolan. Chemical analysis of asbolan confirmed a Co:Ni ratio of approximately 1:1, with an average Co/Mn ratio of 0.33.
- 5. All P was present as apatite, Ca₅P₃O₁₂(OH).
- Potassium remaining from the allocation to alunite was assigned to illite. The composition of illite was taken as, K_{0.75}(Al_{1.1},Fe_{0.7},Mg_{0.2})(Si_{3.5},Al_{0.5})O₂₀(OH)₄.
- 7. All Na was assigned to either nontronite, Na_{0.66}(Fe_{3.2},Ni_{0.2},Mg_{0.6})(Si_{7.6},Al_{0.4})O₂₀.2H₂O, or saponite, Na_{0.66}(Mg_{5.3},Fe_{0.62},Ni_{0.08})(Si_{7.34},Al_{0.66})O₂₀.2H₂O. No Ca was allocated to either phase. The Ni contents for nontronite and saponite were set to about 2% Ni, taken as the average of the range of Ni contents reported for these phases (Camuti and Riel, 1996).

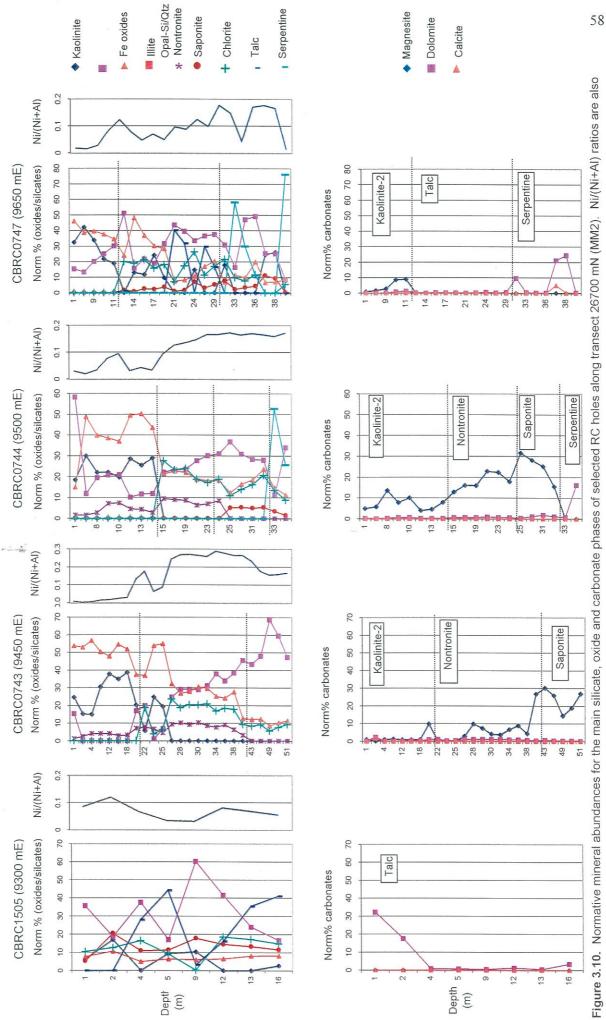
- 8. Remaining Ca was assigned to dolomite, (Ca,Mg)(CO₃)₂.
- Calcium not allocated to dolomite due to the lack of Mg, was taken up by calcite, CaCO₃. Calcite and dolomite have a generally pure composition, although Sr, Ba, Co and Zn can be important substituents in calcite and small amounts of Fe²⁺ may replace Mg in dolomite (Deer *et al.*, 1980).
- Chlorite of composition, (Mg_{3.5},Al_{1.0},Fe_{1.30},Ni_{0.2})(Si_{2.6},Al_{1.4})(OH)₁₆, was determined using Al as the limiting element. The Ni content of chlorite was set to 2% based on the average Ni contents reported for chlorite analyses for samples from Murrin Murrin (Camuti and Riel, 1996). Other important substitutions that can occur in chlorite, but not considered in this study, include Cr, Mn, V, Cu or Li (Deer *et al.*, 1980).
- 11. Any remaining Al was assigned to kaolinite, Al₂Si₂O₅(OH)₄, and gibbsite, Al(OH)₃. Kaolinite and gibbsite are generally chemically pure although small amounts of Fe can replace Al, and Ti can substitute for Si in kaolinite (Deer *et al.*, 1980). Although minor amounts of Fe substitution were indicated in PIMA spectra this was not a consistent feature of kaolinite and was not considered in the normative calculations.
- 12. Any remaining Fe was allocated to Fe oxides, as Fe₂O₃. No distinction of the different Fe phases goethite, hematite or maghemite was possible. Cobalt and Ni remaining after allocation to asbolan, nontronite, saponite and chlorite was assigned to Fe oxides.
- 13. Talc, Mg₃Si₄O₁₀(OH)₄. Talc is generally pure, but Al and Ti can replace Si, and the substitution of Mg by small amounts of Fe, Mn and Al does occur. Minnesotaite is the Fe equivalent of talc, but Fe-rich varieties only generally show up to about 33% Fe (Bailey, 1980).
- 14. Serpentine, Mg₃Si₂O₅(OH)₄. As for talc, small amounts of Al can replace Si, and Al and Fe can substitute for Mg in serpentine. The Ni-rich variety of serpentine, a type of garnierite, can occur, but most serpentines generally have <0.25% Ni. Garnierite has not been identified within the Murrin Murrin Ni deposits.</p>
- 15. Remaining Si is presented as SiO₂. No distinction could be made between amorphous (*i.e.*, opaline) or crystalline SiO₂.
- 16. Any remaining Mg is presented as magnesite, MgCO₃. As for dolomite and calcite, magnesite has a generally pure chemistry, although the intermediate Fe-Mg-carbonate phase, breunnerite

(Mg,Fe)CO₃, for the magnesite-siderite series does occur (Deer *et al.*, 1980) and has been described in the MM south area (Wells, 1998).

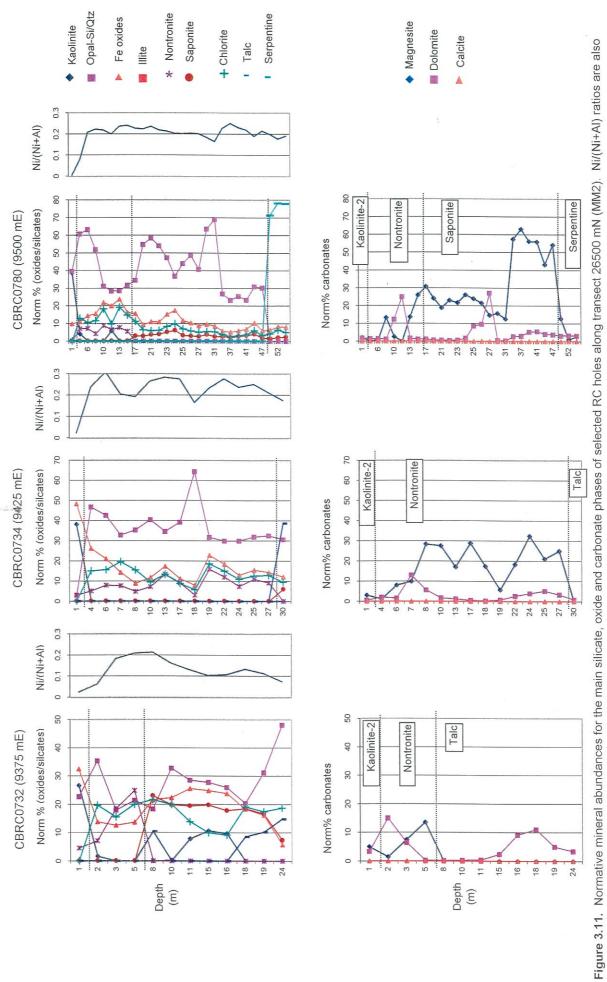
Certain assumptions regarding the association (*i.e.*, 'paragenesis') of particular phases were also required for normative determinations of certain minerals. Nontronite and saponite are considered mutually exclusive, as were kaolinite and chlorite. No talc could be present with serpentine. Saponite is considered the only smectite phase present in the Saponite, Talc and Serpentine units. Other phases such as montmorillonite, sepiolite, hectorite and palygorskite, have been reported as local occurrences in these deposits (Camuti and Riel, 1996), but were not considered in the normative calculations. These assumptions, however, do reflect the general mineralogy observed in the regolith at MM2 and MM3 (see Table 3.4).

3.6.2 Criteria and order of element allocation for calculations of CIPW-Norm abundances for the channel-clay unit, MM2.

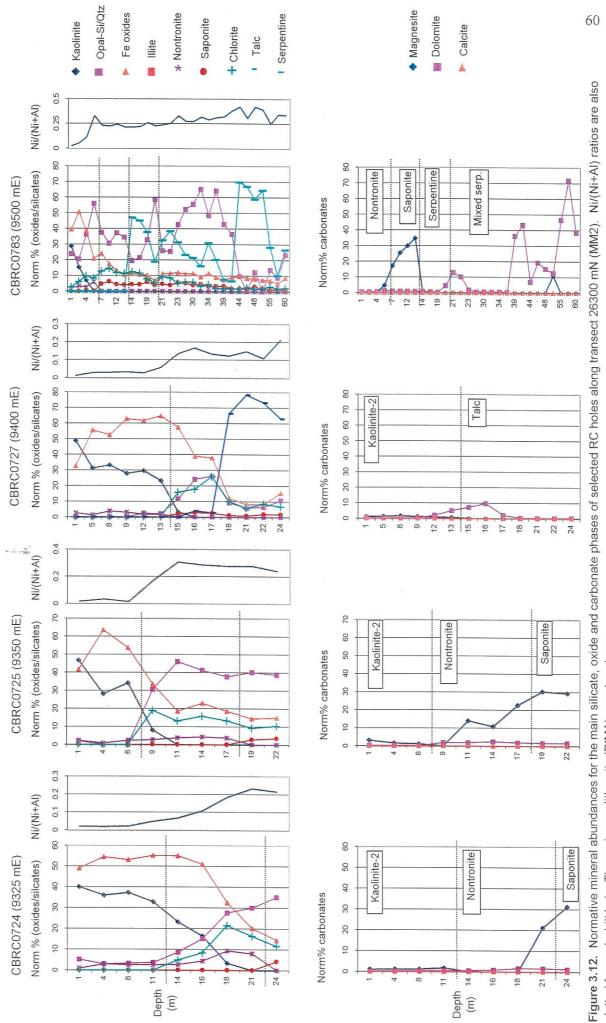
- 1. Abundances for chromite, rutile (or anatase), apatite and asbolan were calculated following the assumptions outlined previously. Sulphur was not present in significant amounts and consequently no S-bearing phases were included in the normative calculations.
- Vermiculite, Mg₂(Mg_{5.5}Fe_{0.5})(Al₂Si₆)O₂₀(OH)₄, was calculated using Mg as the limiting element.
 - Nontronite, (Ca_{0.01},Na_{0.65})(Fe_{3.53},Ni_{0.02},Mg_{0.45})(Si_{7.5},Al_{0.5})₂₀.2H₂O, was determined for samples at the base of some of the profiles. Nontronite was determined using Na as the limiting element and included some Ca.
 - 4. Illite, K_{0.75}(Al_{1.1},Fe_{0.7},Mg_{0.2})(Si_{3.5},Al_{0.5})O₂₀(OH)₄, was determined as the main K-bearing phase in association with nontronite.
 - 5. Dolomite, magnesite and calcite were calculated from remaining Mg and Ca.
 - 6. All K, other than that assigned to illite, was assigned to muscovite, KAl₂(Si₃Al)O₂₀(OH)₄.
 - Plagioclase was determined as equivalents of albite, NaAlSi₃O₈, and anorthite, CaAl₂Si₂O₈. Normative abundances of other feldspars as identified by XRD, such as orthoclase, KAlSi₃O₈, (Table 3.3) could not be determined.
 - 8. Remaining Al was assigned to kaolinite, Al₂Si₂O₅(OH)₄.


- 9. Remaining Fe was assigned to Fe oxides. Similarly, no discrimination between goethite, hematite or maghemite was possible. Nickel and cobalt remaining from allocation to asbolan and nontronite was incorporated with Fe oxides.
- 10. Remaining Si was allocated to SiO₂, without distinction between either amorphous, opaline or crystalline phases.

3.7 Normative mineralogy for MM2 and MM3


Plots of the normative mineralogy of selected RC holes for northing transects across MM2 and MM3 are presented in Figures 3.10 to 3.13, and 3.14 to 3.19, respectively. Only those silicate and oxide phases present in significant amounts are shown. For example, as there is no saponite, talc or serpentine in the nontronite unit at either site (Table 3.4), these were not plotted for the purposes of clarity. Interpretations based on trends in the variations of mineral abundances need to be treated with some caution because of the assumptions and criteria used to determine normative abundances *e.g.*, no talc was allowed within the serpentine unit, although in reality some crossover of serpentine into talc does occur. Normative abundances for accessory gibbsite, bassanite, alunite, chromite, rutile, apatite and asbolan were also not plotted as these were, with few exceptions, generally present in very low amounts (*e.g.*, < 0.5-1.0%) (Appendix 6, Tables A6.1 and A6.2).

Chlorite, as the main Al-bearing phase at depth in these profiles, increases in abundance moving up the weathering profiles from the serpentine and talc units, as the amount of available Al increases, where it tends to be mainly associated with nontronite in MM2 and MM3 and often shows the greatest abundance in association with this unit (Figures 3.10-3.19). Where chlorite does occur in association with either nontronite or saponite in MM2, it is generally the more abundant phase (Figures 3.10-3.13), whereas within MM3, nontronite and saponite are more abundant (Figures 3.14-3.19). This may reflect the greater Al content of the dominantly ortho- and meso-cumulate lithology of the underlying bedrock at MM2. In comparison, the bedrock at MM3 is predominantly adcumulate, which is relatively Al-poor (Hill *et al.*, 1996).


Surprisingly, quite low amounts of nontronite and saponite, of up to 20% but generally <10%, are present within the corresponding regolith units for MM2 (Figures 3.10-3.13). In contrast, abundances of nontronite and saponite within MM3 were generally greater than amounts for

plotted for each drill hole. The main regolith units (PIMA) are also shown.

plotted for each drill hole. The main regolith units (PIMA) are also shown.

plotted for each drill hole. The main regolith units (PIMA) are also shown.

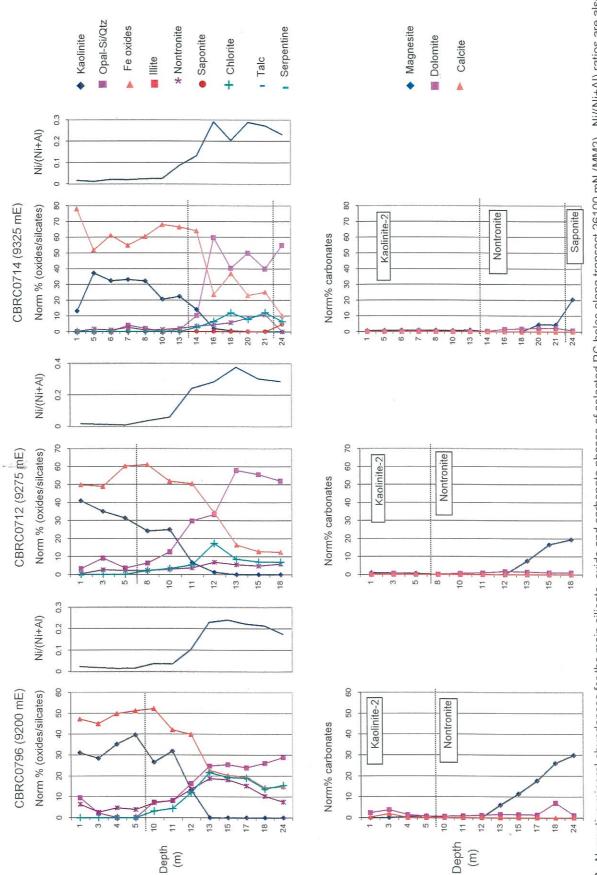
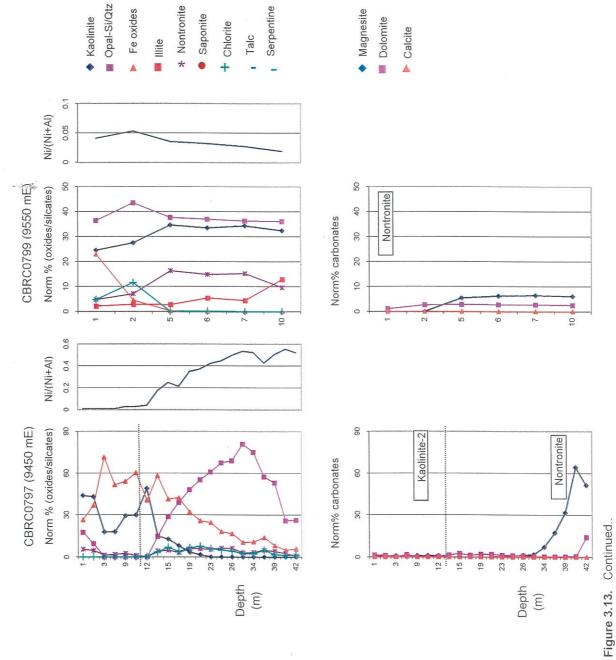
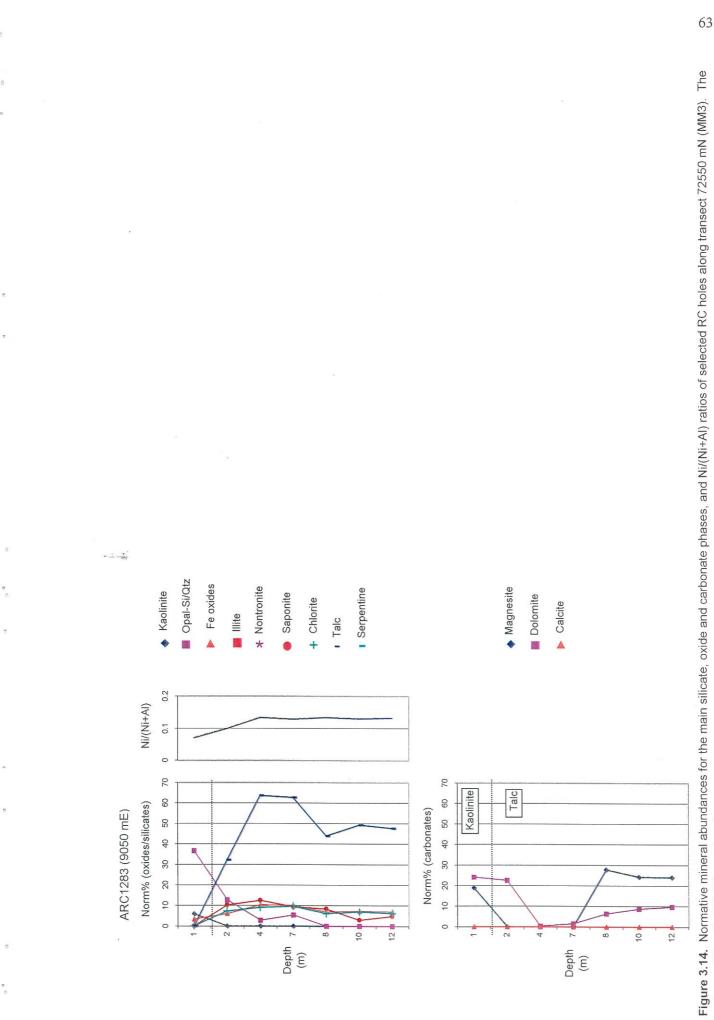
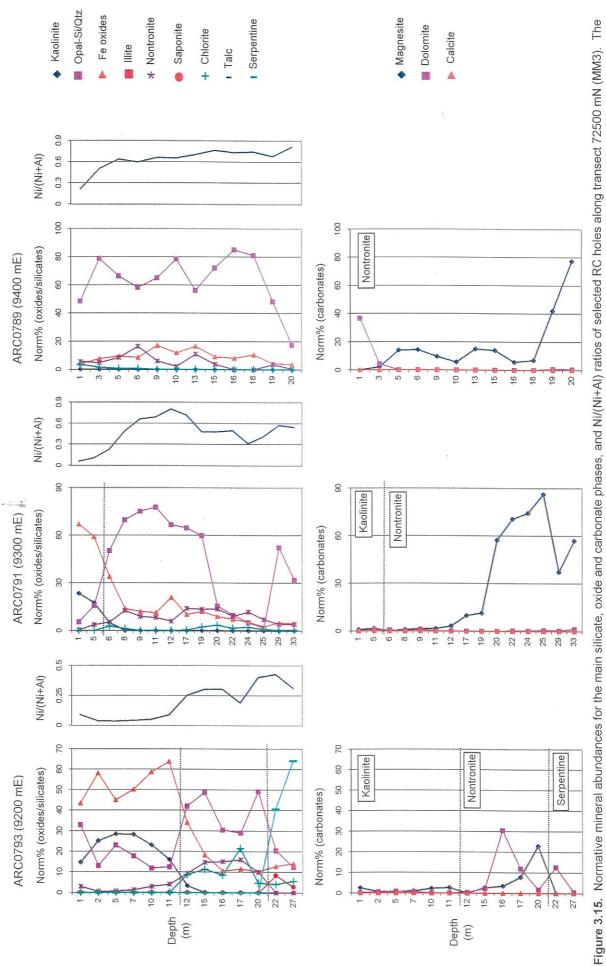
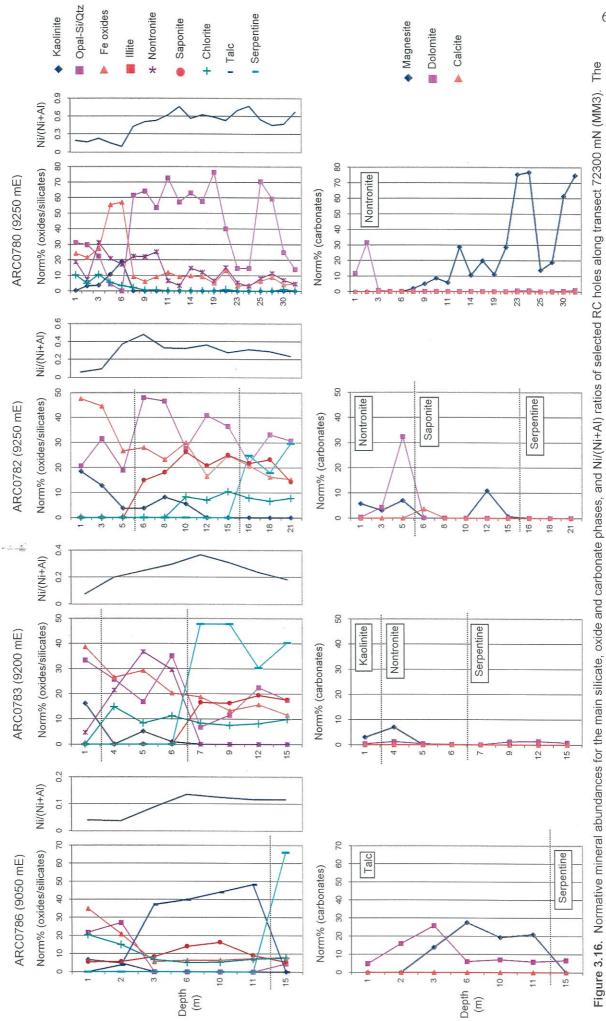





Figure 3.13. Normative mineral abundances for the main silicate, oxide and carbonate phases of selected RC holes along transect 26100 mN (MM2). Ni/(Ni+AI) ratios are also plotted for each drill hole. The main regolith units (PIMA) are also shown.



main regolith units (PIMA) are also shown.

main regolith units (PIMA) are also shown.

main regolith units (PIMA) are also shown.

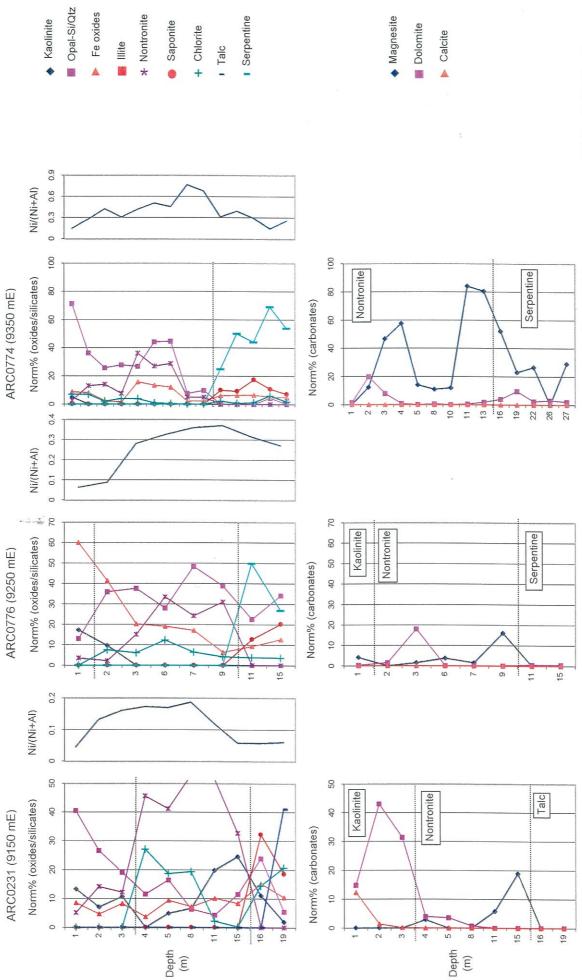


Figure 3.17. Normative mineral abundances for the main silicate, oxide and carbonate phases, and Ni/(Ni+AI) ratios of selected RC holes along transect 72100 mN (MM3). The main regolith units (PIMA) are also shown.

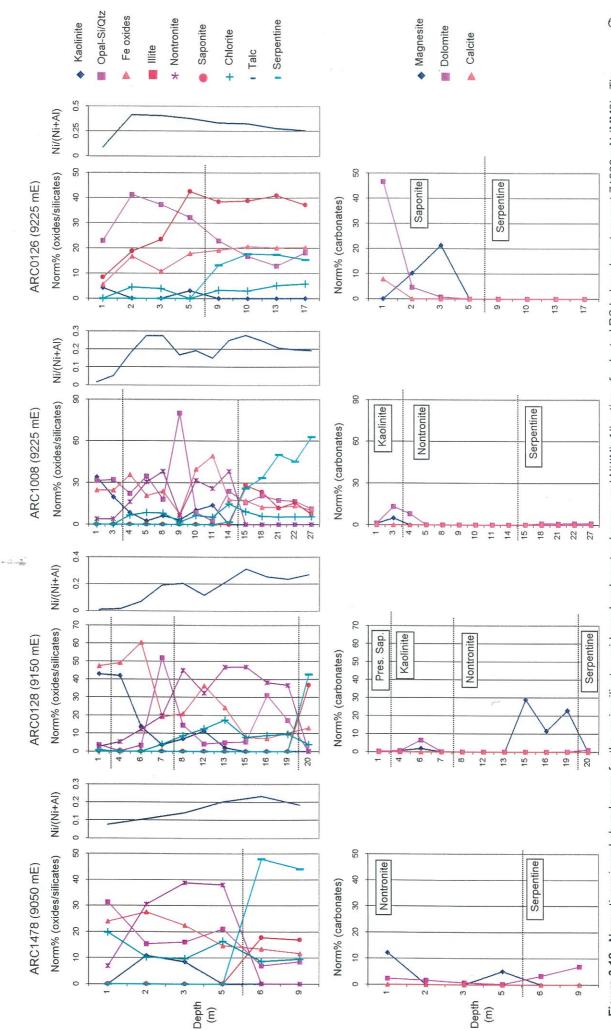
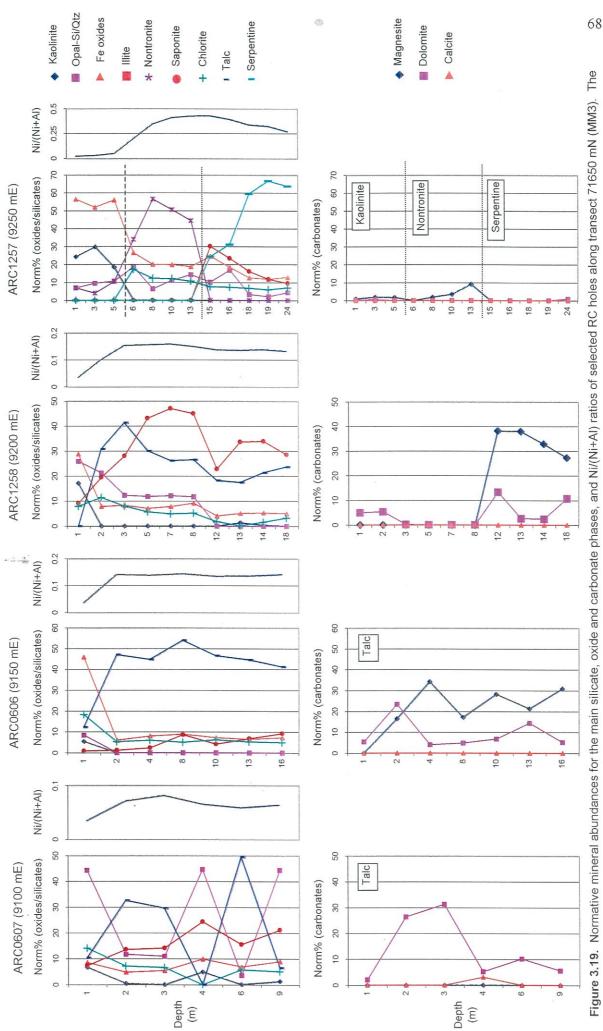



Figure 3.18. Normative mineral abundances for the main silicate, oxide and carbonate phases, and Ni/(Ni+AI) ratios of selected RC holes along transect 71900 mN (MM3). The main regolith units (PIMA) are also shown.

main regolith units (PIMA) are also shown.

MM2, and amounted to 30-50 % of the normative mineralogy of the nontronite and saponite units for MM3, *e.g.*, RC holes ARC0231 (Fig. 3.17), ARC1478, ARC0128 (Fig. 3.18), and ARC01257 (Fig. 3.19).

Amounts of chlorite and nontronite decreased towards the nontronite/kaolinite contact, where the amount of kaolinite increases and replaces chlorite as the main Al-bearing, clay silicate phase and nontronite essentially disappears. Iron oxides are generally low in abundance within the serpentine and talc units, comprising in general 5-10 Norm%, but up to 10-20 Norm%, of the normative mineralogy of these units. Amounts of Fe oxides increase markedly from the upper portion of the nontronite unit and into the kaolinite unit where the abundance of Fe oxides can amount to 50-70 Norm%. Not surprisingly, kaolinite also shows the greatest abundance within the kaolinite unit for both MM2 and MM3, and can comprise up to 30-50 % of the normative mineralogy.

Amounts of SiO₂ for MM2 and MM3 are highly variable and, although can amount to 60-80% of the total phases present, were not related to depth even where Ni/Ni+Al values remained relatively constant at depth (Figures 3.10-3.19). In general, the greatest abundances of SiO₂ occurred within MM3 where the Ni/Ni+Al ratio suggested an adcumulate lithology for the parent rock. For example, RC holes CBRC0796 (Fig. 3.13), ARC0791, 0789 (Fig. 3.15), and ARC0780 (Fig. 3.16).

Magnesite and dolomite, as the main carbonate phases within profiles for MM2 and MM3, are present in quite variable amounts, which are unrelated to depth and can be equivalent to amounts of SiO2 (Figures 3.10-3.19). However, the presence of carbonate appear to be exclusive of SiO₂, with high amounts of carbonate, mainly as magnesite, correlating to low amounts of SiO₂. The occurrence of high amounts of one carbonate does not necessarily indicate high amounts of the other. Amounts of calcite are generally very low, with some near surface occurrences in MM2 and MM3, *e.g.*, holes CBRC0743 (Fig. 3.10), CBRC0796 (Fig.3.13), ARC0231 (Fig. 3.17) and ARC0126 (Fig. 3.18), which are most probably pedogenic carbonate or calcrete deposits.

Bassanite was present in significant amounts in MM2 for RC holes CBRC0796 (15 %) and CBRC0732 (18 %) (Appendix 6, Table A6.1) and in MM3 for RC holes ARC0126 (2 %), ARC0231 (15 %) and ARC1283 (7 %) (Appendix 6, Table A6.2) occurring in near surface samples. Major amounts of gibbsite are present for MM2 RC holes CBRC0797 (22 %), CBRC0727 (10 %), CBRC0743 (20 %), CBRC0725 (5 %) and CBRC0714 (4 %), occurring in the top 10-12 m within the kaolinite unit. Gibbsite was not present in regolith units below the kaolinite unit. No normative gibbsite was present in any RC holes at MM3 (Appendix 6, Table A6.2).

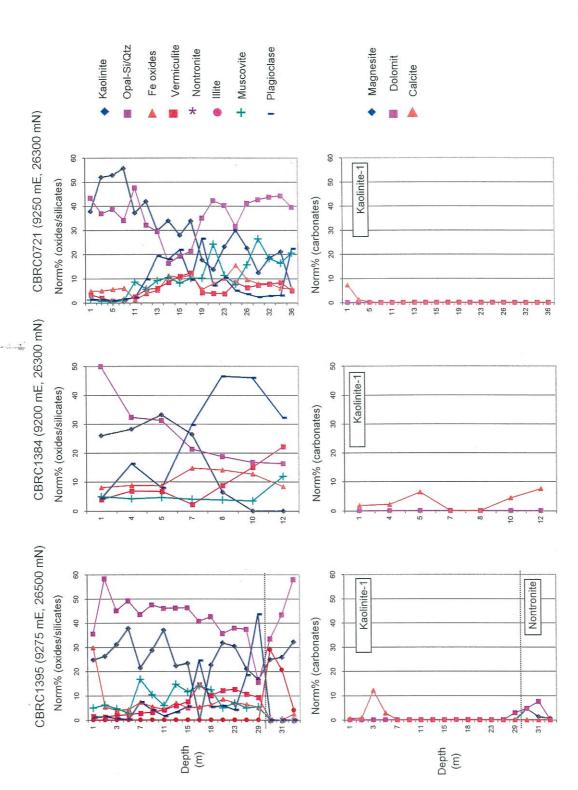


Figure 3.20. Normative mineral abundances for the main silicate, oxide and carbonate phases of selected RC holes representative of the kaolinite-1 (*I.e.*, channels clays) unit for MM2. The main regolith units (PIMA) are also shown. Normative abundances for chromite within MM2 generally ranged from 0.1-1.0 %, whilst abundances within MM3 were greater, averaging between 1-2 % (Appendix 6). However, significant amounts of chromite were indicated for several RC holes within MM2: CBRC0714 (5.5%), CBRC0783 (5.2%), CBRC0747 (6.8%) and CBRC0743 (7.2%) (Appendix 6, Table A6.1). The greatest abundances of chromite generally occurred in sub-surface samples at or near the kaolinite/nontronite contact. In the case of RC hole CBRC0747 the greatest amounts of chromite occurred in the central portion of the talc unit (Appendix 6).

Amounts of rutile remained at background abundances of between 0 to 0.1 Norm% (Tables A6.1 and A6.2) throughout most of the profile, but increased in abundance to between 0.5-1.0 Norm% towards the top 5-10 m in MM2 and in the top 1-3 m in MM3, (Tables A6.1 and A6.2). Greatest abundances of rutile occurred in MM2 for RC holes CBRC0797 (2.4% at 3m) and CBRC0714 (2.6% at 1m) (Appendix 6, Table A6.1). Rutile is the ubiquitous form of Ti in acid, plutonic rocks (Deer *et al.*, 1980); high amounts of rutile in near surface samples at MM2 may, therefore, indicate input of Ti from an external source.

3.7.1 Normative mineralogy of channel clays for MM2

Normative mineral abundances for the channel clay regolith unit within MM2 are presented in Figure 3.20. Accessory phases chromite, rutile, apatite and asbolan, not shown in Figure 3.20, were present in only very low amounts of generally <0.5 %, with rutile being the most common. In addition, only those silicate and oxide phases present in significant amounts are plotted in Figure 3.20 for the purposes of clarity.

Amounts of the primary alumino-silicates plagioclase and muscovite are variable, but tend to decrease moving up the profiles (Fig. 3.20) reflecting the greater affect of weathering towards the surface. Consequently, the abundance of kaolinite increases towards the surface as the amount of available Al increases from the weathering of muscovite and, in particular, plagioclase. Indeed, kaolinite together with SiO₂, most likely as quartz, form the major phases of these profiles, and together comprise up to 80-90 % of the normative mineralogy (Fig. 3.20). These sediments have most probably accumulated by a series of depositional events, however, this is not clearly shown in trends of the mineralogy for these profiles.

Magnesite and dolomite are not the important carbonate minerals in these profiles. Minor amounts of magnesite to about 5% do occur in RC hole CBRC1395 (Fig. 3.20) but this is associated with the underlying nontronite unit. Calcite appears as the main carbonate phase but its occurrence is mainly restricted to within the top 5 m (Fig. 3.20).

Mitz. FIMA unit Description and comments Normative minor angle Normative minor angle Amenotacion Genetic Seponte Senditic Seponte	Description and comments Well crystalline kaolinite, with some illite and minor smectite at depth. Well crystalline kaolinite, with some illite and minor smectite at dibbsite and alunite occur as local, minor phases. Locally developed opaline-Si, with minor amounts of kaolinite. Minor montmortillonite also locally present. Saponite with some nontronite and opaline-Si. Mainly talc with minor amounts of kaolinite, smectite (as nontronite and montmortillonite) and opaline-Si. Dominantly serpentine with some local alteration to saponite. Variably weathered scrpentine, with local alteration to saponite. Mainly kaolinite with minor scrpentine preserved at the surface. Dominantly kaolinite with variably developed, local opaline-Si. Locally developed opaline-Si, kaolinite and minor talc. Mainly saponite with locally developed opaline-Si. Mainly sapo		Interprete	Interpreted regolith units
Well crystalline kaolinitie, with some litte and minor smecifie at Kaolinite+SIO, 1 up profile, to B0-90 Norm%. FZ or FC Channel class depth Plagiociaes > mescoried > up profile. <10% calcite in top 5m of profile. Fo vidy crystalline kaolinite with locally developed opaline-SI. Fe vidys - suppression. FT Fe-rich, apa collapsed saprol Cost calcite in top 5m of profile. Fo vidy crystalline kaolinite with inor amounts of kaolinite. Fe oxides > kanon rountonite SM Saprolite SA/UM Saprolite Saprolite SA/UM Saprolite Saprolite SA/UM Saprolite Saprolite SA/UM Saprolite <	Well crystalline kaolinite, with some tilite and minor smectite at depth. Poorly crystalline kaolinite with locally developed opaline-Si. Gibbsite and alunite occur as local, minor phases. Locally developed opaline-Si, with minor amounts of kaolinite. Minor montmorillonite also locally present. Saponite with some nontronite and opaline-Si locally developed. Mainly talc with minor amounts of kaolinite, smectite (as nontronite and montmorillonite) and opaline-Si. Dominantly serpentine with some local alteration to saponite. Variably weathered serpentine, with local alteration to saponite and talc. Mainly kaolinite with minor serpentine preserved at the surface. Dominantly kaolinite with variably developed, local opaline-Si. Locally developed opaline-Si, kaolinite and minor talc. Mainly saponite with locally developed, local opaline-Si. Locally developed opaline-Si, kaolinite and minor talc. Mainly saponite with locally developed opaline-Si. Mainly seponite with some saponite and minor talc. Mainly seponite with some saponite and minor talc. Mainly seponite with some saponite).	ormative mineralogy	Anaconda^	Generic
Poorly crystatine kachinte with locally developed optime-Si. Fe oxides ≥ kaciintie >> SiO₂ > nontronite > carbonate FZ Fe-rich, pa Clobbsite and alunite occur as local, minor phases. Locally preast. Smectue Smectue Locally the with some nontronite and optime-Si. SiO₂ (= carbonate*) > Fe oxides = SiO₂ (= carbonate*) ≥ chlorite > nontronite SM Smectue Saponite with some nontronite and optime-Si. SiO₂ 2 kacce actionate* > Fe oxides ≥ caponite = SM SA Saponite Minory talk: with norm anounts of kaclinite, smectite (as SiO₂ 2 kacce actionate*) > Fe oxides ≥ caponite = SM SA Saponite Dominantly serpentine with some local alteration to saponite SiO₂ 2 kacce actionate* > Fe oxides ≥ caponite = SA Saponite Dominantly serpentine with some local alteration to saponite SiO₂ 2 kaconate* > Fe oxides > SiO₂ > Fe oxides > Carbonate SA/UM Saprock to untransite Variably weathered serpentine, with local alteration to saponite = SiO₂ × kacolinite > Fe oxides > SiO₂ × kacolinite >> Fo oxides > SiO₂ SA/UM Saprock to saponite Mainly kacolinite with variably developed, local opaline-Si. Fe oxides > SiO₂ × kacolinite >> carbonate FZ Lateritic duricues Mainly kacolinite with variably developed opaline-Si. SiO₂ × fe oxides > SiO₂ × kacolinite >> nontronite > carbonate <t< td=""><td>Poorty crystalline kaolinite with locally developed opaline-Si. Gibbsite and alunite occur as local, minor phases. Locally developed opaline-Si, with minor amounts of kaolinite. Minor montmorillonite also locally present. Saponite with some nontronite and opaline-Si locally developed. Mainly talc with minor amounts of kaolinite, smectite (as nontronite and montmorillonite) and opaline-Si. Dominantly serpentine with some local alteration to saponite. Variably weathered serpentine, with local alteration to saponite and talc. Mainly kaolinite with minor serpentine preserved at the surface. Dominantly kaolinite with variably developed, local opaline-Si. Locally developed opaline-Si, kaolinite and minor talc. Mainly saponite with locally developed, local opaline-Si. Local kaolinite with some serpentine and minor talc. Mainly seponite with some saponite and minor talc. Mainly seponite with some saponite and minor talc.</td><td>aolinite+SiO₂ î up profile, to 80-90 Norm%. agioclase > muscovite ↓ up profile. 10% calcite in top 5m of profile</td><td>FZ or PC</td><td>Channel clays</td></t<>	Poorty crystalline kaolinite with locally developed opaline-Si. Gibbsite and alunite occur as local, minor phases. Locally developed opaline-Si, with minor amounts of kaolinite. Minor montmorillonite also locally present. Saponite with some nontronite and opaline-Si locally developed. Mainly talc with minor amounts of kaolinite, smectite (as nontronite and montmorillonite) and opaline-Si. Dominantly serpentine with some local alteration to saponite. Variably weathered serpentine, with local alteration to saponite and talc. Mainly kaolinite with minor serpentine preserved at the surface. Dominantly kaolinite with variably developed, local opaline-Si. Locally developed opaline-Si, kaolinite and minor talc. Mainly saponite with locally developed, local opaline-Si. Local kaolinite with some serpentine and minor talc. Mainly seponite with some saponite and minor talc. Mainly seponite with some saponite and minor talc.	aolinite+SiO₂ î up profile, to 80-90 Norm%. agioclase > muscovite ↓ up profile. 10% calcite in top 5m of profile	FZ or PC	Channel clays
Localy developed opaline-Si, with minor amounts of kaclinite. Fe oxides = SlO ₂ (= carbonate ¹) > Fe oxides = chointe > nontronite SM SM Smecite Minor montmontlonite also locally present. Sapontite Sapontite SA(Y) Saprolite Rainly tack with minor amounts of kaclinite, smectite (as SiO ₂ ≥ tata = chointe = Fe oxides = chointe = Fe oxides = chointe = Sapontite = SA Saprolite Mainly tack with minor amounts of kaclinite, smectite (as SiO ₂ > tata = chointe = Fe oxides = chointe = Fe oxides = chointe = SA/UM Saprolite Ominantly serpentine with some local alteration to sapontie > sapontie SA/UM Saprodite Variably weathered serpentine, with local alteration to sapontie SiO ₂ > tata = chointe = Fe oxides > chointe = carbonate) SA/UM Saprodite Variably weathered serpentine, with local alteration to sapontie SiO ₂ > fe oxides > chointe = Fe oxides > chointe = carbonate) SA/UM Saprodite Variably weathered serpentine, with variably developed, local opaline-Si. Social seconds = siO ₂ SA/UM Saprodite Variably weathered serpentine, with variably developed, local opaline-Si. Social seconds = siO ₂ SA/UM Saprodite Variably weathered serpentine, with variably developed, local opaline-Si. Social seconds = siO ₂ Social seconds = siO ₂ <td< td=""><td>Locally developed opaline-Si, with minor amounts of kaolinite. Minor montmortllonite also locally present. Saponite with some nontronite and opaline-Si locally developed. Mainly talc with minor amounts of kaolinite, smectite (as nontronite and montmorillonite) and opaline-Si. Dominantly serpentine with some local alteration to saponite. Variably weathered serpentine, with local alteration to saponite and talc. Mainly kaolinite with minor serpentine preserved at the surface. Dominantly kaolinite with variably developed, local opaline-Si. Locally developed opaline-Si, kaolinite and minor talc. Mainly saponite with locally developed, local opaline-Si. Locally developed opaline-Si. Local kaolinization and minor amounts of smectite (as nontronite with some saponite). Mainly septentine with some minor, variable alteration to</td><td>s oxides ≥ kaolinite >> SiO₂ > nontronite > carbonate</td><td>FZ</td><td>Fe-rich, partial collapsed saprolite</td></td<>	Locally developed opaline-Si, with minor amounts of kaolinite. Minor montmortllonite also locally present. Saponite with some nontronite and opaline-Si locally developed. Mainly talc with minor amounts of kaolinite, smectite (as nontronite and montmorillonite) and opaline-Si. Dominantly serpentine with some local alteration to saponite. Variably weathered serpentine, with local alteration to saponite and talc. Mainly kaolinite with minor serpentine preserved at the surface. Dominantly kaolinite with variably developed, local opaline-Si. Locally developed opaline-Si, kaolinite and minor talc. Mainly saponite with locally developed, local opaline-Si. Locally developed opaline-Si. Local kaolinization and minor amounts of smectite (as nontronite with some saponite). Mainly septentine with some minor, variable alteration to	s oxides ≥ kaolinite >> SiO₂ > nontronite > carbonate	FZ	Fe-rich, partial collapsed saprolite
Saponite with some nontronite and opaline-Si locally SIO2 (= carbonate*) > Fe oxides = chlorite > saponite SM (SA?) Saprolite developed. Mainy tate with momentionite, smectite (as SiO2 ≥ tate = chlorite = Fe oxides ≥ saponite = SA SA Saprolite Dominantly serpentine with some local alteration to saponite. Serpentine = SiO2 > Fe oxides ≥ reponite = SA SA/UM Saprolite Variably weathered serpentine, with local alteration to Serpentine = SiO2 > Fe oxides > chlorite (= carbonate) SA/UM Saprolite Variably weathered serpentine, with local alteration to saponite SA/UM Saprolite Variably weathered serpentine, with local alteration to seponite SA/UM Saprolite SA/UM Variably weathered serpentine, with local alteration to saponite SA/UM Saprosk to Variably weathered serpentine, with local alteration to saponite SA/UM Saprosk to Variably weathered serpentine with rainor serpentine preserved at the Kaolinite = Fe oxides >>> serpentine > carbonate SA/UM Saprosk to Variably developed, local opaline-Si. Fe oxides >>>>>> serpentine > carbonate FZ Fe-rich, pa Locally developed, local opaline-Si. SIO2, Fe oxides >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	Saponite with some nontronite and opaline-Si locally developed. Mainly talc with minor amounts of kaolinite, smectite (as nontronite and montmorillonite) and opaline-Si. Dominantly serpentine with some local alteration to saponite. Variably weathered serpentine, with local alteration to saponite and talc. Mainly kaolinite with minor serpentine preserved at the surface. Dominantly kaolinite with variably developed, local opaline-Si. Locally developed opaline-Si, kaolinite and minor talc. Mainly saponite with locally developed, local opaline-Si. Local kaolinization and minor amounts of smectite (as nontronite with some saponite). Mainly septentine with some minor, variable alteration to	s oxides \approx SiO ₂ (\approx carbonate [*]) \geq chlorite > nontronite	SM	Smectite
Mainly talc with minor amounts of kaclinite, smectite (as StO ₂ ≥ talc = chlorite = Fe oxides ≥ saponite = StO ₂ ≥ talc = chlorite = Fe oxides = chlorite (= carbonate) SA Saprock to carbonate) Dominantly serpentine with some local alteration to saponite = StO ₂ > Fe oxides = chlorite (= carbonate) SA/UM Saprock to ultramatic Variably weathered serpentine, with local alteration to saponite = StO ₂ > Fe oxides = chlorite (= carbonate) SA/UM Saprock to ultramatic Variably weathered serpentine, with local alteration to = saponite = StO ₂ > Fe oxides >> serpentine (= carbonate) SA/UM Saprock to ultramatic Mainly kaclinite with minor serpentine preserved at the Kaclinite = Fe oxides >> serpentine > carbonate SA/UM Saprock to pace served saprol Dominantly kaclinite with variably developed, local opaline-Si. Fe oxides >> serpentine > carbonate FZ Lateritic duriccus Dominantly kaclinite with variably developed opaline-Si. SIO ₂ (= carbonate) > nontronite > carbonate FZ Fe-rich, pace collapsed saproli Locally developed opaline-Si. SIO ₂ (= carbonate) > nontronite = carbonate SM Saprolite Locally developed opaline-Si. SIO ₂ (= carbonate) > saponite = chlorite = carbonate SM Saprolite Locally developed opaline-Si. SIO ₂ (= carbonate) > saponite = chlorite = carbonate SA Saprolite <t< td=""><td>Mainly talc with minor amounts of kaolinite, smectite (as nontronite and montmorillonite) and opaline-Si. Dominantly serpentine with some local alteration to saponite. Variably weathered serpentine, with local alteration to saponite and talc. Mainly kaolinite with minor serpentine preserved at the surface. Dominantly kaolinite with variably developed, local opaline-Si. Locally developed opaline-Si, kaolinite and minor talc. Mainly saponite with locally developed opaline-Si. Local kaolinization and minor amounts of smectite (as nontronite with some saponite). Mainly serpentine with some minor, variable alteration to</td><td><math>O_2 (\approx carbonate^*) > Fe oxides $\approx chlorite > saponite$</math></td><td>SM (SA?)</td><td>Saprolite</td></t<>	Mainly talc with minor amounts of kaolinite, smectite (as nontronite and montmorillonite) and opaline-Si. Dominantly serpentine with some local alteration to saponite. Variably weathered serpentine, with local alteration to saponite and talc. Mainly kaolinite with minor serpentine preserved at the surface. Dominantly kaolinite with variably developed, local opaline-Si. Locally developed opaline-Si, kaolinite and minor talc. Mainly saponite with locally developed opaline-Si. Local kaolinization and minor amounts of smectite (as nontronite with some saponite). Mainly serpentine with some minor, variable alteration to	$O_2 (\approx carbonate^*) > Fe oxides \approx chlorite > saponite$	SM (SA?)	Saprolite
Dominantly serpentine with some local alteration to saponite SiO2 > Fe oxides = chlorite (= carbonate) SAUM Saprock to ultramatic Variably weathered serpentine, with local alteration to seponite and take. > saponite SAUM Saprock to ultramatic Mainly kaolinite with minor serpentine preserved at the Kaolinite = Fe oxides >>> serpentine > carbonate FZ Lateritic duricrus preserved application Mainly kaolinite with variably developed, local opaline-Si. Fe oxides >> SiO2 = kaolinite >> nontronite > carbonate FZ Calibased saprolite and minor serpentine and minor take. Locally developed opaline-Si. SiO2 = Fe oxides > SiO2 = kaolinite >> nontronite > carbonate SM (SA?) Saprolite and minor anounts of smectile Mainly seponite with some saponite with some saponite). SiO2 = Fe oxides = saponite = chlorite = fe oxides > chlorite = fe oxides = SiO2 Saprolite = covides = SiO2 Mainly seponite with some saponite). SiO2 = Fe oxides = saponite = chlorite = fe oxides = SiO2 M (SA?) Saprolite Mainly seponite with some saponite). Saponite = chlorite = fe oxides = SiO2 M (SA?) Saprolite Collapsed saponite Mainly seponite with some minor, variable alteration to SIO2 = Fe oxides = saponite = chlorite = fe oxides = SiO2 M (SA?) Saprolite Mainly seponite with some minor, variable alteration to Saponite = chlor	Dominantly serpentine with some local alteration to saponite. Variably weathered serpentine, with local alteration to saponite and talc. Mainly kaolinite with minor serpentine preserved at the surface. Dominantly kaolinite with variably developed, local opaline-Si. Locally developed opaline-Si, kaolinite and minor talc. Mainly saponite with locally developed opaline-Si. Local kaolinization and minor amounts of smectite (as nontronite with some saponite). Mainly serpentine with some minor, variable alteration to	O₂ ≥ talo ≃ chlorite ≈ Fe oxides ≥ saponite ≈ irbonate	SA	Saprolite
Variably weathered serpentine, with local alteration to saponite and talc.SAUMMainly kaclinite with innor serpentine preserved at the surface.Kaclinite $=$ Fe oxides >> serpentine > carbonateFZMainly kaclinite with variably developed, local opaline-Si.Fe oxides >>> serpentine > nontronite > carbonateFZLocally developed opaline-Si, kaclinite and minor talc.SiO ₂ (= carbonate*) > nontronite = Fe oxides > chlorite = FXSMLocally developed opaline-Si.SiO ₂ (= carbonate*) > nontronite = Fe oxides > chloriteSMMainly saponite with locally developed opaline-Si.SiO ₂ (= carbonate*) > nontronite = Fe oxides > chloriteSMMainly saponite with some saponite and minor amounts of smecititeSiO ₂ (= carbonate) > saponite = chlorite = Fe oxides = SMSMMainly serpentine with some minor, variable alteration toSerpentine > saponite = carbonate = Fe oxides = SIO ₂ SAMainly serpentine with some minor, variable alteration toSerpentine > carbonate = Fe oxides = SIO ₂ SA	Variably weathered serpentine, with local alteration to saponite and talc. Mainly kaolinite with minor serpentine preserved at the surface. Dominantly kaolinite with variably developed, local opaline-Si. Locally developed opaline-Si, kaolinite and minor talc. Mainly saponite with locally developed opaline-Si. Local kaolinization and minor amounts of smectite (as nontronite with some saponite). Mainly serpentine with some minor, variable alteration to	srpentine ≈ SiO ₂ > Fe oxides ≈ chlorite (≈ carbonate) saponite	SAUM	đ
Mainly kaolinite with minor serpentine preserved at the Kaolinite \approx Fe oxides >>> serpentine > carbonateFZSurface.Dominantly kaolinite with variably developed, local opaline-Si.Fe oxides \geq SiO2 \approx kaolinite >> nontronite > carbonateFZLocally developed opaline-Si, kaolinite and minor talc.SiO2 (\approx carbonate') > nontronite \approx Fe oxides > chloriteSMMainly saponite with locally developed opaline-Si.SiO2 (\approx carbonate') > nontronite \approx Fe oxides > chloriteSMLocal kaolinization and minor amounts of smectite (as Talc (\approx carbonate) > saponite \approx chlorite \approx rearbonateSM (SA?)Mainly serpentine with some minor, variable alteration to Serpentine > saponite \approx chlorite \approx Fe oxides \approx SIO2Mainly serpentine with some minor, variable alteration to Serpentine > saponite \approx carbonate \approx Fe oxides \approx SIO2	Mainly kaolinite with minor serpentine preserved at the surface. Dominantly kaolinite with variably developed, local opaline-Si. Locally developed opaline-Si, kaolinite and minor talc. Mainly saponite with locally developed opaline-Si. Local kaolinization and minor amounts of smectite (as nontronite with some saponite). Mainty serpentine with some minor, variable alteration to		SA/UM	
Mainly kaolinite with minor serpentine preserved at the Kaolinite \approx Fe oxides >>> serpentine > carbonate FZ surface. Dominantly kaolinite with variably developed, local opaline-SI. Fe oxides \geq SiO ₂ \approx kaolinite >> nontronite > carbonate FZ Locally developed opaline-Si, kaolinite and minor talc. Mainly saponite with locally developed opaline-Si. SiO ₂ (\approx carbonate*) > nontronite \approx Fe oxides > chlorite \approx Fe oxides > chlorite \approx Fa oxides \approx SM (SA?) Local kaolinization and minor amounts of smectite (as Talc ($=$ carbonate) > saponite \approx chlorite \approx Fe oxides \approx SM (SA?) Mainly serpentine with some amounts of smectite (as Talc ($=$ carbonate) > saponite \approx chlorite \approx Fe oxides \approx SIO ₂ Mainly serpentine with some minor, variable alteration to Serpentine > saponite \approx carbonate \approx Fe oxides \approx SIO ₂ Mainly serpentine with some minor, variable alteration to Serpentine > saponite \approx carbonate \approx Fe oxides \approx SIO ₂ UM	Mainly kaolinite with minor serpentine preserved at the surface. Dominantly kaolinite with variably developed, local opaline-Si. Locally developed opaline-Si, kaolinite and minor talc. Mainly saponite with locally developed opaline-Si. Local kaolinization and minor amounts of smectite (as nontronite with some saponite). Mainty serpentine with some minor, variable alteration to	a da anna an an an ann ann ann ann ann a		
Notify kaolinite with variably developed, local opaline-Si. Fe oxides \geq SiO ₂ = kaolinite >> nontronite > carbonate FZ Locally developed opaline-Si, kaolinite and minor talc. SiO ₂ (= carbonate*) > nontronite = Fe oxides > chlorite SM Mainly saponite with locally developed opaline-Si. SiO ₂ > Fe oxides = saponite > chlorite = carbonate SM Local kaolinization and minor amounts of smectite (as Talc (= carbonate) > saponite = chlorite = Fe oxides = SA nontronite with some saponite). SiO ₂ Mainly serpentine with some minor, variable alteration to Serpentine > saponite = carbonate = Fe oxides = SiO ₂ Mainly serpentine with some minor, variable alteration to Serpentine > saponite = carbonate = Fe oxides = SiO ₂ UM	Mainty kaolinite with variably developed, local opaline-Si. Dominantly kaolinite with variably developed, local opaline-Si. Locally developed opaline-Si, kaolinite and minor talc. Mainty saponite with locally developed opaline-Si. Local kaolinization and minor amounts of smectite (as nontronite with some saponite). Mainty serpentine with some minor, variable alteration to	stinita. Es subles en comentina e conheneta	E7	and the second
Dominantly kaolinite with variably developed, local opaline-Si. Fe oxides ≥ SiO ₂ ≈ kaolinite >> nontronite > carbonate FZ Fe-rich, pa Locally developed opaline-Si, kaolinite and minor talc. SiO ₂ (≈ carbonate*) > nontronite ≈ Fe oxides > chlorite SM Smectite Mainly saponite with locally developed opaline-Si. SiO ₂ > Fe oxides ≈ saponite > chlorite ≈ Fe oxides > chlorite SM Smectite Local kaolinization and minor amounts of smectite (as Talc (≈ carbonate)) > saponite ≈ chlorite ≈ Fe oxides ≈ SA Saprolite Mainly serpentine with some saponite). SiO ₂ Factonate) > saponite ≈ chlorite ≈ Fe oxides ≈ SA Saprolite Mainly serpentine with some minor, variable alteration to serpentine > saponite ≈ carbonate ≈ Fe oxides ≈ SIO ₂ UM Saprofite Mainly serpentine with some minor, variable alteration to serpentine > saponite ≈ carbonate ≈ Fe oxides ≈ SIO ₂ UM Saprock to saponite and talo. = chlorite = chlorite = chlorite = chlorite If anafic	Dominantly kaolinite with variably developed, local opaline-Si. Locally developed opaline-Si, kaolinite and minor talc. Mainly saponite with locally developed opaline-Si. Local kaolinization and minor amounts of smectite (as nontronite with some saponite). Mainly serpentine with some minor, variable alteration to	aoinnie ≈ re oxides >>> serpenune > carponate	77	Laternic duricrust an preserved saprolite
Locally developed opaline-Si, kaolinite and minor talc. SiO ₂ (= carbonate*) > nontronite = Fe oxides > chlorite SM (SA?) Saprolite Mainly saponite with locally developed opaline-Si. SiO ₂ > Fe oxides = saponite > chlorite = carbonate SM (SA?) Saprolite Local kaolinization and minor amounts of smectite (as Talc (= carbonate) > saponite = chlorite = Fe oxides = SA (SA?) Saprolite nontronite with some saponite). SiO ₂	Locally developed opaline-Si, kaolinite and minor talc. Mainly saponite with locally developed opaline-Si. Local kaolinization and minor amounts of smectite (as nontronite with some saponite). Mainly serpentine with some minor, variable alteration to	s oxides \ge SiO ₂ = kaolinite >> nontronite > carbonate	FZ	Fe-rich, partiall collapsed saprolite
Mainly saponite with locally developed opaline-Si. SiO ₂ > Fe oxides ≈ saponite > chlorite ≈ carbonate SM (SA?) Saprolite Local kaclinization and minor amounts of smectite (as Talc (≈ carbonate) > saponite ≈ chlorite ≈ Fe oxides ≈ SA Saprolite nontronite with some saponite). SiO ₂ Mainly serpentine with some minor, variable alteration to Serpentine > saponite ≈ carbonate ≈ Fe oxides ≈ SiO ₂ UM Saprock to saponite and talc. = chlorite	Mainly saponite with locally developed opaline-Si. Local kaolinization and minor amounts of smectite (as nontronite with some saponite). Mainly serpentine with some minor, variable alteration to	$O_2 (\approx carbonate^*) > nontronite \approx Fe oxides > chlorite$	SM	Smectite
Local kaolinization and minor amounts of smectite (as Talc (≈ carbonate) > saponite ≈ chlorite ≈ Fe oxides ≈ SA Saprolite nontronite with some saponite). SiO ₂ Mainly serpentine with some minor, variable alteration to Serpentine > saponite ≈ carbonate ≈ Fe oxides ≈ SiO ₂ UM Saprock to saponite and talc. = chlorite	Local kaolinization and minor amounts of smectite (as nontronite with some saponite). Mainly serpentine with some minor, variable alteration to	O_2 > Fe oxides = saponite > chlorite = carbonate	SM (SA?)	Saprolite
Mainly serpentine with some minor, variable alteration to Serpentine > saponite ≈ carbonate ∞ Fe oxides ≈ SiO ₂ UM Saprock to saponite and talc.	Mainly serpentine with some minor, variable alteration to	ilc (≂ carbonate) > saponite ∞ chlorite ≂ Fe oxides ≈ O₂	SA	Saprolite
	saponite and talc.	erpentine > saponite ≈ carbonate ∞ Fe oxides ∝ SiO₂ chlorite	MU	د د

3.8 Summary

Regolith at the two deposits selected for this study was described primarily by using short-wave (SW) reflected infrared analysis (*i.e.*, PIMA) which identified the main regolith units within MM2 and MM3. PIMA spectroscopy, however, only provides an indication of the main Al-Mg-silicate phases present. Infrared analysis of the iron oxide mineralogy would necessitate a separate study and require the use of an infrared spectrometer, such as the Infrared Intelligent Spectrometer (IRIS) that covers the spectral characteristics of common iron oxide minerals, such as goethite and hematite, in the visible near infrared (VNIR) spectrum.

A more detailed examination of regolith mineralogy, than that provided by PIMA, was achieved by determination of normative mineral abundances based on geochemical data from the XRF analyses of selected RC drill samples.

However, this approach required a number of assumptions regarding the composition of several important phases, such as nontronite, saponite and chlorite. Other methods that could have been used as a check against the normative calculations, such as quantitative XRD (*i.e.*, Reitvelt analysis), themselves require a number of assumptions regarding the composition, structure and crystallinity of polymorphic phases, such as smectite. Despite this, the assumptions made for calculations of CIPW-Norms reflected the changes in the regolith mineralogy and, provided that carbonates comprise < 10 % of the sample, such calculations can provide useful information about the regolith.

A summary of the main regolith units, mineralogy and equivalent interpreted units of the deposits at MM2 and MM3 are presented in Table 3.6. Table 3.6 is the same as Table 3.4, but includes the dominant silicate and oxide mineralogy for each unit as determined from the normative calculations.

The regolith stratigraphy of the deposits is very similar, but the relative abundances of minerals within the regolith vary and reflect the general composition of the underlying bedrock at the two sites. For example, abundances of chlorite in the nontronite and saponite units at MM2 were greater than amounts of nontronite and saponite. In comparison, amounts of nontronite and saponite in MM3 were greater than abundances of chlorite in these units. This is a reflection of the greater Al content of ortho- and mesocumulates that comprise the main bedrock type at MM2, compared to Al-poor adcumulate which comprise the main bedrock type at MM3. The influence that local geomorphological factors, such as drainage and topography, have to the development of regolith mineralogy is also reflected in the mineralogy at the surface of the profiles for MM2 and

MM3 (Table 3.6). Interestingly, the kaolinite and nontronite units, in particular for those at MM2, show very high normative abundances of Fe oxides; a feature that was not detected using PIMA.

4.0 GEOCHEMISTRY: ELEMENT-REGOLITH ASSOCIATIONS

4.1 Introduction

This chapter provides a discussion of the geochemical characteristics of the regolith at MM2 and MM3. Element associations within MM2 and MM3 and their relationship to the regolith were investigated using MVS (Section 1.11.2), mass balance calculations (Section 1.11.6) and cluster analysis (Section 1.11.8). The geochemical data, supplied by Anaconda, was used to perform the 3-D modelling using MVS and cluster analysis. Mass balance calculations were based on the assumption that Zr is immobile during weathering. Zirconium data were obtained from XRF analyses of selected RC drill pulps. A better means of performing the mass balance calculations would to have been to use bulk density measurements. However, time constraints and the lack of suitable samples precluded this approach.

4.2 MVS modelling: block models for MM2 and MM3

Profiles of the regolith stratigraphy established for the study areas (Table 3.4) were kriged in conjunction with the geochemical data, supplied by Anaconda, using MVS. Areas of low confidence were removed by filtering of the raw data according to the confidence limits defined in Table 1.3. Block models of the distribution of Ni and Co at MM2 and MM3, produced using the 3D_PLUME module in MVS, at different cut-off grades are presented in Figures 4.1 and 4.2, respectively.

The models confirmed that the bulk of Ni and Co mineralization occurs in the nontronite unit at MM2, especially at higher concentrations (*e.g.*, > 1.0 % Ni and > 0.07 % Co) (Fig. 4.1). However, at lower cut-offs (*i.e.*, 0.2 % Ni and 0.02 % Co) in MM3 both metals are widely distributed in all units at both sites except for the uppermost kaolinite unit (*i.e.*, duricrust with preserved serpentine) (Fig. 4.2). Specific details of the distribution of Ni and Co (and other elements) at each site are discussed in the following sections.

4.2.1 MM2

A prominent Ni-poor zone (*i.e.*, <0.5 % Ni) is located at the NW-W corner of MM2 that is more or less coincident to the channel clay unit (*i.e.*, kaolinite-1). This is also shown for the lower Ni cut-

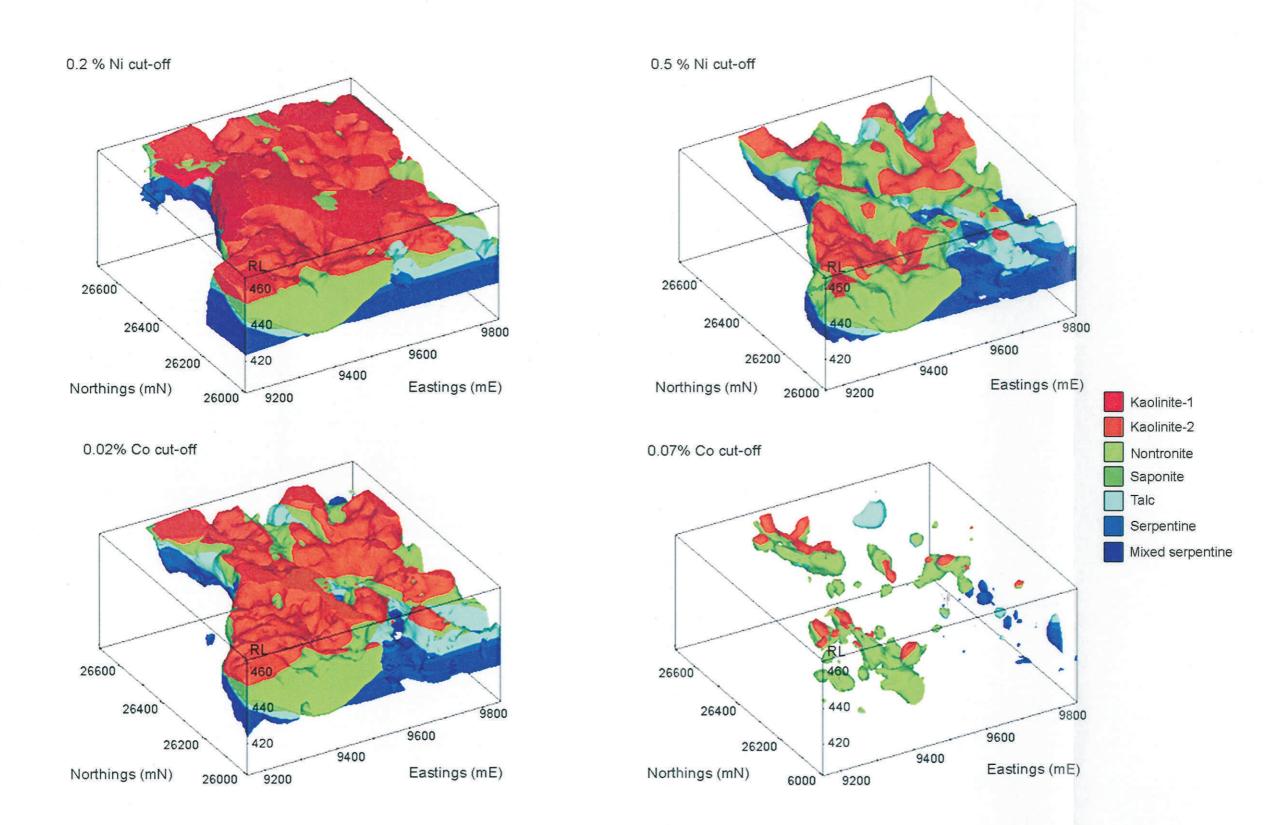


Figure 4.1. Three dimensional perspective views of the distribution of Ni and Co, for different cut-off grades, in the regolith at MM2. View is at 200° azimuth and 45° elevation, with x5 vertical exaggeration. The 'kaolinite-2' unit for MM2 is equivalent to the 'kaolinite' unit at MM3 (see Figure 4.2).

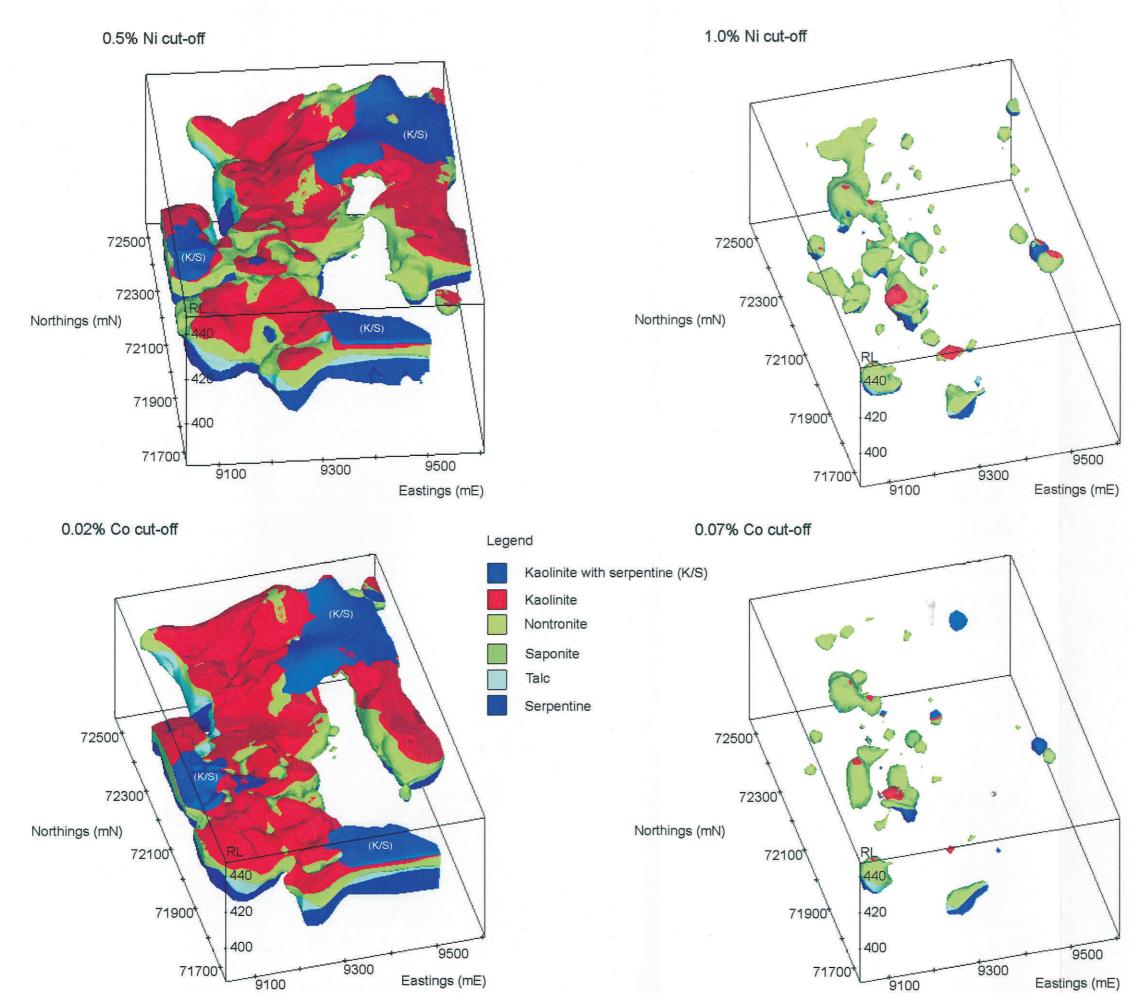


Figure 4.2. Three dimensional perspective views of the distribution of Ni and Co, for different cut-off grades, in the regolith at MM3. View of the >0.5 % Ni plume is at 185° azimuth and 30° elevation, with x5 vertical exaggeration. The 'kaolinite' unit is equivalent to the' kaolinite-2' unit at MM2.

off >0.2 % and emphasizes the Ni-poor nature of these clays. The distribution of Co, for grades of >0.02 %, is very similar to that of Ni at 0.2 % and indicates that there has been very little lateral movement of either Ni or Co into these sediments at least for these concentrations.

A cross-shaped (*i.e.*, 'X'), topographical feature is evident, expressed mainly at the nontronite/kaolinite-2 contact and defines the western margin of the 0.5 % and 0.2 % Ni plumes and boundary to the channel clay unit (Fig. 4.1). This feature is discussed in more detail in Section 4.3.1.

4.2.2 MM3

A prominent Ni- and Co-poor zone is shown for the central region of MM3 at about 9400 mE at grades of >0.5 % Ni and 0.02 % Co (Fig. 4.2). Cobalt has a very similar distribution to that of Ni (Fig. 4.2), probably reflecting variations in the underlying cumulate lithology, with the Ni- and Co-poor areas relating to olivine adcumulate bedrock. This is discussed in more detail in Section 4.3.2.

The distributions of high grades of Ni (> 1.0 %) and, to a lesser extent, high grades of Co (>0.07%), reflects an enriched zone along the western-margin of the deposit as a sub-linear, 'boudinage' feature at about 9250 mE (Fig. 4.2). This zone of Ni and Co enrichment corresponds to areas where the underlying lithology is comprised mainly of olivine ortho- and meso-cumulates ----(Hill *et al.*, 1996).

4.3 MVS modelling: slices and regolith surfaces

Models of the distribution of Ni and Co, and other elements from the Anaconda data set, as slices through the regolith and for different regolith surfaces within MM2 and MM3 have been used to illustrate the influence that deposit scale lithological and structural features have on mineralization. Slices, as northing transects, through the regolith at MM2 and MM3, and views of regolith surfaces within the deposits were produced using the NORTHING_SLICE and GEOLOGICAL_SURFACE modules, respectively, within MVS.

The Ni/Ni+Al ratio has been used as a means of distinguishing olivine cumulate lithologies (*i.e.*, ortho-, meso and adcumulate) in fresh rock (Hill *et al.*, 1996). Models of the distribution of the Ni/Ni+Al ratio for different slices and regolith surfaces in MM2 and MM3 may also provide useful results when applied to the regolith and aid interpretation of element distributions in these deposits.

Slices through MM2 and MM3 are the same as those shown in Figures 3.4 (MM2) and 3.5 (MM3). Values of the Ni/Ni+Al ratio, kriged in conjunction with the regolith stratigraphy established for MM2 and MM3 (Table 3.4), were not filtered before processing in MVS, due to the very high and identical maximum and minimum confidence limits of 99.99998 % for the raw data. Element distributions and Ni/Ni+Al values are shown for three surfaces:

1. The top of the nontronite unit (or base of the kaolinite unit).

- 2. The top of the saponite unit (or base of the nontronite unit).
- 3. The top of the serpentine unit (or base of the talc unit).

These surfaces were considered the most informative for discussion; models for other regolith surfaces are not presented, but can be generated upon request. In addition, distributions of Cu, As and Ca for these surfaces were not presented, but can also be generated if requested.

Slices as northing transects through the regolith are presented in Figures 4.3 to 4.5 for MM2 and in Figures 4.6 to 4.8 for MM3. Views of the Ni/Ni+Al ratio for the different regolith surfaces within MM2 and MM3 are presented in Figure 4.9. Three-dimensional perspective views of element distributions for surfaces of the nontronite, saponite and serpentine units are shown in Figures 4.10 to 4.13 for MM2 and in Figures 4.14 to 4.17 for MM3.

The following discussion, therefore, integrates the results for the different views through the regolith (*i.e.*, as slices and surfaces) at MM2 and MM3.

4.3.1 MM2

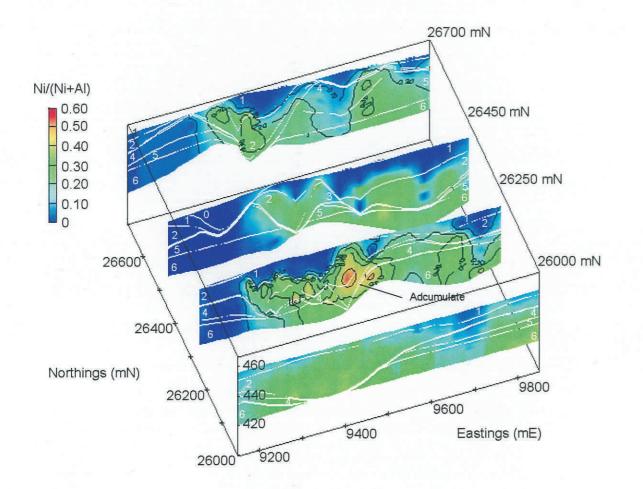
General features and element distribution

Inspection of Figures 4.9 to 4.13 emphasizes the channel-like nature of the kaolinite-1 unit (*i.e.*, channel clays) overlying the nontronite unit at the western margin of the deposit. Concentrations of Ni, Co, Mg, Fe, Mn, Zn, Cr and values of the Ni/Ni+Al ratio are all very low in this unit, whereas the distribution of Al defines its shape very well, especially at the saponite and serpentine surfaces (Fig. 4.12). Modelling of more closely spaced drill holes (*e.g.*, <25 m spacings) would of course, given better definition of the unit.

The distributions of Fe, Al and Mg appear to be partly structurally controlled. High Al and Fe values coincide to low values of Mg; a result of the normal weathering of ultramafic rocks. An Alpoor zone within the serpentine and saponite units (Fig. 4.12), that may continue up into the lower

portion of the nontronite unit (Fig. 4.4), may be related to the underlying lithology. The increase in Al and Fe contents towards the surface of the profile, in some cases defines very well the nontronite/kaolinite contact. For example, in transect 26250 mN (Fig. 4.4).

The highest concentrations of Cr (Figure 4.5) generally occur with the highest concentrations of Fe (Figure 4.4) in the upper profile (*i.e.*, kaolinite-2 unit) associated with the north and south apical zones of the conjugate fault-set. The distribution of Zn (Figures 4.5 and 4.13) is associated with the occurrence of Ni (Figures 4.3 and 4.10). This is discussed in more detail in Section 4.4.


The distribution of Co appears generally related to that of Ni (see Figures 4.3 and 4.10). However, the highest Co grades do not correlate with the highest grades of Ni. This is particularly evident in comparisons of the Ni and Co distribution for slices through the regolith (Fig. 4.3). In addition, Co mineralization occurs mainly at or below the kaolinite/nontronite boundary (*e.g.*, see transect 26700 mN, Fig. 4.3).

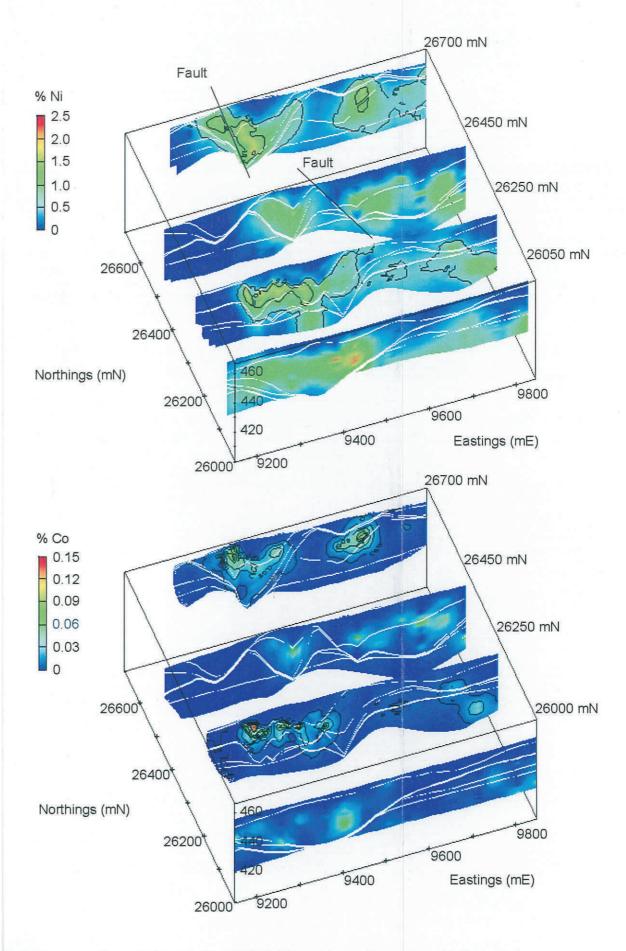
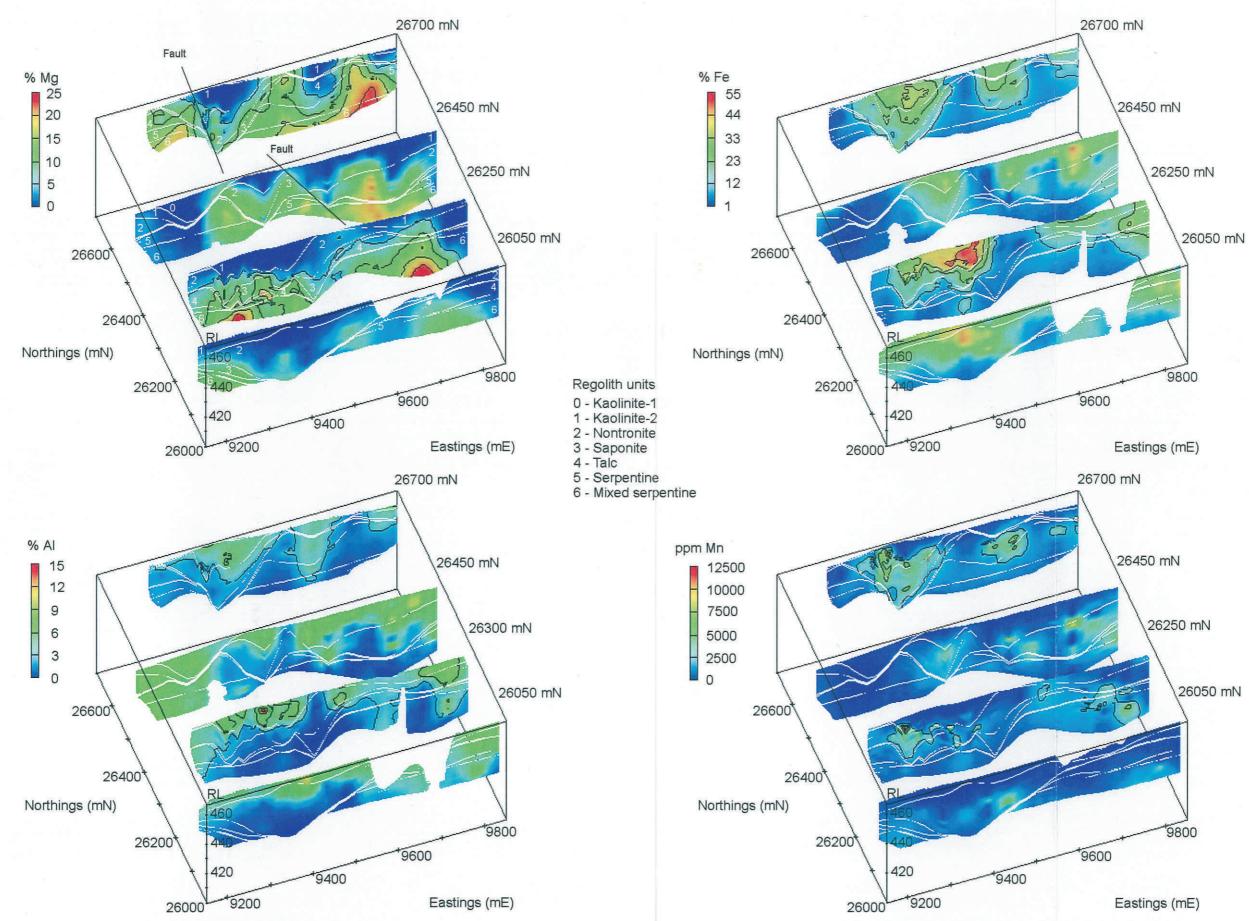
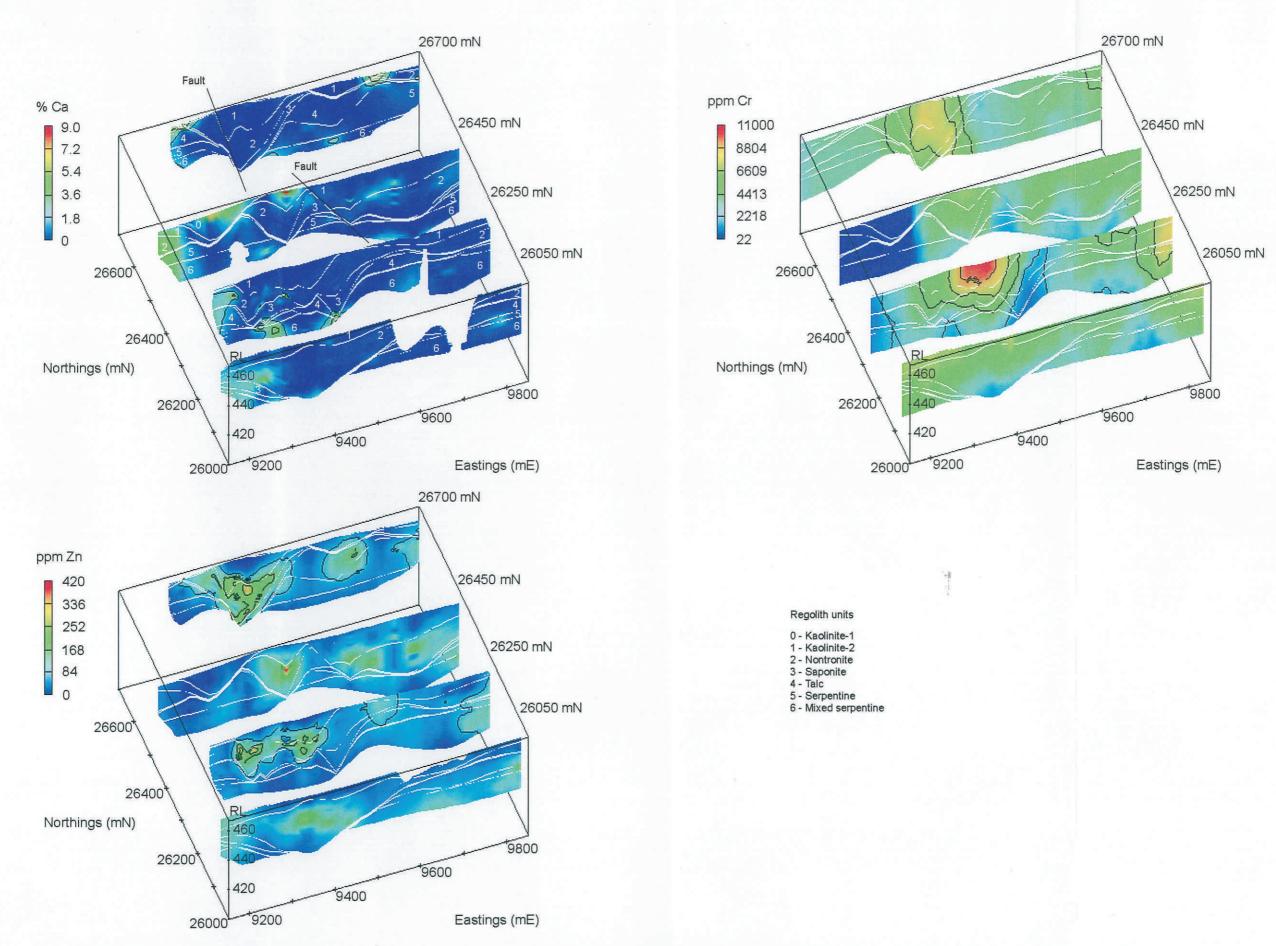
Lithological controls

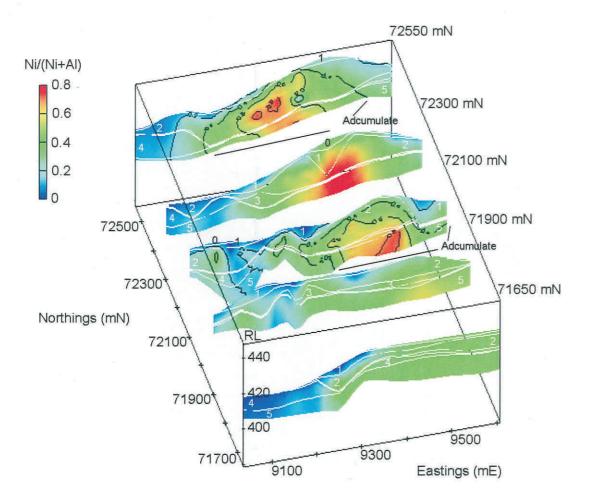
Interpretation of the distribution of the Ni/Ni+Al ratio at MM2 is confused by strong structural overprinting as evidenced by faulting that appears unrelated to any lithological controls. A generally mixed, underlying lithology of ortho- and mesocumulates is indicated by values of the Ni/Ni+Al ratio of mainly < 0.4, with no specific lithological features evident within the talc and serpentine units that may be related to structural or bedrock characteristics of the Kilkenny syncline (*i.e.*, there is no evidence of easterly dipping features with the serpentine unit). High Ni/Ni+Al values > 0.4 in the south area of the deposit (Fig. 4.3) are located in the apex of the southern extension of the fault-set (Fig. 4.9). This may represent a local gradation to an adcumulate parent rock, which is reflected in the serpentine-talc-saponite units (Fig. 4.3) due mainly to low Al (Fig. 4.4) rather than to high Ni contents (Fig. 4.3).

Structural controls

A strong structural control is reflected well by values of the Ni/Ni+Al ratio (Fig. 4.9) and in element distributions for regolith surfaces within the deposit (Figures 4.10 to 4.13). An approximately NW-SE and NNE-SSW, cross-shaped (*i.e.*, 'X') topographical feature, expressed mainly by tighter contour intervals, is evident in the surface of the serpentine unit (Fig. 4.9).

- 0 Kaolinite-1
- 1 Kaolinite-2 2 - Nontronite
- 3 Saponite 4 Talc
- 5 Serpentine
- 6 Mixed serpentine


Figure 4.3. Three dimensional perspective views of the distribution of values of the Ni/Ni+Al ratio, Ni and Co for transects through the regolith at MM2. Transects are the same as in Figure 3.4. Regolith units have been separated (*i.e.*, white lines in slices) to show individual units. Views are at 200° azimuth and 50° elevation, with x5 vertical exaggeration.

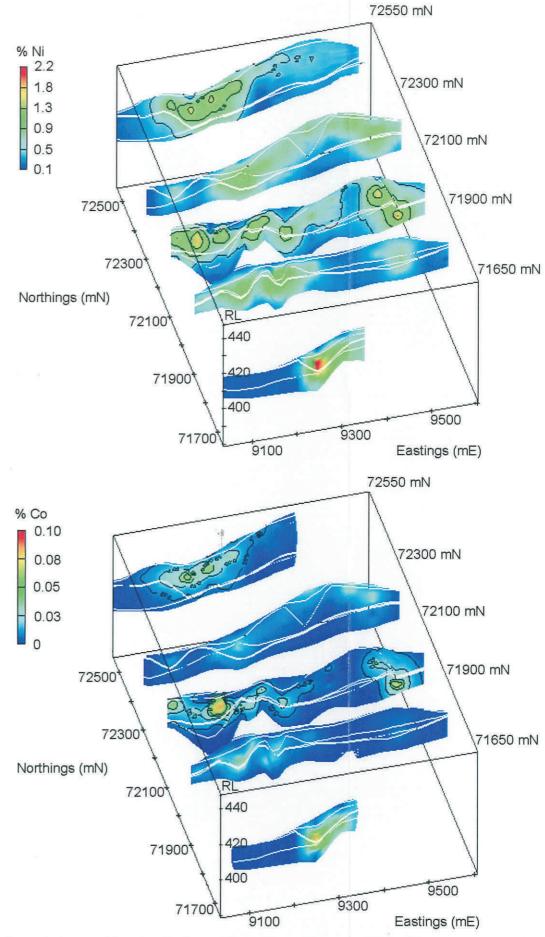
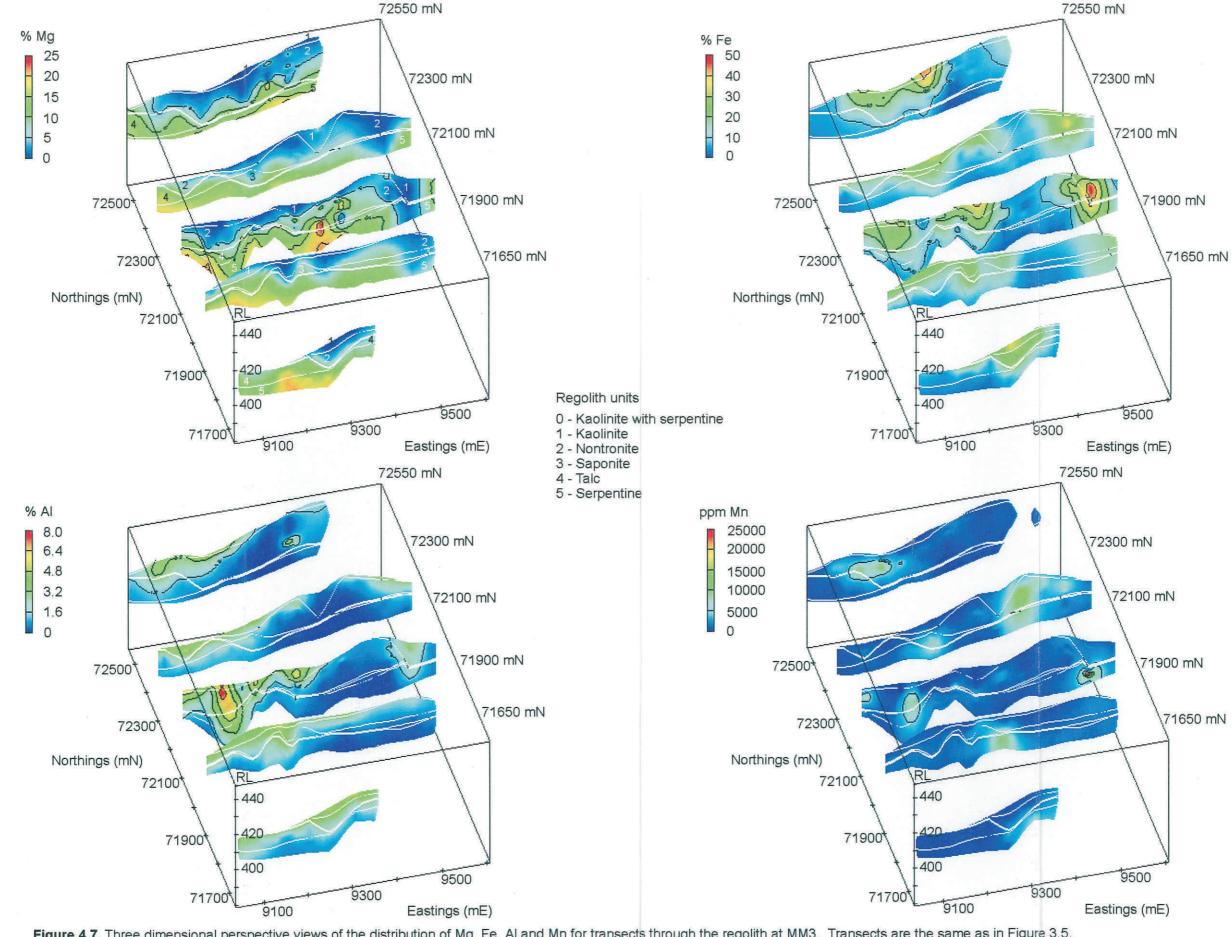
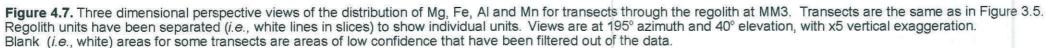
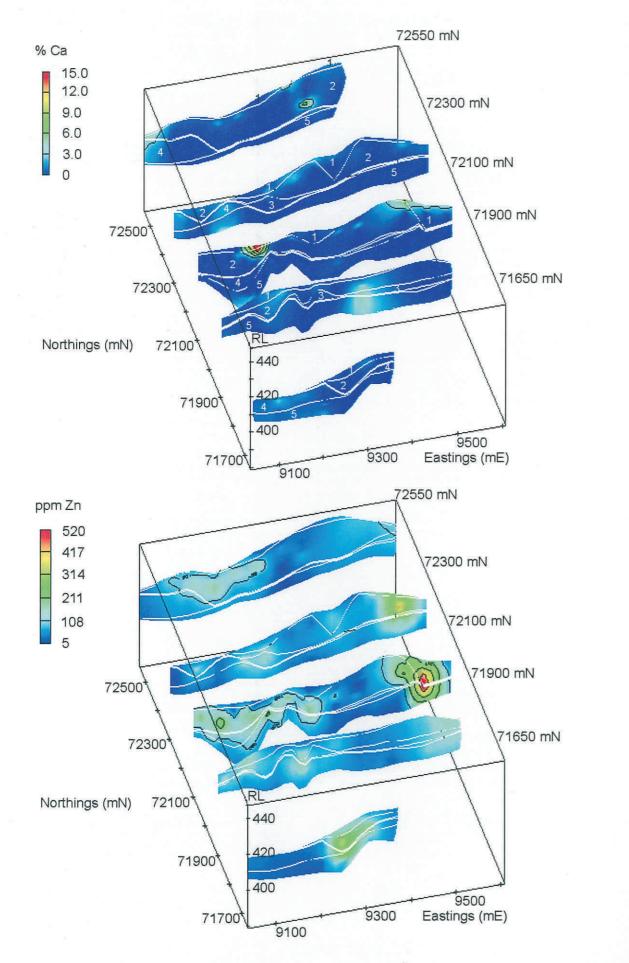


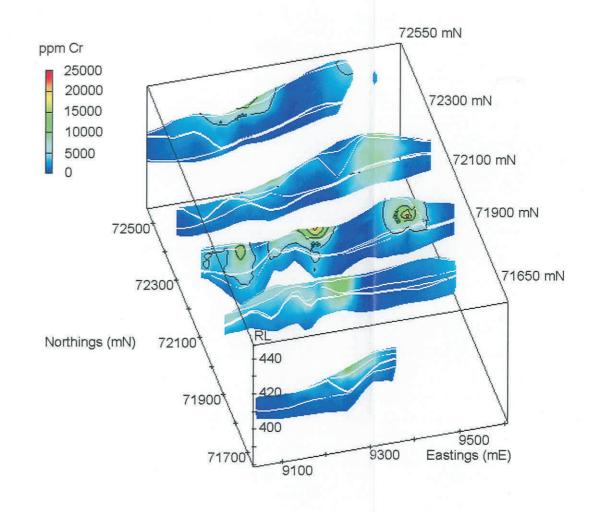
Figure 4.4. Three dimensional perspective views of the distribution of Mg, Fe, AI and Mn for transects through the regolith at MM2. Transects are the same as in Figure 3.4. Regolith units have been separated (*i.e.*, white lines in slices) to show individual units. View is at 200° azimuth and 50° elevation, with x5 vertical exaggeration. Blank (*i.e.*, white) areas for some transects are areas of low confidence that have been filtered out of the data.

Figure 4.5. Three dimensional perspective views of the distribution of Ca, Cr and Zn for transects through the regolith at MM2. Transects are the same as for Figure 3.4. Regolith units have been separated (*i.e.*, white lines in slices) to show individual units. View is at 200° azimuth and 50° elevation, with a x5 vertical exaggeration. Blank (*i.e.*, white) areas for some transects are areas of low confidence that have been filtered out of the data.




Regolith units


- 0 Kaolinite with serpentine 1 Kaolinite
- 2 Nontronite
- 3 Saponite
- 4 Talc
- 5 Serpentine


Figure 4.6. Three dimensional perspective views of the distribution of the Ni/Ni+Al ratio, Ni and Co for transects through the regolith at MM3. Transects are the same as in Figure 3.5. Regolith units have been separated (*i.e.*, white lines in slices) to individual units. Views are at 195° azimuth and 40° elevation, with x5 vertical exaggeration.

Regolith units

- 0 Kaolinite with serpentine
- 1 Kaolinite
- 2 Nontronite
- 3 Saponite
- 4 Talc
- 5 Serpentine

Figure 4.8. Three dimensional perspective views of the distribution of Ca, Cr and Zn for transects through the regolith at MM3. Transects are the same as for Figure 3.5. Regolith units have been separated (*i.e.*, white lines in slices) to show individual units. View is at 195° azimuth and 50° elevation, with x5 vertical exaggeration.

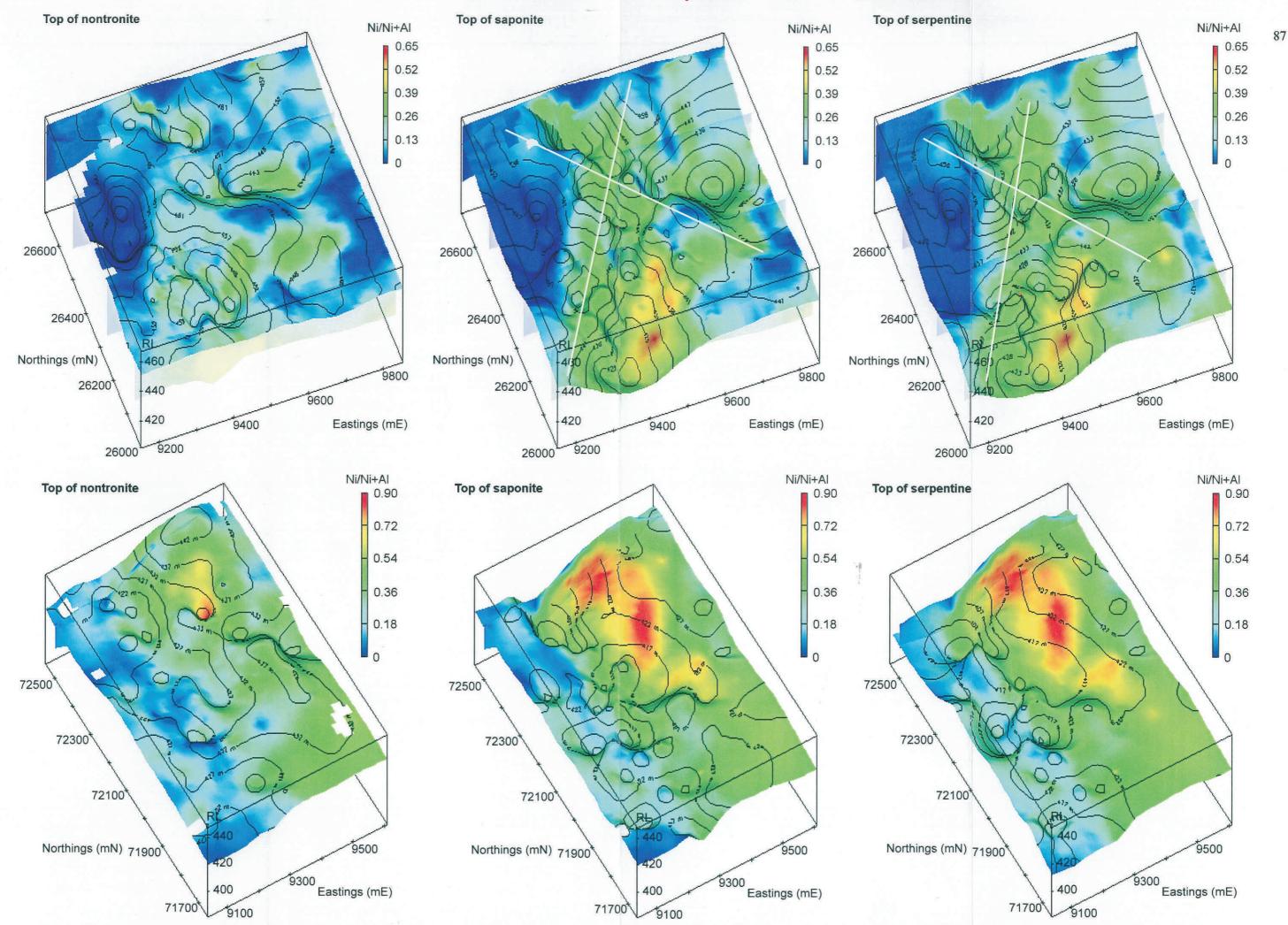


Figure 4.9. Distribution of Ni/Ni+Al values for different surfaces in the regolith at MM2 and MM3. Transects for northings 26050, 26250, 26450 and 26700 mN are shown in MM2 as transparent slices through the regolith. Transect 72500 mN is also shown as a slice through the regolith at MM3. RL contours are shown (*i.e.*, black lines) for each surface. Views for both MM2 and MM3 are at 200° azimuth and 50° elevation, with x5 vertical exaggeration. Blocked out (*i.e.*, white) areas for some surfaces are areas of low confidence that have been filtered out of the data. White lines at the surface of the saponite and serpentine units represent the expression of an intersecting fault-set within MM2.

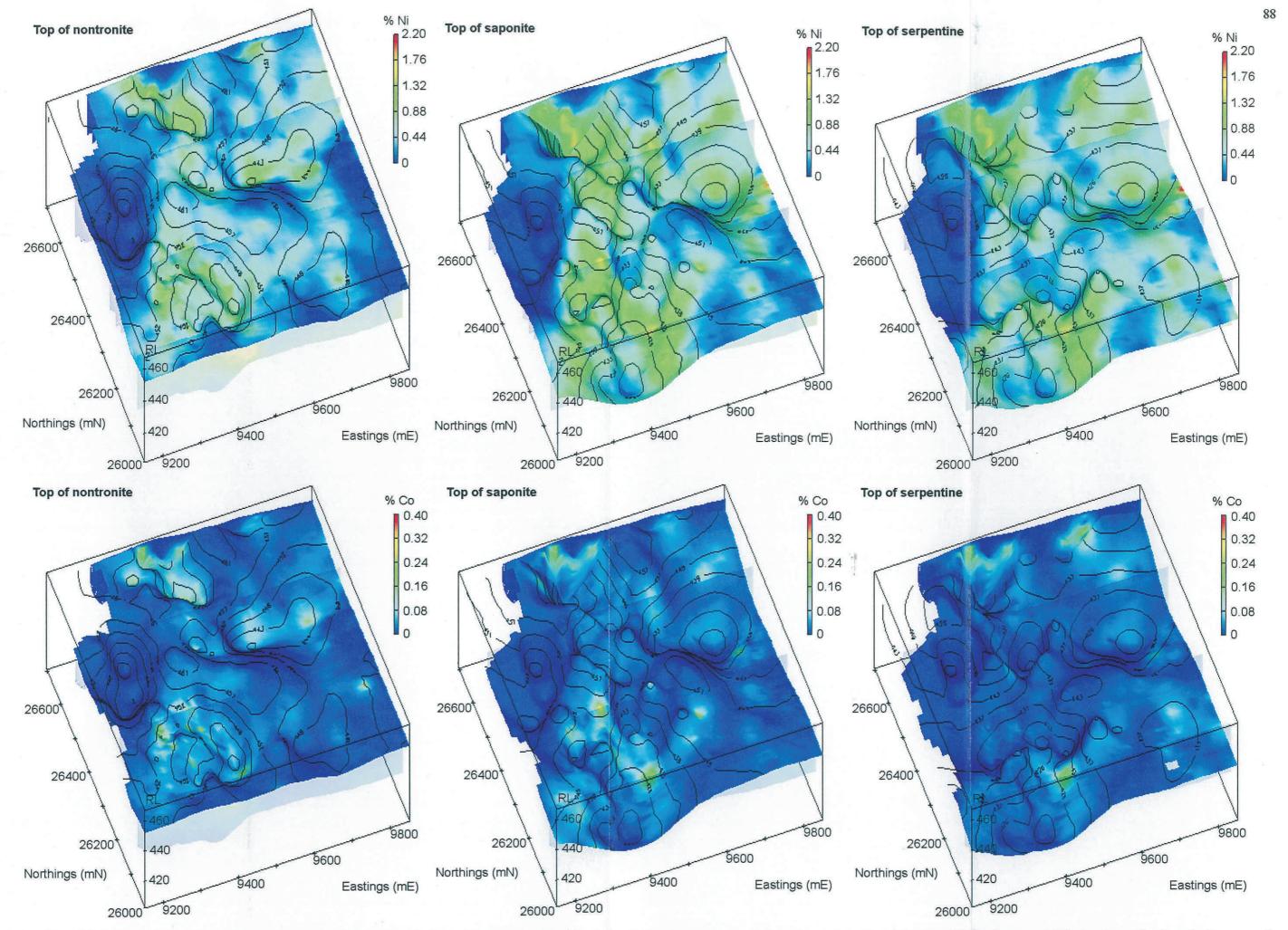


Figure 4.10. Distribution of Ni and Co for different regolith surfaces at MM2. RL contours, at either 4 or 5 m intervals, are shown (i.e., black lines) for each surface. View is at 200° azimuth and 50° elevation, with x5 vertical exaggeration. Transects for northings 26050, 26250, 26450 and 26700 mN are also shown as transparent slices through the regolith. Blocked out (i.e., white) areas for some surfaces are areas of low confidence that have been filtered out of the data.

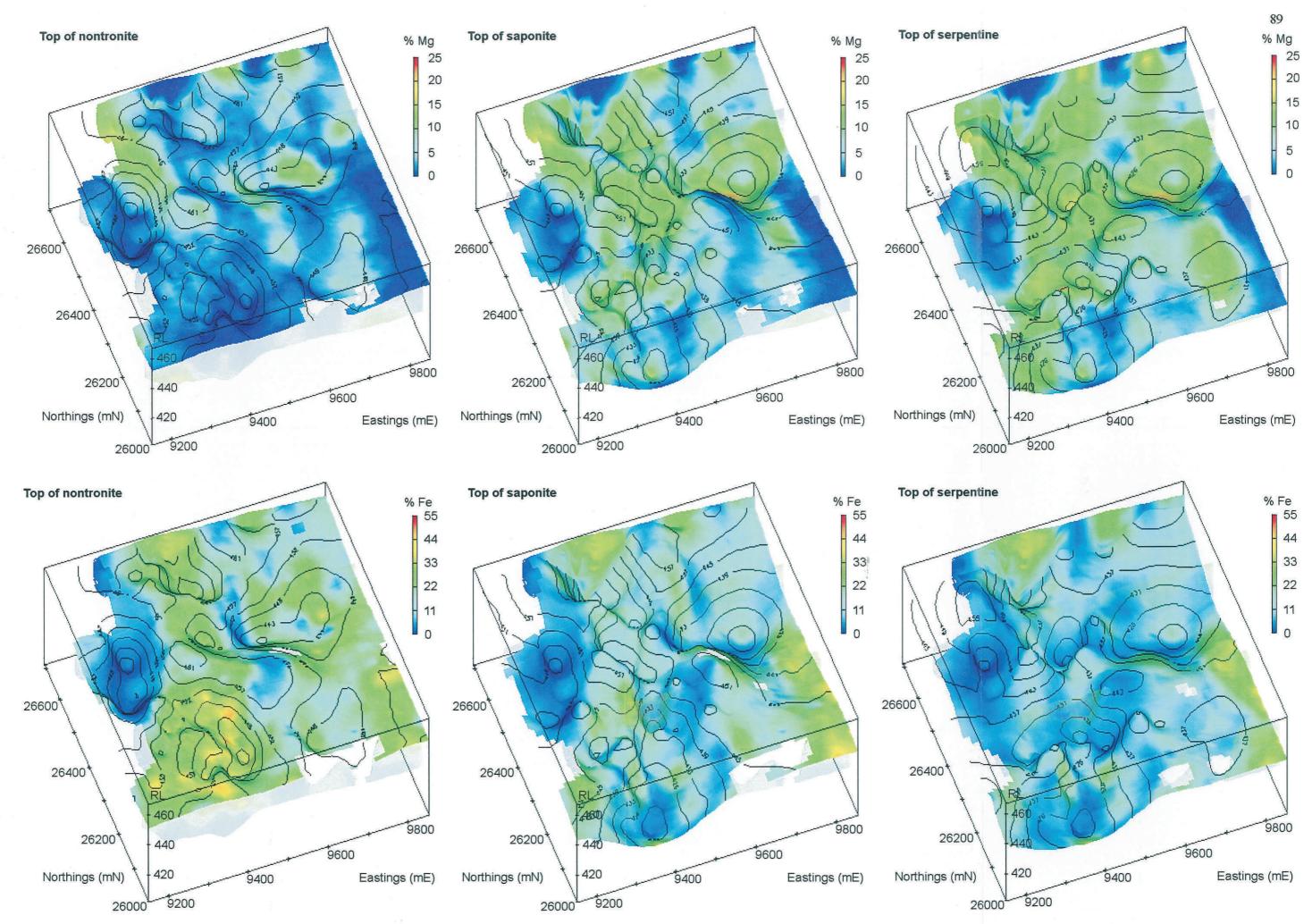


Figure 4.11. Distribution of Mg and Fe for different regolith surfaces at MM2. RL contours, at either 4 or 5 m intervals, are shown (*i.e.*, black lines) for each surface. View is at 200° azimuth and 50° elevation, with x5 vertical exaggeration. Transects for northings 26050, 26250, 26450 and 26700 mN are also shown as transparent slices through the regolith. Blocked out (*i.e.*, white) areas for some surfaces are areas of low confidence filtered out of the data.

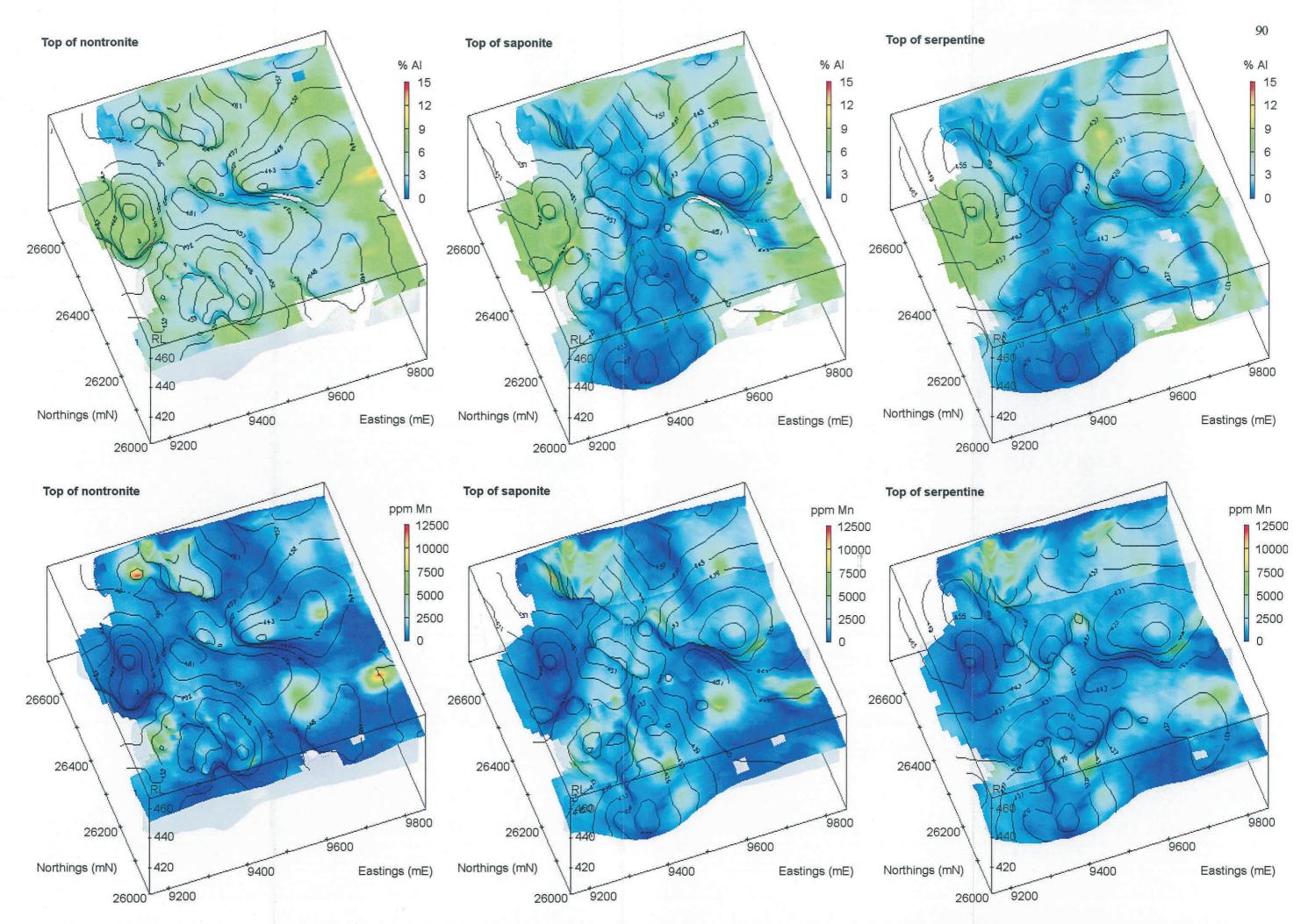


Figure 4.12. Distribution of AI and Mn for different regolith surfaces at MM2. RL contours, at either 4 or 5 m intervals, are shown (*i.e.*, black lines) for each surface. View is at 200° azimuth and 50° elevation, with x5 vertical exaggeration. Transects for northings 26050, 26250, 26450 and 26700 mN are also shown as transparent slices through the regolith. Blocked out (*i.e.*, white) areas for some surfaces are areas of low confidence that have been filtered out of the data.

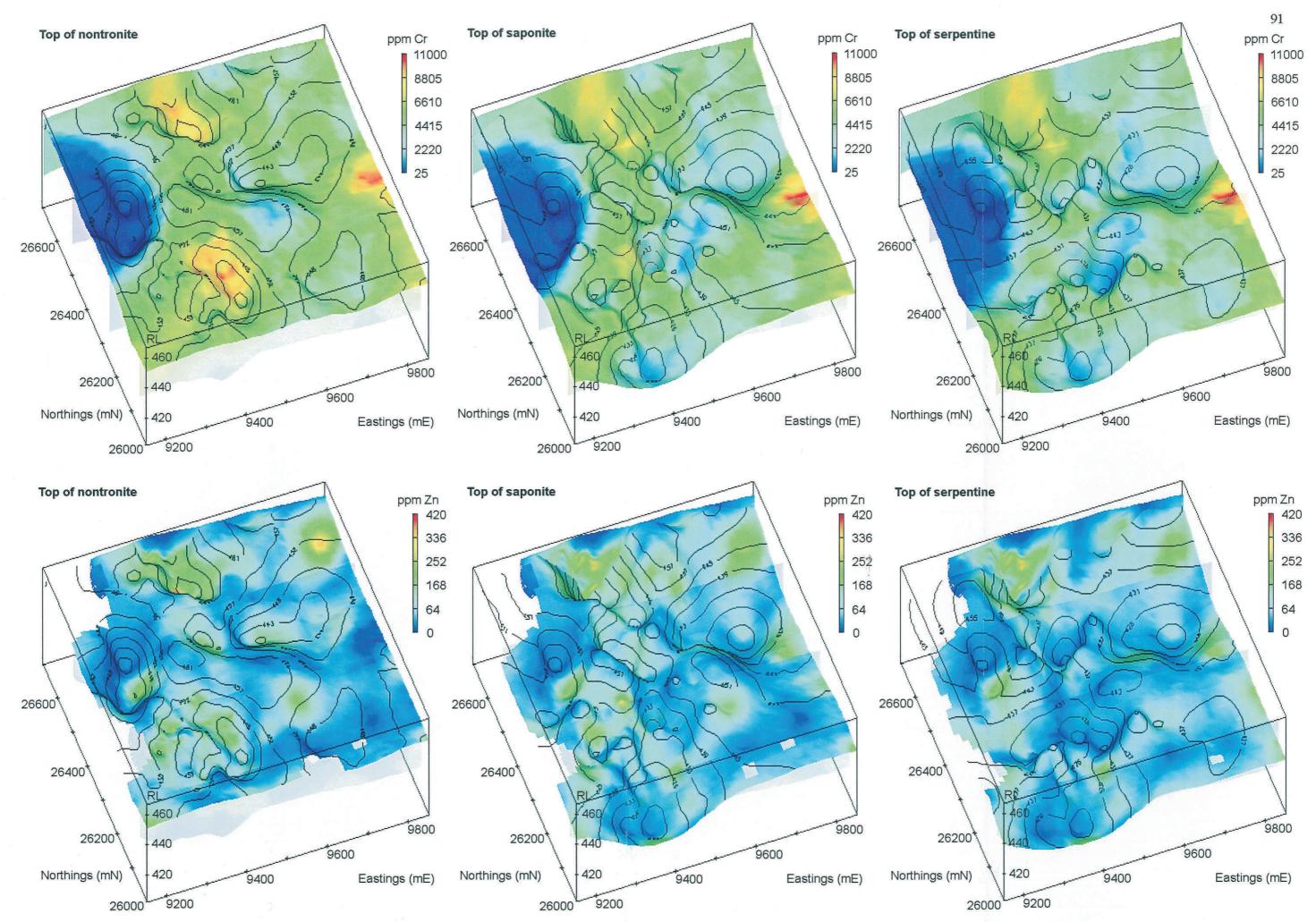


Figure 4.13. Distribution of Cr and Zn for different regolith surfaces at MM2. RL contours, at either 4 or 5m intervals, are shown (*i.e.*, black lines) for each surface. View is at 200° azimuth and 50° elevation, with x5 vertical exaggeration. Transects for northings 26050, 26250, 26450 and 26700 mN are also shown as transparent slices through the regolith. Blocked out (*i.e.*, white) areas for some surfaces are areas of low confidence that have been filtered out of the data.

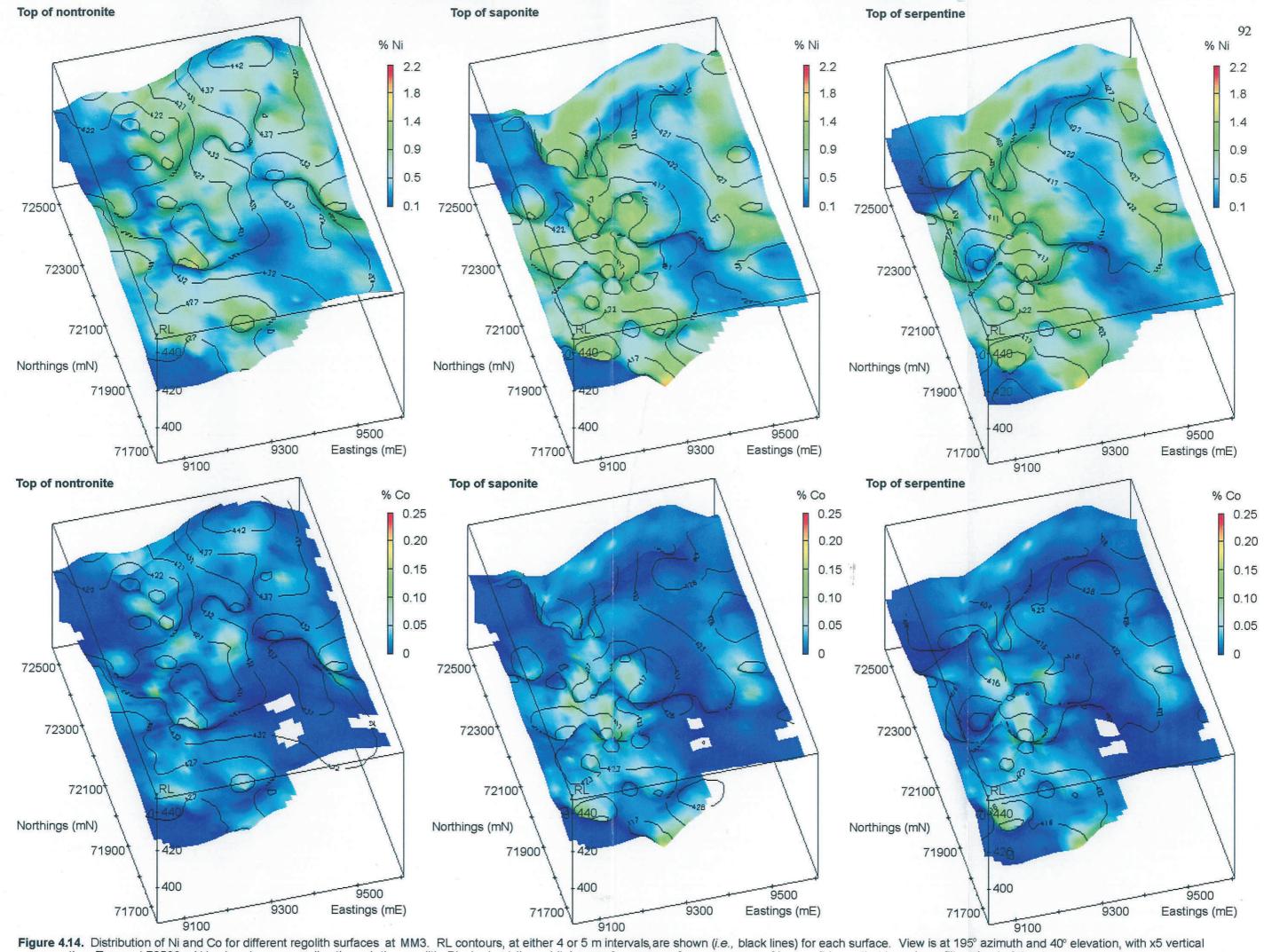


Figure 4.14. Distribution of Ni and Co for different regolith surfaces at MM3. RL contours, at either 4 or 5 m intervals, are shown (*i.e.*, black lines) for each surface. View is at 195° azimuth and 40° elevation, with x5 vertical exaggeration. Transect 72500 mN is also shown as a slice through the regolith. Blocked out (*i.e.*, white) areas for some surfaces are areas of low confidence that have been filtered out of the data.

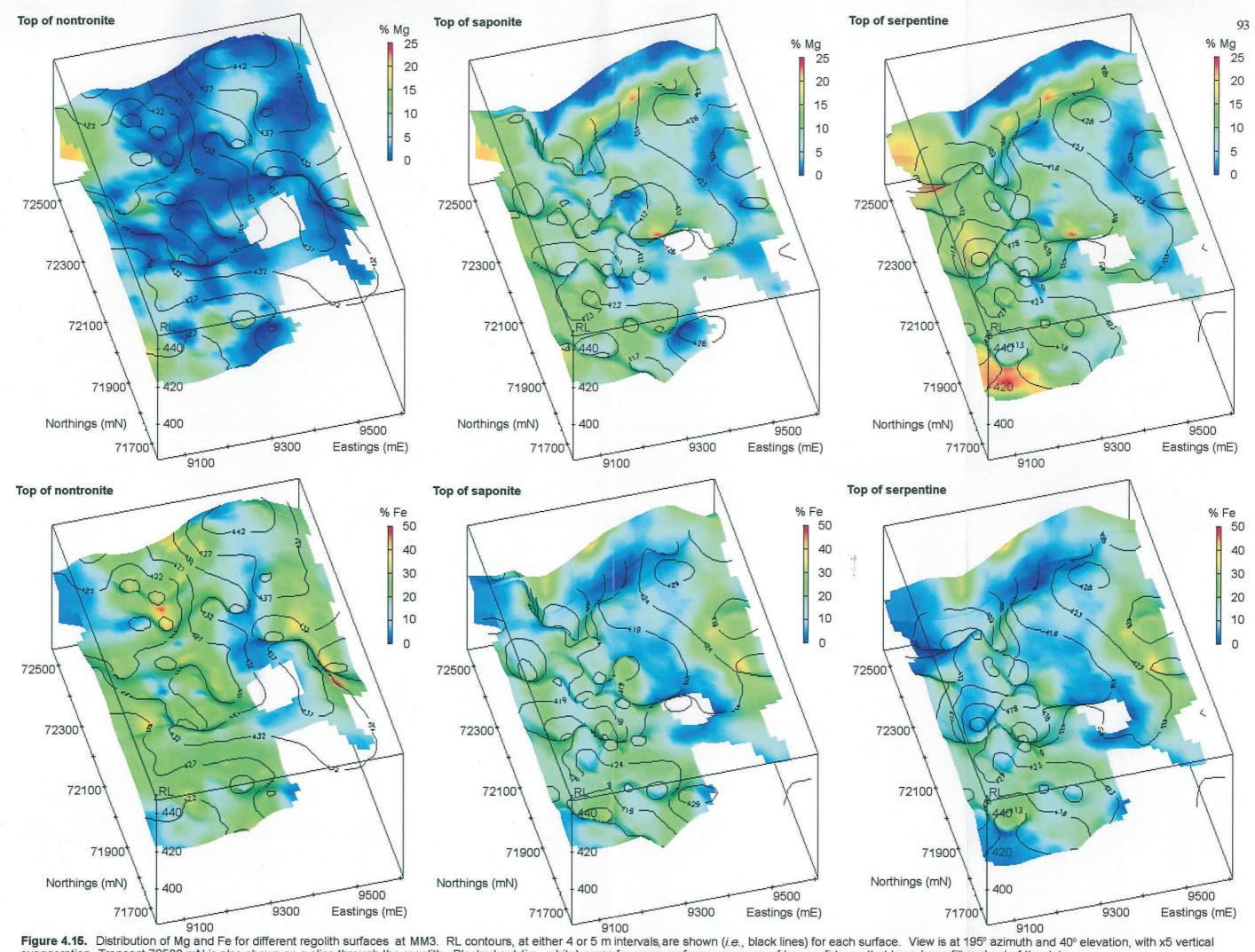


Figure 4.15. Distribution of Mg and Fe for different regolith surfaces at MM3. RL contours, at either 4 or 5 m intervals, are shown (*i.e.*, black lines) for each surface. View is at 195° azimuth and 40° elevation, with x5 vertical exaggeration. Transect 72500 mN is also shown as a slice through the regolith. Blocked out (*i.e.*, white) areas for some surfaces are areas of low confidence that have been filtered out of the data.

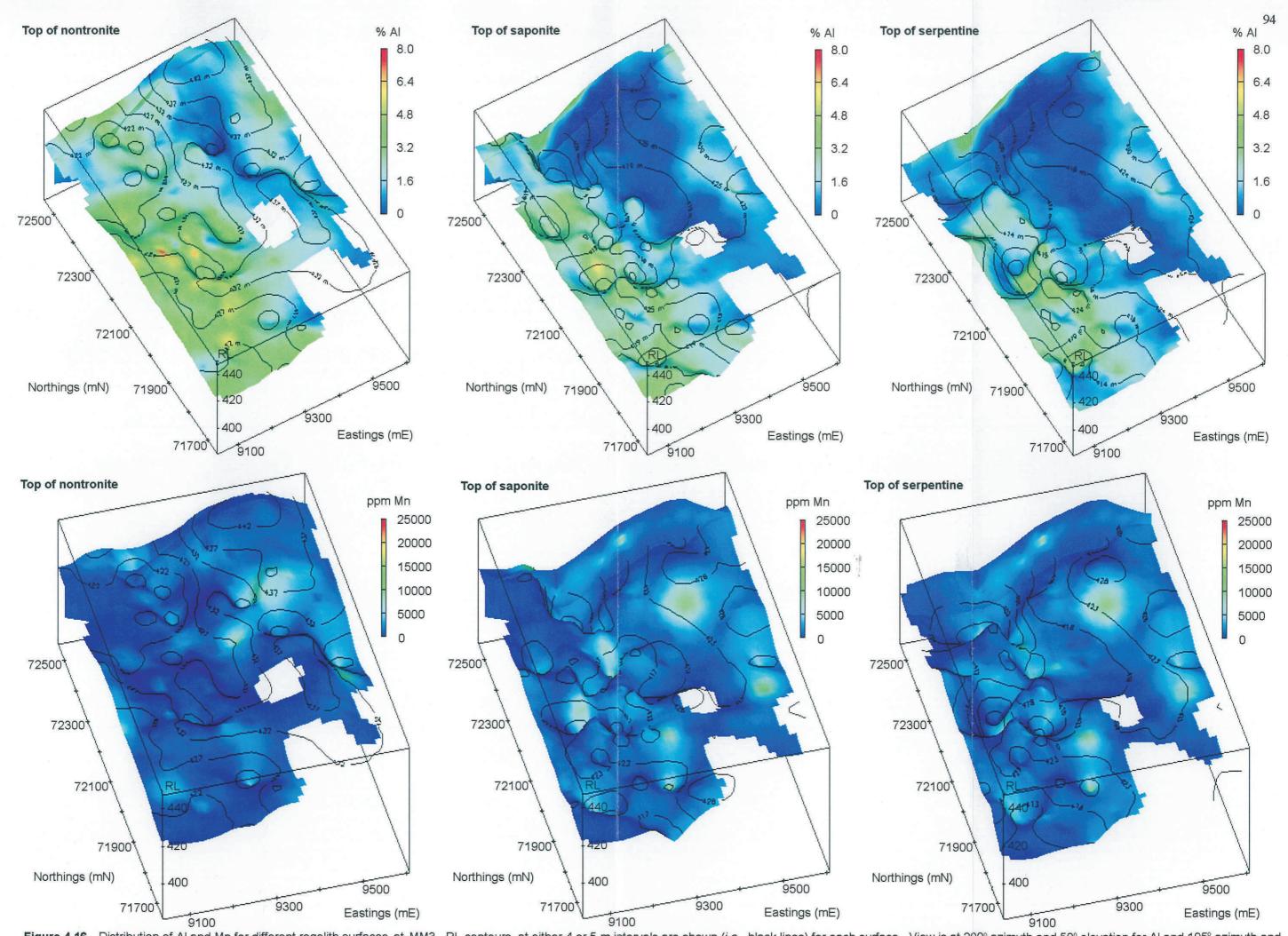


Figure 4.16. Distribution of AI and Mn for different regolith surfaces at MM3. RL contours, at either 4 or 5 m intervals, are shown (*i.e.*, black lines) for each surface. View is at 200° azimuth and 50° elevation for AI and 195° azimuth and 45° elevation for Mn, with a x5 vertical exaggeration. Transect 72500 mN is also shown as a slice through the regolith. Blocked out (*i.e.*, white) areas for some surfaces are areas of low confidence that have been filtered out of the data.

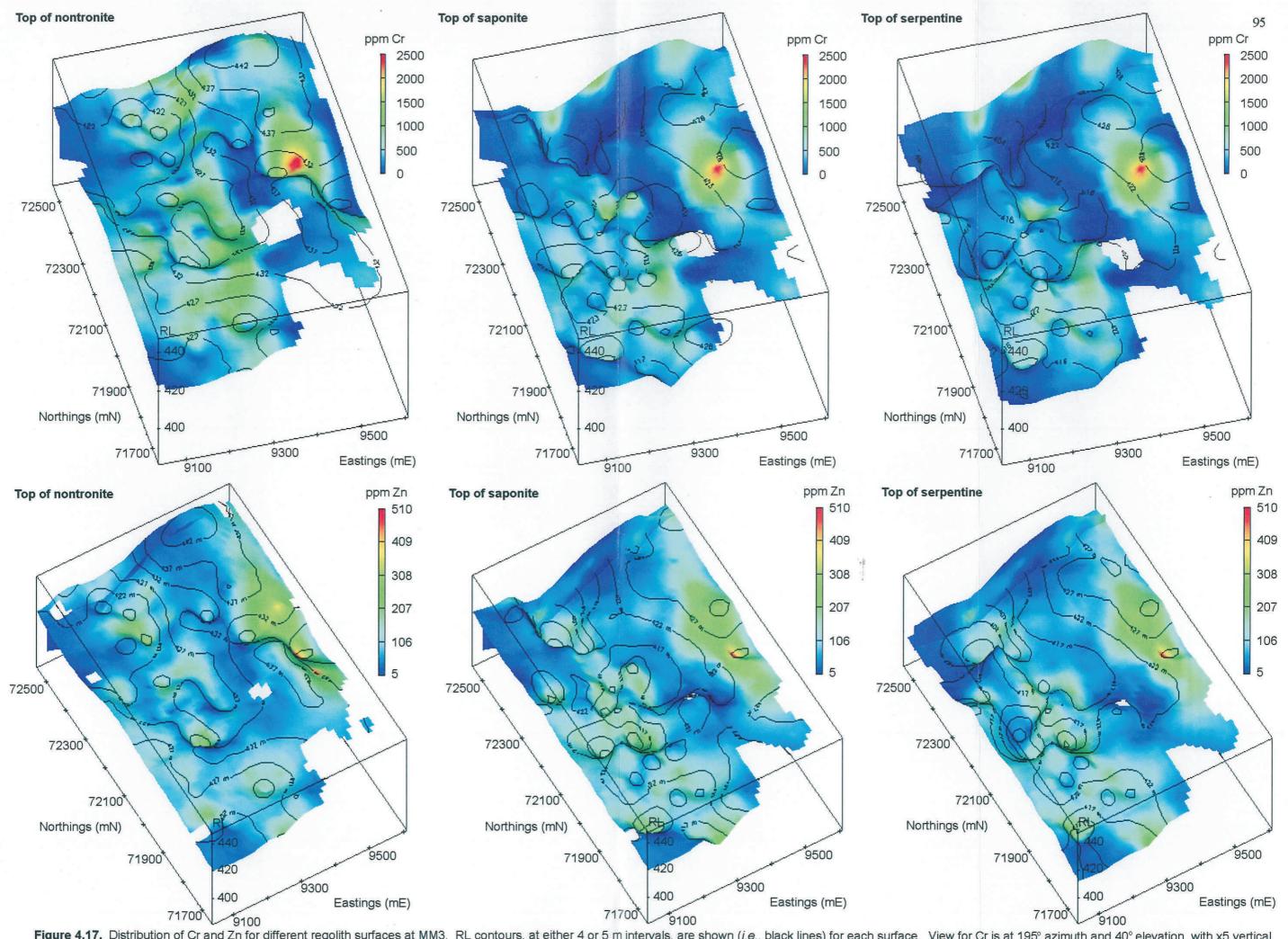


Figure 4.17. Distribution of Cr and Zn for different regolith surfaces at MM3. RL contours, at either 4 or 5 m intervals, are shown (*i.e.*, black lines) for each surface. View for Cr is at 195° azimuth and 40° elevation, with x5 vertical exaggeration. View for Zn is at 200° azimuth and 50° elevation, with x5 vertical exaggeration. Transect 72500 mN is also shown as a slice through the regolith. Blocked out (*i.e.*, white) areas for some surfaces are areas of low confidence that have been filtered out of the data.

This feature continues or is preserved to the top of the nontronite unit and becomes obscured in the 'kaolinite-2' unit (not shown) most probably due to the greater effect of weathering in the upper portion of the profile.

This feature may represent a lithological unconformity or is the result of slumping during weathering. The uniform distribution of Ni/Ni+Al values (Fig. 4.9) discounts the former possibility while the sharply defined, local nature of the feature rules out the latter possibility. More probably, this feature may represent a pre-existing conjugate (*i.e.*, intersecting) fault-set with the normal-slip fault in transects 26700 and 26450 mN (Figures 3.4 and 4.3) comprising the NW-SE striking fault. The other fault strikes approximately NNE-SSW (Fig. 4.9). Reactivation of the fault during weathering and probable normal movement along the fault-set has produced an irregular, 'egg-carton' like topography within the regolith (see Figures 4.9 to 4.13).

Nickel and Co mineralization occurs mainly within the upper half of the nontronite unit associated with topographic lows (Fig. 4.3) along the NNE-SSW striking fault (Fig. 4.10), where development of smectite (*i.e.*, nontronite and saponite) is thickest. Normal faulting within transects 26450 and 26700 mN, part of the NW-SE striking fault noted above, has resulted in two offset zones of high grade Ni (*i.e.*, > 1.0 %) within the nontronite unit (Fig. 4.3). A Ni-poor zone occurs along the plane of shearing. Faulting appears to have occurred during weathering with the Ni-poor zone most probably resulting from fluid movement along the fault plane. The distribution -6 f Co (Fig. 4.3), Mg, Fe, Al and Mn (Fig. 4.4) for slices through the regolith all show features that relate to faulting in transects at 26450 and 26700 mN.

Mn-Co distribution

Not unexpectedly, the occurrence of Co appears generally related to the distribution of Mn (compare Figure 4.3 to 4.4 and Figure 4.10 to 4.12). However, high grades of Mn do not necessarily coincide to the highest grades of Co. Reasons for this are unclear but may indicate:

- 1. That Co was already depleted where the Mn oxides (*i.e.*, asbolan) initially precipitated. Cobalt may associate with Mn only if Mn and Co are both in solution and co-precipitate or Co can be adsorbed after the precipitation of Mn oxides.
- 2. There may be two (or more) generations of Mn oxides, with each successive generation a result of either complex weathering events or are a result of episodic wetting and drying cycles associated with fluctuating water-table levels, similar to the movement of Fe within weathering profiles. Evidence for the remobilization of Mn within the regolith is shown by the

precipitation of Mn oxides along shear planes. This may then release Co back into solution to be redistributed within the regolith.

However, such interpretation should be treated with caution. Isolated Mn 'hot-spots' within the nontronite surface (Fig. 4.12) may be due to drill hole effects (*i.e.*, are artefacts of the kriging of 'isolated' high concentrations of Mn for widely spaced drill holes).

4.3.2 MM3

General features and element distribution

A very strong lithological control on regolith geochemistry is evident at MM3 as shown by distributions of the Ni/Ni+Al ratio in both slices (Fig. 4.6) and for different regolith surfaces (Fig. 4.9). Low Ni/Ni+Al values along the western margin of the deposit are indicative of ortho- and mesocumulates lithologies. A central olivine adcumulate zone is indicated by high Ni/Ni+Al values of > 0.4 that persists from the serpentine unit through to the base of the kaolinite unit (Figures 4.6 and 4.9). This is due mainly to low Al values (Figures 4.7 and 4.16) for this zone rather than due to high Ni values (Figures 4.6 and 4.14), which is consistent to the bulk composition of adcumulates (Hill *et al.*, 1996).

A Ni-poor (*i.e.*, < 0.5 %) zone is generally coincident with the adcumulate reflected by Ni/Ni+Al values of >0.4-0.6 (Fig. 4.6). Lithology also controls the distribution of Co, with low concentrations (*i.e.*, < 0.03%) over adcumulate and higher concentrations over meso- and orthocumulates (Fig. 4.6).

The distributions of Al and Fe are broadly similar, and correlate generally with those for Ni and Co (Figures 4.7, 4.15 and 4.16). Zones of low Al- (Fig. 4.16) and Fe (Fig. 4.15), particularly for the saponite and serpentine units, generally coincide with high Ni/Ni+Al values of >0.4-0.6 (Fig. 4.9). This is consistent with the bulk chemistry of adcumulate rocks (Hill *et al.*, 1996). The distributions of Al and Fe are inversely related to Mg (Fig. 4.7). The highest grades of Mg generally occur away from the adcumulate zone, along the western margin of the deposit associated with talc-carbonate development in ortho- and mesocumulates (Figures 4.7 and 4.15). This may indicate a lateral remobilization of Mg within the regolith away from the adcumulate towards the western and eastern margins of the deposit; adcumulates generally have a greater initial Mg content than ortho- and mesocumulates and are generally more susceptible to weathering (*i.e.*, loss of Mg). The Mg content decreases up profiles but is unrelated to any regolith boundary (Fig. 4.7).

The distributions of Cr and Zn (Figures 4.8 and 4.17) are also similar to that for Fe, with a zone of low Cr and Zn coincident to the underlying adcumulate zone. The highest values of Cr correlate to high Fe values (compare Figure 4.8 to 4.7 and Figure 4.15 to 4.17), most probably due to surficial concentration of chromite. The distribution of Zn (*e.g.*, Figures 4.6 and 4.8) appears well related to that of Ni and, to a lesser extent, Co.

Structural and lithological controls

A general, lateral decrease is shown for Ni/Ni+Al values moving away from the central adcumulate zone (Fig. 4.6). This may be due to either lithological contacts being obscured during formation of the Ni laterite or to changes in the Ni/Ni+Al ratio simply indicating a gradational, rather than a discrete, change in cumulate lithology to ortho- and mesocumulates at the western and eastern margins of the deposit (Fig 4.6). The distribution of Ni/Ni+Al values within slices (Fig. 4.6) and at regolith surfaces (Fig. 4.9) within MM3 shows that the adcumulate zone either pinches out towards the south end of the deposit or plunges below the surface of the serpentine unit. The latter case would be consistent with the main structural style of cumulate lithologies at MM3 that form part of the southerly plunging, western limb of the Kilkenny syncline (see Figure 1.1).

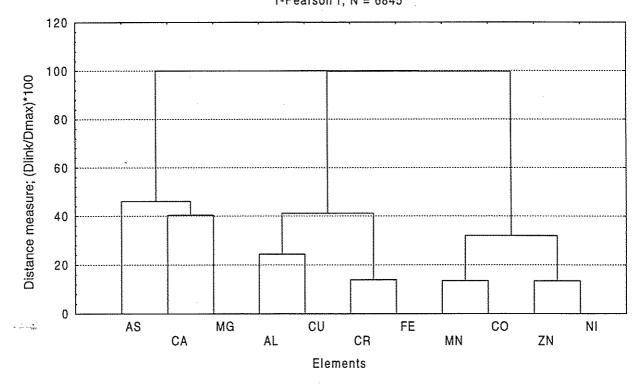
The topography of regolith surfaces, particularly the saponite and serpentine units within and immediately adjacent to the adcumulate zone, are relatively flat (*i.e.*, show little relief) compared to the zone of ortho- and mesocumulate along the western margin at about 9250 mE (Fig. 4.9). This variable depth of weathering may reflect textural differences, such as in the packing of serpentinized olivine grains in the bedrock. Orthocumulates are defined as consisting of 50-80 % olivine, with isolated crystals floating within an intercumulus matrix. Whereas, adcumulates are comprised of >95% tightly packed olivine grains with triple-point contacts. Mesocumulates represent the intermediate condition. As olivine is easily weathered and because of the high degree of preserved, interconnected serpentinized olivine, it would be expected that adcumulates have a relatively high porosity. In contrast, the isolated nature of serpentinized olivine might result in orthocumulates having a relatively low porosity. Some evidence for this, although not conclusive, is shown for plots of cumulate porosity versus Ni/Ni+Al values for the serpentine unit of selected RC holes at MM3 (Appendix 7).

However, although adcumulates may tend to have a greater porosity than ortho- and mesocumulates (Appendix 7), extensive secondary silicification within and over adcumulates, associated with initial stages of weathering, would have either effectively acted as a physical barrier (*i.e.*, 'plugged the system' by inhibiting drainage) limiting the vertical and lateral movement of Ni and Co, or may have acted as a diluent to mineralization.

Nickel and Co occur mainly in topographic lows within the nontronite unit associated with the variably weathered ortho- and meso-cumulates, where development of smectite (nontronite) is thickest (Fig. 4.6). Cobalt occurs within primary pyroxene minerals of the intercumulus matrix (Deer *et al.*, 1980; Burger, 1996). Cobalt mineralization in MM3 along the western margin of the deposit may be a reflection of the greater amount of intercumulus material of the original ortho- and mesocumulate, as compared to adcumulate, and where, because of the limited porosity of orthocumulates, there has been little mobilization of Co during weathering away from the ortho- and mesocumulate zone.

Mn-Co mineralization

Although Mn oxides are considered to host Co mineralization in the regolith, high Co grades are not necessarily correlated to high Mn grades (*e.g.*, compare Figure 4.6 to 4.7, and Figure 4.14 to 4.16), as is also shown in MM2. The presence of high Mn grades within the adcumulate zone along transect 72300 mN (Figure 4.7) may indicate Mn oxides that have been silicified and preserved within the regolith. In this case, Mn oxides would have been unavailable to take up Co and hence appear as Co-poor. The same argument may also apply to aspects of the Mn-Co association at MM2.


--- 4.4 Cluster Analysis

Cluster analysis of the geochemical data, supplied by Anaconda, was performed to enable a more detailed examination of element associations within and between the two study areas. Analysis was performed using STATISTICATM (Volume III) for Windows after initial treatment of the raw data, according to Section 1.11.8. Cluster analysis was performed using Ward's method as the amalgamation or linkage rule with 1-Pearson r selected as the distance measure. Other linkage and distance measures were tried and found to give very similar results to those selected for final analysis.

The geochemical data were examined in three ways:

- 1. Global analysis of the combined geochemistry for MM2 and MM3, as a single 'deposit'.
- 2. Analysis of MM2 and MM3 as two, separate deposits.
- 3. Analysis of the regolith geochemistry within MM2 and MM3.

Results of the global cluster analysis for MM2 and MM3 are presented in Figure 4.18, with a summary of each examination presented in Table 4.1. Comparison of Figure 4.18 with Table 4.1 illustrates how element associations can be presented in tabular form, using parentheses to show element associations, rather than in graphical form as in Figure 4.18.

Case 1: All elements for MM2 and MM3 Ward`s method 1-Pearson r; N = 6845

Figure 4.18. Tree diagram of the global cluster analysis of MM2 and MM3 as a 'single' deposit using the geochemical data supplied by Anaconda Nickel NL. Elements occur as three groups that are unrelated to each other. N is the number of samples analysed.

According to the clustering parameters selected for the global analysis, three element groups were identified (Figure 4.18), namely As-Ca-Mg, Al-Cu-Cr-Fe and Mn-Co-Zn-Ni. Within the latter group, Zn is strongly associated with Ni, whereas Co associates with Mn. This is presented in Table 4.1, for the global case, as; (Ni,Zn)(Mn,Co). Similar associations are shown for Al and Cu, and for Cr and Fe (Fig. 4.18), which represent another group, shown in Table 4.1 as; (Cr,Fe)(Al,Cu). Similarly, the association between Ca, Mg and As is shown accordingly as; (Ca,Mg)As (Table 4.1). These three groups are unrelated to each other as is shown by the very long tie lines that connect them in the tree diagram (Fig. 4.18). The following discussion, therefore, refers to element associations as presented in Table 4.1.

Case 1: Global analysis (MM2 and MM3).						Comments
	(Ni,Zn)(Mn,Co)					
	(Cr,Fe)(Al,Cu)					
	(Ca,Mg) As					
Case 2: De	posit analysis.					
MM2			MM3			
	[(Ni,Zn) (Co,Mn)]			[(Ni,Zn) (Co,Mn)]		
	(Ca,Mg)			[(Fe,Cr)Al] Cu		
	(Cr,Fe)			(As,Mg,Ca)		
	(As,Al,Cu)					
	alysis of regolith geochemistry.					
Jnit#0	(Ni,Cr) Fe	Î	Unit#0	[(Ni,Zn) (Cu,Fe,Al,Cr)]	Ĵ	
Kaolinite-1	(Zn,Co)		Kaolinite	(Mn,Co) As		
	(As,Cu)		with serp.	(Ca,Mg)		
	AI					
	(Mn,Mg)					
	Ca					Increasing
1	(h t) -7 \ # F		2 3 7 5 15 4			difference within
Unit#1	(Ni,Zn) Mg	ŀ	Unit#1	[(Ni,Zn) (Mn,Co)] (Ca,Mg)	ł	and between
Kaolinite-2	(Mn,Co) Cu		Kaolinite	(Cu,Fe) (As,Cr,Al)	l	profiles for MM2
	(Cr,Fe) As				l	and MM3.
	Ca,Al					
Unit#2	[(Ni,Zn) (Fe,Cr)] (Mn,Co)		Unit#2	(Ni,Zn) (Mn,Co)		
Nontronite	(Ca,Mg) As		Nontronite	(Cr,Fe) (Al,Cu)	I	
	(Al,Cu)	I		(Ca,As,Mg)	l	
Unit#3	[(Ni {Zn,Fe}) (Al,Cr)] (Mn,Co)	7	Unit#3	[(Ni,Fe,Zn) Al,Cr] (Mn,Co)	٦	
Saponite	(Ca,Mg) (As,Cu)		Saponite	(As,Mg) (Ca,Cu)		
						Very similar
Unit#4	[(Ni,Zn) (Cr,Fe)] (Mn,Co)		Unit#4	[(Ni,Zn) (Fe,Cr)] (Mn,Co)		element
Talc	(Al,Cu)		Talc	(Al,Cu) As		associations.
	(As,Mg,Ca)			(Ca,Mg)		
Unit#5	[{{{(Ni,Fe) Zn} Co} Cr} Mn]		Unit#5	[{{{(Ni,Zn) Fe} Co} Cr} Mn] (Al,Cu)	1	
Serpentine	(As,Mg)		Serpentine	(As,Mg,Ca)		
	(Al,Cu) Ca					
Unit#6	[{Ni (Mn,Co)} (Zn,Fe) Cr]					
UM Com	[(As,Mg) Ca] (Al,Cu)	ī				

Table 4.1. Cluster analysis of regolith geochemistry for MM2 and MM3.

The kaolinite-1 unit at MM2 has formed by the deposition of felsic sediments (Fig. 4.1), derived from granitic outcrops that occur to the NW of the deposit (see Figure 1.1). This is the cause of the very different element associations for this unit as compared to element associations for weathered ultramafics.

4.4.1 Cluster analysis: global and individual deposits

Very similar element associations and groupings are indicated between the global analysis of MM2 and MM3, and for MM3 treated as a separate case (*i.e.*, 'single deposit') (Table 4.1). However, within MM2, four element sub-groups are shown rather than three. This may be a result of the input of additional felsic material at the surface of MM2. The (Ni,Zn) (Co,Mn) association is common to both deposits and reflects the similar distribution of these elements. The close association between Co and Mn is expected since some Mn oxides host Co mineralization. The close association between Zn and Ni was seen in the distributions of Zn and Ni for northing transects through and for regolith surfaces within MM2 and MM3 (Figures 4.3 and 4.5 for MM2, and Figures 4.6 and 4.8 for MM3). The (Cr,Fe) (Al,Cu) group in MM3 reflects the elements that are most resistant to weathering and are residually concentrated, especially towards the top of the regolith. The (Ca,Mg) As association is most likely related to the common weathering behaviour of the alkalie earths to which As may associate.

4.4.2 Cluster analysis; regolith geochemistry

Very similar element associations and groupings are shown between MM2 and MM3 for regolith units serpentine to saponite (Table 4.1). This is not unexpected, due to the very similar bulk composition of the underlying cumulate bedrock and because of the very similar mineralogy (*e.g.*, clay silicates and oxides) of these regolith units. The main clay silicates in these units, serpentine, talc and saponite, are all Mg-rich, trioctahedral minerals (*i.e.*, all cation positions are fully occupied) that have a similar major and trace element composition (Section 3.6.1). In addition, the effect of weathering is least at the base of the regolith profile so that there has been little lateral and vertical dispersion of elements.

As for the other analyses, Zn is closely associated with Ni, both of which are grouped with Fe and Cr. Manganese and Co, again, almost always occur together and within the same group as Ni, Zn, Fe and Cr (Table 4.1). The oxide mineralogy for the serpentine, talc and saponite units is very similar, comprising mainly maghemite with minor hematite, chromite and Mn oxides (see section 3.7). The intimate and finely disseminated nature of these phases within the clay silicates of these units limits the 'scale' of discrimination to which element associations may be distinguished by cluster analysis. Hence, similar element associations are indicated (Table 4.1).

Increasingly dissimilar element associations and groupings are evident upward through the regolith (*i.e.*, from the nontronite to the kaolinite units) within the deposits and between MM2 and MM3, as the effects of weathering and influence of introduced material become more pronounced (Table

4.1). An example is the association between Fe and Cr. A significant increase in Fe oxide content occurs at the nontronite/kaolinite boundary (Section 3.7). In the kaolinite unit at MM3 iron, which is present mainly as goethite and hematite, markedly weakens or lessens the association between Cr and Fe that is due to chromite (Table 4.1).

As expected, element associations and groupings within the channel clays at MM2 (*i.e.*, kaolinite-1 unit) are very different to element associations for all other units (Table 4.1). This is because of the different composition and mineralogy of this unit (derived from felsic sediments) relative to regolith developed from weathered ultramafics. The isolated occurrences of Al, Ca and, to a lesser extent, Mg (with Mn) reflects the felsic mineralogy of the this unit which is dominated by primary Al-silicates such as plagioclase, K-feldspar and muscovite towards the base of the profile, and by secondary Al-silicates such as kaolinite towards the surface (Section 3.7). The (Ni,Cr)Fe grouping in the kaolinite-1 unit at MM2 (Table. 4.1) may be related to chromite that can concentrate in the weathering profile. The (Zn,Co) and (As,Cu) groupings in the kaolinite-1 unit are difficult to interpret.

4.5 Mass balance analysis

Examination of major and trace element mobility within the regolith can only be accurately assessed from mass balance calculations (Section 1.11.6) of deposit geochemistry. Within the regolith zones that have formed by essentially isovolumetric weathering, such calculations are best determined based on bulk density. However, such calculations are invalid in zones where there has been a change in volume either due to collapse or by expansion during weathering. In such instances, emphasis is placed upon using one or more elements that can be considered geochemically immobile during weathering.

A number of mass balance studies investigating weathering processes in lateritic profiles have assumed the immobility of Zr (Colin *et al.*, 1992; Beauvais and Colin, 1993; Porto and Hale, 1995), which in most cases occurs as zircon, $ZrSiO_4$. However, Zr can also occur as hydrated Zr-silicates, which are more easily solubilized during initial stages of weathering (Porto and Hale, 1995). Other elements, of assumed immobility in the weathering profile, used in mass balance studies have included Ti, Th and Nb (Nesbitt, 1979; Esson, 1983; Braun *et al.*, 1993; Porto and Hale, 1995; Venturelli *et al.*, 1997).

For the deposits at Murrin Murrin, time constraints and the unavailability of suitable samples precluded using bulk density in calculations of mass balance. Accordingly, such calculations were

performed based on Zr assays from the XRF analysis (Section 1.11.4) of pulps from selected RC drill holes across the deposits at MM2 and MM3. One major limitation of this approach, however, is that ultramafic rocks typically have very low Zr contents (between 5–10 ppm) which is often at the detection limit (5 ppm) achieved for Zr assays by XRF analysis (Table 1.2). Consequently, artefacts may be introduced in the mass balance calculations where Zr concentrations are low.

A relative comparison of element immobility can be determined by examination of the ratio of the concentration of the element in the parent material (Cp) to the concentration of the element in the weathered material (Cw) (Porto and Hale, 1995). The Cp/Cw ratio was calculated for Zr, Fe, Ti, Cr and Nb in drill holes at MM2 and MM3 with a complete weathering profile. That is, where serpentine was present, as identified by PIMA and XRD analysis, at the base of the profile (Appendix 8, Tables A8.1 and A8.2 for MM2 and MM3, respectively). Values of the Cp/Cw ratio for Fe, Ti, Cr and Nb did not give the same trends as or similar values to the Cp/Cw ratio for Zr, and were, therefore, not used in the mass balance calculations.

Only drill holes within MM2 and MM3 that contained serpentine at the base of the profile were included in the mass balance study. Investigation of the major and trace element chemistry of serpentine units at the base of those drill holes selected for analysis (Appendix 8, Figures A8.1 and A8.2 for MM2 and MM3, respectively), showed that the chemistry of the serpentine unit at both deposits was too varied for an 'average' composition for the unit to be determined, that could be used at both deposits. Thus, drill holes that did not have a complete regolith profile (*i.e.*, serpentine at depth) were excluded from study and RC holes with serpentine at the base of these drill holes at MM2 and MM3 are presented in Appendix 8 (Tables A8.3 and A8.4 for MM2 and MM3, respectively) and were used as the composition of fresh ultramafic as required in the mass balance equation (Section 1.11.6). The same approach would also have been required had bulk density determinations been used instead of Zr assays. In addition, the kaolinite-1 (*i.e.*, channel clay) unit at MM2 was not included in the mass balance study as no analysis of the parent material for this unit was available.

Mass balance profiles of the major and trace elements for RC holes, listed in Tables A8.3 and A8.4 (Appendix 8), are shown in Figure 4.19 for MM2 and in Figures 4.20 to 4.23 for MM3.

4.6 Mass balance profiles: MM2 and MM3

Concentrations of Zr within drill holes at MM2 and MM3 remain relatively constant in the weathering profile at background levels of between 5 to 10 ppm to within 3–5 m of the surface, where the Zr concentration then increased to values of between 50–100 ppm, but up to 100-200 ppm (Figures 4.19 to 4.23). High Zr values occur mainly within the upper portion of the kaolinite unit, although high Zr values also occur where other units (*e.g.*, talc, saponite and nontronite) 'outcrop' at the surface. For example, in RC hole CBRC0783 (Fig. 4.19) and ARC0786 (Fig. 4.21). Similar concentrations of Zr to 150 ppm have been reported at the surface of other Nilaterites and were interpreted as evidence for the introduction of allochthonous material to the surface of these profiles (Butt and Nickel, 1981; Schellmann, 1989). A similar conclusion can be drawn for the deposits at MM2 and MM3, particularly where units such as talc, saponite and nontronite occur at the surface.

Enrichment of the major elements Si, Al, Fe and Mg occurs within the upper portion of the serpentine unit at or near the boundary to the overlying saponite or nontronite units. For example, as in RC holes ARC0793 (Fig. 4.20), ARC0783 and 0782 (Fig. 4.21) and ARC0126 (Fig. 4.22). This may represent a localized, relative accumulation due to the partial collapse of the upper saprock and/or lower saprolite or indicate absolute accumulation due to leaching from upper portions of the profile. This, however, may also represent an artefact of the very low Zr concentrations of serpentine in these profiles.

A strong upward depletion of Si and Mg then occurs from the top of the serpentine unit to the surface of the profile (Figures 4.19-4.23). This is consistent to observations for other Ni-laterite profiles (Esson, 1983; Schellmann, 1989; Venturelli *et al.*, 1997), and reflects the instability of Mg-silicates such as serpentine, chlorite and nontronite to conditions of more intense leaching that occur higher in the profile. Aluminium and Fe also show an upward depletion, but to a lesser degree than that shown by Si and Mg. However, Al and Fe may also show localized enrichment within the nontronite unit and the overlying kaolinite unit within both deposits. This is shown, for example, in RC holes CBRC0747 (Fig. 4.19), ARC0793 and 1257 (Fig. 4.20), ARC0782 (Fig. 4.21), and ARC0776 (Fig. 4.22). This is related to the kaolinite and Fe oxide dominated mineralogy of these units, especially for the kaolinite unit (Section 3.7). The zone of enrichment for Al and Fe in the upper portion of the profile may represent the lower extent of oxidative weathering in these profiles.

Enrichment of the trace elements Ni, Co, Cr, Mn and Zn within the upper portion of the serpentine unit is coincident to the zone of enrichment for the major elements in this unit and often represents

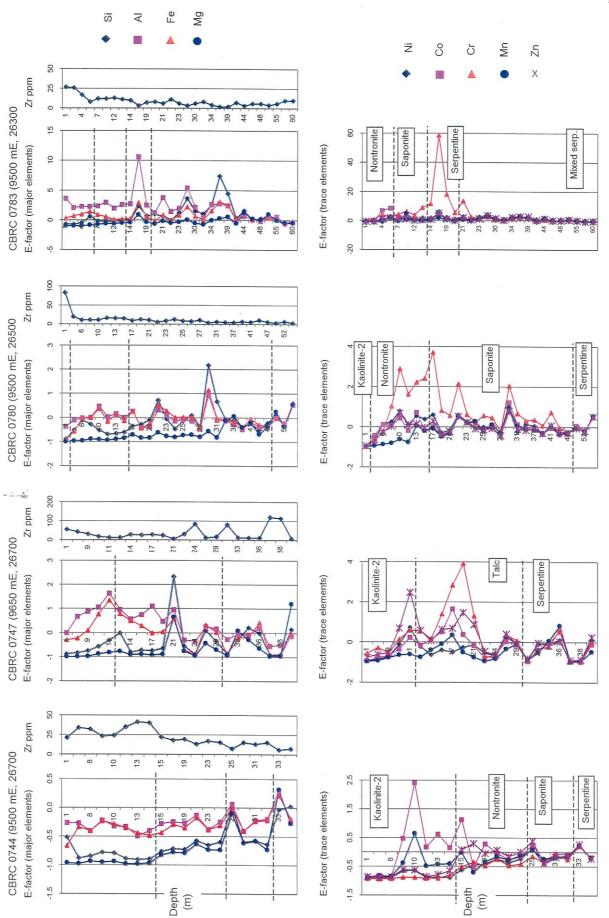
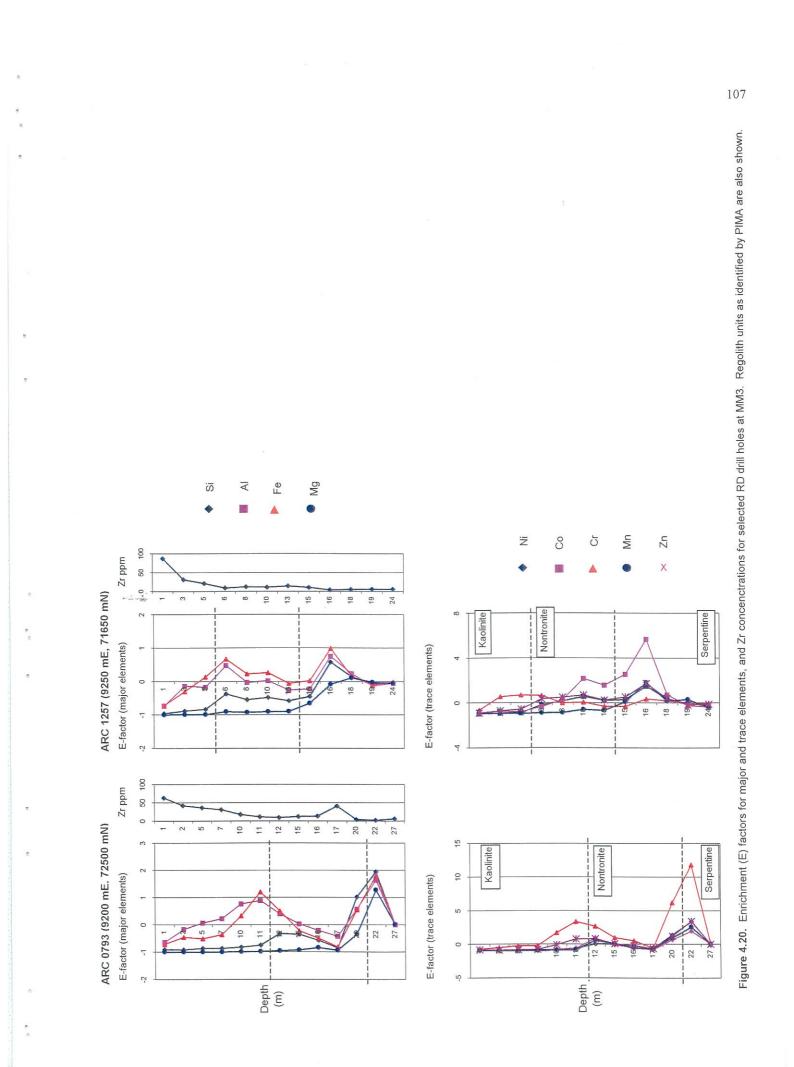



Figure 4.19. Enrichment (E) factors for major and trace elements, and Zr concentrations for selected RC drill holes at MM2. Regolith units as identified by PIMA are also shown.

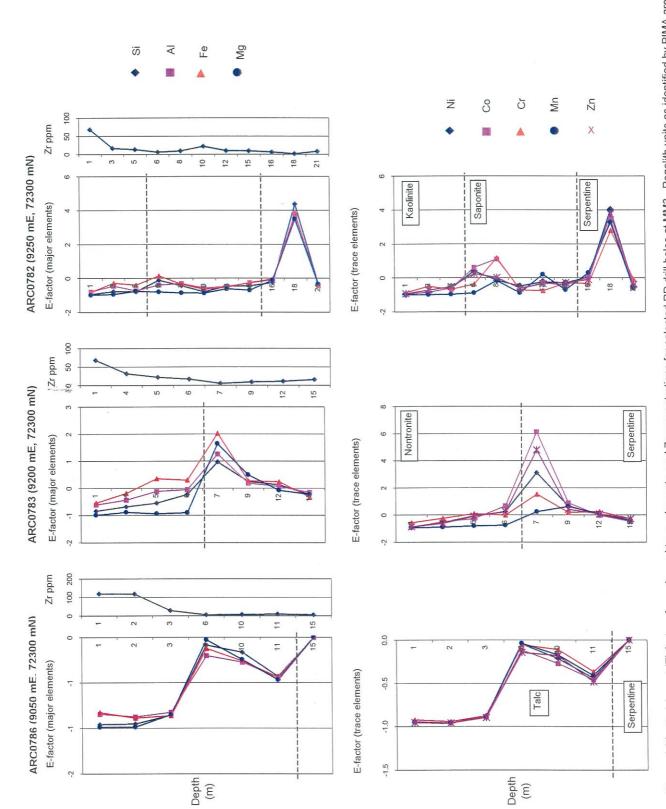


Figure 4.21. Enrichment (E) factors for major and trace elements, and Zr concentrations for selected RD drill holes at MM3. Regolith units as identified by PIMA are also shown.

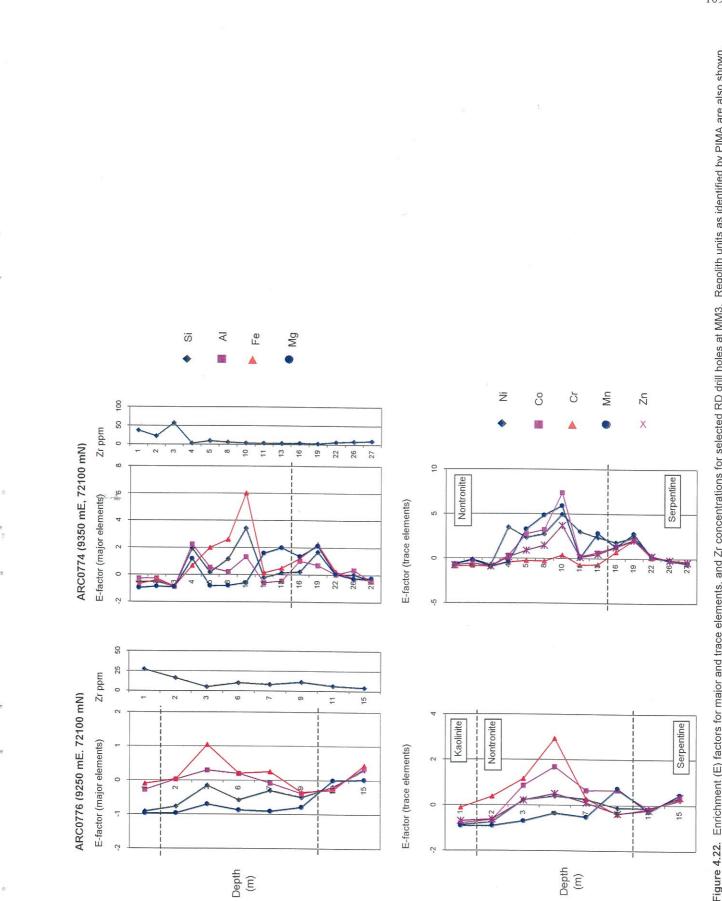
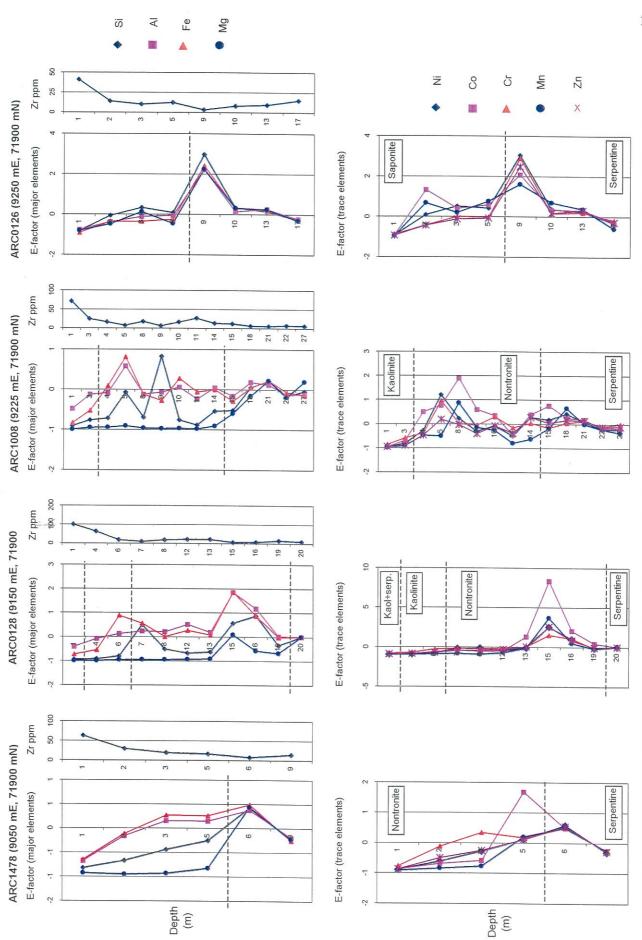



Figure 4.22. Enrichment (E) factors for major and trace elements, and Zr concentrations for selected RD drill holes at MM3. Regolith units as identified by PIMA are also shown.

110

Figure 4.23. Enrichment (E) factors for major and trace elements, and Zr concentrations for selected RD drill holes at MM3. Regolith units as identified by PIMA are also shown.

111

the only zone of trace element enrichment in these profiles, particularly for drill holes at MM3 (*e.g.*, RC holes ARC0783 – Fig. 4.21; ARC1478 and 0128 – Fig. 4.23). A second zone of enrichment, particularly for Ni and Co, occurs higher in the profile within the upper nontronite or saponite units (*e.g.*, RC holes ARC0793 – Fig. 4.20; ARC0782 – Fig. 4.21; ARC0776 and 0774 – Fig. 4.22; ARC1008 and 0126 – Fig. 4.23), appears related to the zone of Al and Fe enrichment within these units.

4.7 Summary

The geochemical characteristics of the regolith at MM2 and MM3 were investigated by threedimensional modelling of element-regolith associations using MVS, calculations of mass balance, and by cluster analysis. This approach has allowed local scale characterization of the lithological and structural controls to element distribution within the regolith at these deposits.

Nickel and Co mineralization within MM2 occurs mainly within the nontronite unit associated with variably weathered ortho- and meso-cumulates in topographical low areas, where development of nontronite is thickest. A strong, localized structural overprinting occurs as a conjugate fault-set, which is unrelated to primary structures within the western limb of the Kilkenny syncline. Reactivation of these faults during weathering has resulted in localized depletion of Ni and Co (and other elements) most likely due to fluid movement along fault shear planes.

A strong lithological control on Ni and Co mineralization is evident within the regolith at MM3, which is related to the primary structure of cumulates that form part of the western limb of the southerly plunging Kilkenny syncline. However, no apparent discrete change in cumulate lithology is shown. Rather, a gradational change from orthocumulates along the western and eastern margins of the deposit, through mesocumulates to a central adcumulate hosted lithology is indicated by gradational changes in the Ni/Ni+Al ratio.

Similar to the mineralization style at MM2, Ni and Co mineralization at MM3 is also associated with variably weathered ortho- and mesocumulates where nontronite development is thickest. Cobalt mineralization, as a localized enrichment, occurs mainly along the western margin of the deposit and may reflect the greater amounts of primary pyroxene phases within the intercumulus material associated with ortho- and, to a lesser extent, mesocumulates as compared to adcumulates. The variable weathering of ortho- and mesocumulates reflected in the variable topography of regolith surfaces associated with these rocks contrasts to the relatively subdued relief of regolith

formed over adcumulates. The variable depth of weathering over ortho- and mesocumulates may reflect localized variations in the more open style of packing of serpentinized olivine as compared to the more tightly packed nature of serpentinized grains of olivine in adcumulates.

Nickel, Co, Fe, Al, Mg, Zn and Cr all show depleted concentrations within the cental adcumulate zone in MM3. The result for Ni and Mg is unexpected as adcumulates tend to have greater Ni and Mg contents than olivine ortho- and mesocumulates (Hill *et al.*, 1996). Mobilization of Mg away from the central adcumulate zone to the western and eastern margins may have occurred during weathering. In addition, development of a capping of secondary silica in the upper portions of profiles developed over adcumulate may have acted as a diluent to mineralization or acted to limit the mobilization of Ni within the profile.

-

5.0 SUMMARY AND DISCUSSION

A combined regional and deposit scale approach was employed to examine the characteristics and factors of Ni/Co enrichment within the Ni-laterite deposits at Murrin Murrin. The regional setting of the deposits and surrounding tenements was established by compilation of a 1:50000 regolith-landform map. A combined approach that incorporated aerial photographic interpretation, magnetic, radiometric and Landsat TM image analysis revealed broad, regional differences in the geomorphology and regolith-landform associations between MM north and MM south. This has implications for regolith evolution that are reflected in differences in the mineralogy and element-regolith associations in profiles at the deposit scale.

The north and south tenements at Murrin Murrin are effectively separated by a NW-SE trending, regional drainage divide, which has modified the regolith-landform associations in these areas. The regolith-landform characteristics of these areas can be summarized as follows:

MM north:

• Is dominated by depositional plains characterized by alluvial and colluvial surficial sediment.

• Has a subdued, local topography that is a result of sediment deposition and burial as the main geomorphic process. This may cause problems for exploration, as there is little outcrop.

- Local drainage is associated with the Lake Carey drainage system that drains to the NE of the area. This indicated that palaeochannel clay deposits might form a significant feature of the regolith in the area.
- Input of felsic sediments (high in Al, Si, Ca and Ti) to the sediment flux within the drainage system derive from granite/adamellite outcrops to the NW. This has implications for element-regolith associations, particularly, in upper sections of profiles.

MM south:

- The area is characterized by erosional and relict regolith-landform regimes. Landforms are dominated by low hills and rises of weathered ultramafics, which are often capped by ferruginous/siliceous duricrust forming hillcrests and ridges.
- Relict serpentine may be preserved at the surface contained within duricrust.

- Local drainage is associated with the Lake Raeside drainage system. Down-wearing by drainage incision sub-parallel to the strike of weathered ultramafics has produced a more prominent relief.
- Localized stripping of the upper portion of the weathered profile exposes the deeper regolith (*i.e.*, saprock and saprolite) at the surface; palaeochannel clays are not likely to be a feature of the regolith in the area.
- The area may be easier to explore because of the greater outcrop.

Determination of the lithological and structural factors influencing mineralization at the deposit scale was achieved by charaterization of the stratigraphy and distribution of regolith and element-regolith associations at two sites, MM2 and MM3, for the MM north and MM south tenements, respectively. Detailed mineralogical logging, using the portable infrared mineral analyser (PIMA), of RC drill hole profiles provided a qualitative means of enabling:

- Uniform and consistent description of regolith mineralogy within and between deposits, based on the main Al-Mg-silicate phase (*i.e.*, serpentine, talc, saponite, nontronite, and kaolinite) identified.
- Differences in regolith profiles within and between deposits to be more easily identified.
- A refinement of the generic Ni laterite profile established by Anaconda Nickel NL.

Profiles of the regolith stratigraphy, produced from logging using PIMA (Table 4.2), were used to provide a geological framework for modelling of element distributions using the Mining and Visualization Software (MVS) system. This enabled the three dimensional examination of the distribution of Ni and Co (and other metals) within the deposits. Cluster analysis, mass balance studies and determinations of the normative mineralogy allowed for a more detailed examination of the geochemistry, mineralogy and element-regolith associations at the two sites.

		Element	Rego	lith profile
MM2: PIMA unit	Normative mineralogy	Associations	Anaconda^	Generic
#0: Kaolinite-1	Kaolinite+SiO ₂ ↑ up profile, to 80-90 Norm%. Plagioclase > muscovite ↓ up profile. <10% calcite in top 5m of profile	Increasingly dissimilar associations due to greater	FZ or PC	Channel clays
#1: Kaolinite-2	Fe oxides ≥ kaolinite >> SiO ₂ > nontronite > carbonate	effect of weathering and input of felsic material	FZ	Fe-rich, partially collapsed saprolite
#2: Nontronite	Fe oxides = SiO ₂ (= carbonate*) \geq chlorite > nontronite	at surface.	SM	Smectite
#3: Saponite	SiO ₂ (≈ carbonate*) > Fe oxides ≈ chlorite > saponite	Very similar element	SM (SA?))
#4: Talc	$SiO_2 \ge talc = chlorite = Fe oxides \ge saponite = carbonate$	groupings due to similar mineral	SA	Saprolite J
#5: Serpentine	J	compositions and minimal	SA/UM	<u>)</u>
#6: Mixed serpentine	Serpentine = SiO₂ > Fe oxides ≈ chlorite (=carbonate) > saponite	weathering.	SA/UM	Saprock to fresh ultramafic J

Table 4.2. Regolith characteristics for the deposits at MM2 and MM3.

MM3: PIMA unit

#0: Kaolinite with serpentine	Kaolinite ~ Fe oxides >>> serpentine > carbonate	Increasingly dissimilar associations	FZ	Lateritic duricrust and preserved saprolite
#1: Kaolinite	Fe oxides \geq SiO ₂ \approx kaolinite >> nontronite > carbonate	due to greater effect of weathering at the surface.	FZ	Fe-rich, partially collapsed saprolite
#2: Nontronite	SiO ₂ (≈ carbonate*) > nontronite ≈ Fe oxides > chlorite		SM	Smectite
#3: Saponite	SiO₂ > Fe oxides ≈ saponite > chlorite ≈ carbonate	Element groupings similar due to	SM (SA?)) Saprolite
#4: Talc	Talc (= carbonate) > saponite = chlorite = Fe oxides = SiO ₂	similar due to similar mineral compositions	SA	J
#5: Serpentine	Serpentine > saponite \approx carbonate \approx Fe oxides \approx SiO ₂ \approx chlorite	and minimal weathering.	UM	Saprock to fresh ultramafic

^ Abbreviations of the regolith terms used by Anaconda: PC = plastic clays; FZ = ferruginous zone; SM = smectite zone; SA = saprolite; UM = ultramafic.

*Indicates that % Norm abundances of the carbonate phases, magnesite and dolomite, are highly variable, in the range 10–80 %. High SiO₂ contents correlate with low contents of carbonate, mainly as magnesite. The 'kaolinite-2' unit at MM2 is equivalent to the 'kaolinite' unit at MM3.

A summary of the regolith characteristics for the deposits at MM2 and MM3 is presented in Table 4.2. Regolith development and mineralization styles within the Murrin Murrin deposits are very much dependent on structural and lithological factors that prevail at the deposit scale. The main differences within and between the two deposits are outlined below:

- Underlying lithology is dominantly ortho- and mesocumulate as shown from distributions of the Ni/Ni+Al ratio for values in the range 0.05 to 0.4. There is no apparent lithological control to mineralization within this variation.
- A very strong structural control to Ni and Co mineralization is expressed within the regolith as an intersecting (*i.e.*, conjugate), NW-SE/NE-SW trending fault set.
- Probable normal movement along fault planes, seemingly reactivated during weathering (probably during the early to mid-Tertiary), coupled with fluid movement along shears, has caused localized depletion within mineralized zones of the profile. Modelling of the distribution of fault systems at the deposit scale is important to understanding the distribution of Ni and Co.
- The greatest enrichment of Ni and Co occurs mainly within the nontronite unit associated with variably weathered ortho- and mesocumulates along the fault system.
- Iron oxides (*i.e.*, Fe₂O₃) and kaolinite are the dominant phases in the 'nontronite' and 'kaolinite' units of the regolith, comprising between 50-70 and 30-50 %, respectively, of the normative mineralogy. Nontronite is only a comparatively minor component of the 'nontronite' unit, with abundances of generally < 10 Norm%. Amounts of SiO₂ are highly variable, comprising up to 60-80 Norm%. Variations in the regolith mineralogy may have metallurgical implications to ore processing, concerning the fluid characteristics of these materials during ore preparation and blending.
- Within the lower units of the regolith, Al is hosted by chlorite, whereas within the upper horizons (*i.e.*, from the upper portion of the nontronite unit) Al is dominantly hosted by kaolinite.

MM3

• There is a very strong lithological control to Ni and Co mineralization related to underlying ortho- and mesocumulates. No enrichment of Ni or Co occurs within regolith developed over adcumulates.

- Enrichment of Ni and Co occurs mainly within the 'nontronite' unit formed over ortho- and mesocumulates where the development of 'nontronite' is thickest. Nickel and Co are depleted over adcumulate where silicification has either inhibited enrichment or acted as a diluent to mineralization. This may have implications for mine pit design.
- The Ni/Ni+Al ratio can discriminate cumulate lithologies in fresh rock. This discrimination
 holds for all horizons up to and including the lower portion of the 'kaolinite' unit and is well
 correlated to the underlying cumulate lithology.
- A gradational variation in values of the Ni/Ni+Al ratio indicated a gradational change in lithology from orthocumulates along the western and eastern margins of the deposit, through mesocumulate rocks to a central adcumulate zone.
- Regolith developed immediately adjacent to and over adcumulate is relatively consistent, with a uniform depth of weathering and units of uniform thickness.
- Ortho- and mesocumulates weather to variable depths that produce complex regolith profiles with units that have topographically varied boundaries. This may have implications for mine pit design.
- The variable depth of weathering over ortho- and meso-cumulates may be related to local variations in the porosity of serpentinized olivine. Drainage over and within adcumulates is inhibited by extensive secondary silicification.
- Fe oxides (*i.e.*, as Fe₂O₃) and kaolinite are the dominant phases in the 'nontronite' and 'kaolinite' units within the upper portion of the deposit, amounting to between 50-70 and 30-50 %, respectively, of the normative mineralogy. Nontronite and saponite are present in significant amounts within the smectite and saprolite and can amount to 30-50 Norm%. Chlorite is only a minor phase within the 'saponite' and 'nontronite' horizons comprising generally < 10 Norm%, reflecting the low Al-content of adcumulates. Amounts of SiO₂ are highly variable, and can comprise up to 60-80 % of the normative mineralogy. Variations in the regolith mineralogy may have metallurgical implications to ore processing, concerning the fluid characteristics of these materials during ore preparation and blending.

Mn-Co association

-

The presence of Co in these profiles was generally related to the occurrence of Mn. However, high grades of Mn did not necessarily indicate high grades of Co. Reasons for this are unclear but may indicate:

- That Co was already depleted where the Mn oxides initially precipitated. Cobalt may
 associate with Mn oxides only if Mn and Co are in solution and either co-precipitate or Co
 is adsorbed after Mn oxides precipitate. Manganese oxides preserved by silicification
 associated with initial stages of weathering of adcumulates would be unavailable to take
 up Co and so appear as Co-poor.
- There may be two (or more) generations of Mn oxides, with each successive generation a result either of complex weathering events or are a result of episodic wetting and drying cycles associated with fluctuating water-table levels, similar to the movement of Fe within weathering profiles. Evidence for the remobilization of Mn within the regolith is shown by the precipitation of Mn oxides along shear planes. This may then release Co back into solution to be redistributed within the regolith.

Potassium-Ar and Ar-Ar dating of K-bearing Mn oxides may have helped to establish a chronology of Mn oxide precipitation within these profiles, in relation to major weathering events preserved in the profile. However, time constraints and limited access to a suitable dating laboratory prevented such dating work to be carried out. This is something that could be considered for future research.

6.0 AKNOWLEDGEMENTS

The authors would like to thank Dr Ravi Anand for his comments on Chapter 2 of this report. Critical reviews of Chapters 3 and 4 by Dr. E. Ramanaidou and Mr. K. Scott, respectively were also appreciated. Other members of the CRCLEME staff including Dr. D. Grey, Mr. D. Longman, Dr. N. Sergeev, Mr. M. Paine and Dr. E. Nickel are thanked for their assistance and time.

The assistance of Mr. M. Hart in preparing samples for XRD and XRF analysis is also greatly appreciated. Mr. B. Bervan is thanked for his efforts in performing the PIMA measurements from which most of this work is derived. The assistance of Mr. C. Steel, Mr. A. Vartesi and Mr. T. Naughton of the CRCLEME, Visual Resources Unit in preparing a number of figures for the report are also greatly appreciated.

Finally, the authors would like to thank members of the exploration staff at Anaconda, in particular Mr. R. Monti and Mr. I. Mulholland, for allowing access to the resources of Anaconda Nickel NL in supplying geochemical and drill log data, permitting a number of field trips to the deposits and for encouraging the research into the Ni laterites at Murrin Murrin. The first author would also like thank Anaconda Nickel NL for financial support from October to December 1999.

7.0 REFERENCES

- Anand, R.R., Churchward, H.M., Smith, R.E. and Grunsky, E.C. 1991. Regolith-landform development and consequences on the characteristics of regolith units, Lawlers district, Western Australia. CSIRO Australia. Division of Exploration Geoscience. Perth. Restricted Report 166R. CSIRO/AMIRA Laterite Geochemistry Project P240. 160pp. (Unpublished).
- Anand, R.R., Churchward, H.M., Smith, R.E., Smith, K., Gozzard, J.R., Craig, M.A., and Munday, T.J. 1993. Classification and Atlas of regolith-landform mapping units. CSIRO Australia. Division of Exploration and Mining. Perth. Restricted Report 440R. CSIRO/AMIRA Exploration Perspectives for the Yilgarn Craton, Project 240A. (Unpublished).
- Bailey, S.W. 1980. Structures of layer silicates. In: G.W. Brindley and G. Brown (Editors), Crystal sructures of clay minerals and their x-ray identification. Mineralogical Society Monograph No. 5, 1-124pp.
- Beauvais, A. and Colin, F. 1993. Formation and transformation processes of iron duricrust systems in tropical humid environment. Chemical Geology 106, 77-101.
- Bird, M.I. and Chivas, A.R. 1989. Stable-isotope geochronolgy of the Australian regolith. Geochimica et Cosmochimica Acta 53, 329-3256.
- Brand, N.W., Butt, C.R.M. and Hellsten, K.J. 1996. Structural and lithological controls in the formation of the Cawse nickel laterite deposits, Western Australia - implications for supergene ore formation and exploration in deeply weathered terrains. In: E. J. Grimsey and I. Neuss (Editors). Nickel '96: Mineral to Market, The Australasian Institute of Mining and Metallurgy, Carlton, Victoria, Australia, 185-190pp.
- Brand, N.W., Butt, C.R.M. and Elias, M., 1998. Nickel laterites: classification and features. AGSO Journal of Australian Geology and Geophysics 17, 81-88.
- Brand, N.W. and Butt, C.R.M., 1999. Regolith geology of the Mt Keith, MKD5 nickel sulphide deposit, Western Australia. In: G. Taylor and C.F. Pain (Editors), New Approaches to an Old Continent. Proceedings, Regolith '98. CRC LEME, Perth, 335-341pp.
 - Braun, J.J., Pagel, M., Heerbillon, A. and Rosin, C. 1993. Mobilization and redistribution of REEs and thorium in a syenite lateritic profile: A mass balance study. Geochimica et Cosmochimica Acta 57, 4419-4434.
 - Burger, P.A. 1999. The Bulong Ni/Co laterite project, WA: a case history. In: Nickel Laterites, Workshop Notes; February 1999. Centre for Teaching and Research in Strategic Mineral Deposits, Geology Department, University of Western Australia (unpaginated).
 - Burger, P.A. 1996. The Bulong, Western Australia, Ni/Co laterite deposit: a case history. In: E. J. Grimsey and I. Neuss (Editors). Nickel '96: Mineral to Market, The Australasian Institute of Mining and Metallurgy, Carlton, Victoria, Australia, 37-41pp.
 - Butt, C.R.M. 1974. Nickel laterites and bauxites. CSIRO Australia, Division of Mineralogy, Report FP 12, 34pp.
 - Butt, C.R.M. and Nickel, E.H., 1981. Mineralogy and geochemistry of the weathering of the disseminated nickel sulfide deposit at Mt. Keith, Western Australia. Economic Geology 76, 1736-1751.
 - Camuti, K.S. and Riel, R.G. 1996. Mineralogy of the Murrin Murrin laterites. In: E.J. Grimsey and I. Neuss (Editors), Proceedings Nickel '96, The Australasian Institute of Mining and Metallurgy, Melbourne. 209-210pp.

- Churchman, G.J., Whitton, J.S., Claridge, G.G.C. and Theng, B.K. 1984. Intercalation method using formamide for differentiating halloysite from kaolinite. Clays and Clay Minerals 4, 241-248.
- Clayton, R.N. and Mayeda, T.K. 1963. The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochimica et Cosmochimica Acta 27, 43-52.
- Colin, F., Brimhall, G.H., Nahon, D., Lewis, C., Baronnet, A. and Danti, K. 1992. Equatorial rain forest lateritic mantles: A geomembrane filter. Geology 20, 523-526.
- Cudahy, T.J. 1989. Improved lithological and structural mapping using Landsat thematic mapper and NS001 remotely sensed data in the Laverton region, Western Australia. CSIRO. Australia. Division of Exploration Geoscience. Perth. Restricted Report 61R. CSIRO/AMIRA Exploration for concealed gold deposits Yilgarn Block, Western Australia, Remote sensing project P243. 20pp. (Unpublished).
- De Oliveira, S.M., Trescases, J.J. and Melfi, A.J. 1992. Lateritic nickel deposits of Brazil. Mineralium Deposita 27, 137-146.
- Delvigne, J.E. 1998. Atlas of micromorhology of mineral alteration and weathering. R.F. Martin (Editor). The Canadian Mineralogist, Special Publication, No.3 494pp.
- Denn, S. 1999. Cawse nickel laterite deposit. In: Nickel Laterites, Workshop Notes; February 1999. Centre for Teaching and Research in Strategic Mineral Deposits, Geology Department, University of Western Australia (unpaginated).
- Deutscher, R.L., Mann, A.W. and Butt, C.R.M. 1980. Model for calcrete uranium mineralization. In: C.R.M. Butt and R.E. Smith (Editors), Idealized models, Section D, Conceptual models in exploration geochemistry. Special Issue, Journal of Geochemical Exploration 12, 139-161.
- Dickson, B.L. and Scott, K.M. 1990. Radioelement distribution in weathered granitoids and aeolian soils in NSW. CSIRO. Australia. Division of Exploration Geoscience. Perth. CSIRO/AMIRA Improving the interpretation of airborne gamma-ray surveys, Project P263. (Unpublished).
- Dickson, B.L. and Scott, K.M. 1997. Interpretation of aerial gamma-ray surveys adding the geochemical factors. AGSO Journal of Australian Geology and Geophysics 17, 187-200.
- Drury, S.A. and Hunt, G.A. 1988. Remote sensing of laterized Archaean greenstone terrain: Marshall Pool area, northeastern Yilgarn block, Western Australia. Photogrammetric Engineering and Remote Sensing 54, 1717-1725.
- Drury, S.A. and Hunt, G.A. 1989. Geological uses of remotely-sensed reflected and emitted data of lateritized Archaean terrain in Western Australia. International Journal of Remote Sensing 10, 475-497.
- Elias, M., Donaldson, M.J. and Giorgetta, N. 1981. Geology, mineralogy and chemistry of lateritic nickel-cobalt laterite deposits near Kalgoorlie, Western Australia. Economic Geology 76, 1775-1783.
- Esson, J. 1983. Geochemistry of a nickeliferous laterite profile in Liberdade, Brazil. In: R.C.L. Wilson (Editor), Residual deposits: Surface related weathering processes and materials. Geological Society of London Special Publication 11, 91-99pp.
- Fraser, S.J., Gabell, A.R., Green, A.A. and Huntington, J.F. 1986. Targeting epithermal alteration and gossans in weathered and vegetated terrains using aircraft scanners: Successful Australian case histories. In: Remote sensing for exploration geology. 5th Thematic Conference. Reno, Nevada. 1986.

- Gibb, R.J. 1967. Quantitative x-ray diffraction analysis using clay minerals standards extracted from the sample to be analyzed. Clay Minerals 7, 79-90.
- Girard, J.P., Razanadranorosoa, D. and Freyssinet, P. 1997. Laser oxygen isotope analysis of weathering goethite from the laterite profile of Yaou, French Guiana: paleoweathering and paleoclimatic implications. Applied Geochemistry 12, 163-174.
- Golightly, J.P. 1979. Nickeliferous laterites: a general description. In: D.J.I Evans, R.S. Shoemaker and H. Veltman (Editors). International Laterite Symposium. American Institute of Mining, Metallurgical and Petroleum Engineers, Inc. 3 –23pp.
- Golightly, J.P., 1981. Nickel laterite deposits. 75th Anniversary Edition, Economic Geology 76, 1775-1783.
- Gower, C.F. 1976. 1:250 000 Geological Series Explanatory Notes: Laverton, Western Australia. Geological Survey of Western Australia, Sheet SH/51-2.
- Gunn, P.J., Minty, B.R.S. and Milligan, P.R. 1997. The airborne gamma-ray spectrometric response over arid Australian Terranes. In: A.G. Gubins (Editor) Proceedings of Exploration 97. Fourth Decennial International Conference on Mineral Exploration. 733-740pp.
- Hill, R.E.T., Hunter, W.M., Liimatainen, J.Y. and Barnes, S.J. 1996. Ultramafic rock units in the Murrin Murrin region (Anaconda Nickel NL tenements). Exploration and Mining Report 205R. 11pp plus geological maps.
- Lipton, I.T., Gaze, R.L., Horton, J.A. and Khosrowshahi, S. 1999. Recoverable resource estimation for the Halley's Lateritic nickel deposit. In: Nickel Laterites, Workshop Notes; February 1999. Centre for Teaching and Research in Strategic Mineral Deposits, Geology Department, University of Western Australia (unpaginated).
- Llorca, S.M., 1993. Metallogeny of supergene cobalt mineralisation, New Caledonia. Australian Journal of Earth Science 40, 377-385.
- McMurty, G.M., Wang, C-H, and Yew, H-W. 1983. Chemical and isotropic investigations into the origin of clay minerals from the Galapogos hydrothermal mounds field. Geochimica et Cosmochimica Acta 47, 475-489.
- Mabbutt, J.A. 1963. Geomorphology of the Wiluna-Meekatharra area. In: J.A. Mabbutt, W.H. Litchfield, N.H. Speck, J. Sofoulis, D.G. Wilcox, J.M. Arnold, M. Brookfield and R.L. Wright General report on lands of the Wiluna-Meekatharra area, Western Australia, 1958. CSIRO Land Research Series No. 7. 107-122pp.
- Monti, R., 1999. Murrin Murrin nickel-cobalt project. In: Nickel Laterites, Workshop Notes; February 1999. Centre for Teaching and Research in Strategic Mineral Deposits, Geology Department, University of Western Australia (unpaginated).
- Monti, R. and Fazakerley, V.W. 1996. The Murrin Murrin nickel cobalt project. In: E.J. Grimsey and I. Neuss (Editors), Proceedings Nickel '96, The Australasian Institute of Mining and Metallurgy, Melbourne. 191-196pp.
- Nahon, D., Paquet, H. and Delvigne, J. 1982. Lateritic weathering of ultramafic rocks and the concentration of nickel in the Western Ivory Coast. Economic Geology 77, 1159-1175.
- Nesbitt, H.W. 1979. Mobility and fractionation of rare earth elements during weathering of a granodiorite. Nature 279, 206-210.
- Pain, C., Chan, R., Craig, M., Hazell, M., Kamprad, J. and Wilford, J. 1991. RTMAP, BMR regolith database field handbook. 1st edition. Minerals and Landuse Program Series. BMR Geology and Geophysics, Australia. Regolith Series No. 4.

- Parianos, J.M. and Rivers, C.J., 1996. Geology and mineralogy of the Brolga laterite deposit, Central Queensland. In: E. J. Grimsey and I. Neuss (Editors). Nickel '96: Mineral to Market, The Australasian Institute of Mining and Metallurgy, Carlton, Victoria, Australia, 63-68pp.
- Porto, C.G. and Hale, M. 1995. Gold redistribution in the stone line lateritic profile of the Posse deposit, central Brazil. Economic Geology 90, 308-321.
- Pringle, H.J.R., Van Vreeswyk, A.M.E. and Gilligan, S.A. 1994. An inventory and condition survey of rangelands in the northeastern Goldfields, Western Australia. Department of Agriculture Technical Bulletin, No. 87. 323pp.
- Ragland, P.C. 1989. Basic Analytical Petrology. Oxford University Press. 369pp.
- Schellmann, W. 1989. Allochthonous surface alteration of Ni-laterites. Chemical Geology 74, 351-364.
- Short, S.A., Lowson, R.T., Ellis, J. and Price, D.M. 1989 Thorium-uranium disequilibrium dating of Late Quaternary ferruginous concretions and rinds. Geochimica et Cosmochimica Acta 53, 1379-1389.
- Tapley, I.J. and Gozzard, J.R. 1992. Regolith-landform mapping in the Lawlers District. Report 4. Aerial photographic interpretation and Landsat Thematic Mapper processing for mapping regolith-landforms. CSIRO/IMEC Division of Exploration Geoscience Restricted Report 239R.
- Venturelli, G., Contini, S. and Bonazzi, A. 1997. Weathering of ultramafic rocks and element mobility at Mt. Prinzera, northern Apennines, Italy. Mineralogical Magazine 61, 765-778.
- Wells, M.A. 1999. Murrin Murrin region regolith-landform map: Explanatory notes. CRCLEME Restricted Report 123R, 15pp.
- Wells, M.A. and Butt, C.R.M. 1998. Characterization of a "Green-spotted" rock from the Murrin Murrin Ni-laterite deposit. CRCLEME Restricted Report 88R, 5pp.
- Wilford, J.R., Bierwirth, P.N. and Craig, M.A. 1997. Application of airborne gamma-ray spectrometry in soil-regolith mapping and applied geomorphology. AGSO Journal of Australian Geology and Geophysics 17, 201-216.
- Yeh, H-W. 1980. D/H ratios and late stage dehydration of shales during burial. Geochimica et Cosmochimica Acta 44, 341-352.

APPENDIX 1: PALAEOMAGNETIC DATING OF REGOLITH,

MURRIN MURRIN, W.A.

Brad Pillans, CRC LEME

c/- RSES, ANU, Canberra

Samples and sites

.

As part of a reconnaissance study on the Yilgarn Craton, to assess the suitability of regolith materials for paleomagnetic dating, samples were collected at Murrin Murrin during two field visits:

1. 2nd April, 1998. Three samples (WAA-035 to WAA-037) of grey saprolite with numerous, prominent slickensided joints, from the west wall of the test pit at MM2. [SITE 6], and six samples (WAA-038 to WAA-043) from the base of ferruginized saprolite in the south wall of the test pit at MM7. [SITE 7]

2. 8th November, 1998. Twenty samples (WAA-101 to WAA-120) from the base of ferruginized saprolite (as above) in the test pit at MM7. [SITE 7]

Samples were collected from the walls of the pits, cut back with a spade to expose a fresh, subvertical face. Small cube-shaped pedestals were carved with a sharp knife, onto which 6 cm³ plastic boxes were carefully fitted. Before removal from the face, samples were oriented with a Brunton compass, and the directions later corrected for local magnetic declination.

Laboratory measurements

Samples were subject to stepwise demagnetization, using both thermal and alternating field (a.f) techniques. Thermal demagnetisation generally yields more consistent results for regolith materials, and hence a.f. demagnetization was used only for samples that were too friable for thermal treatment. Remanence was measured on a ScT 2-axis cryogenic magnetometer at the Black Mountain Palaeomagnetic Facility, Canberra. Magnetic susceptibility (as volume susceptibility, K) was measured on a Digico bulk susceptibility bridge, to monitor possible

Appendix 1. Table A1.1. Summary of paleomagnetic results.

	LOCATION	COMP	N(+) ^z	REMAN	VENCE	REMANENCE DIRECTIONS	SNG	SOUTH POLE	POLE			AGE ⁴
				Decl.	Incl.	٣	as a	Long. Lat.	Lat.	K³	0,95	
Murrir	Murrin Murrin (121.9°E, 28.8°)	(
Test p	Test pit at MM7	ł	13(0)	9,000	-65,0	118.4	3.83	102.5E	69.7S	70.0	4.99	Czm?
		171	16(16)	269.1	-32.2	20.4	8.38	195.5E	07.4S	20.4	8.37	4
		1T2	12(12)	263.7	-23.3	51.2	6.12	198.1E	00.4S	64.1	5.46	
		1	21(21)	278.8	-51,4	23.8	6.66	184.5E	22.0S	16.8	7.99	Mz
Testp	Test pit at MM2	Η	3(3)	039.5	40.6	525.5	5.38	162.3E	25.5N	702.9	4.65	Pz
Bulor Test F	Bulong (121.8°E, 30.7°S) Test Pit, 15-20 m	HT,HF	7(7)	038.4	46.7	157.8	4.29	157.8E	157.8E 20.7N	128.6	5.34	Pz
Perth Permi	Perth Basin (Schmidt & Embleton 1976) Permian to Cretaceous sediments HT	leton 1976) ints HT	128(?)					109.9E	82.7S		2.4	Czu
										-		

¹ Magnetic component. LT = Low temp ($<300^{\circ}$ C); IT1 = Intermediate temp (300° - 580° C); HT = High temp ($>580^{\circ}$ C); HT = High field (>20 mT). N = number of specimens; (+) = number of specimens with positive inclination.

K = Volume magnetic susceptibility (dimensionless). ŝ 2

4

Czm = mid Cainozoic; Czu = upper (late) Cainozoic; Mz = Mesozoic; Pz = Proterozoic.

126

mineralogical changes with increasing temperature. Characteristic remanent magnetizations were identified by principal component analysis (Kirschvink 1980).

Results

Samples from the ferruginous saprolite in the test pit at MM7 all yield multicomponent magnetization directions as revealed by orthogonal plots and principal component analysis (Table 1). The four components are as follows:

- 1. A low temperature (LT) component, isolated at temperatures less than 300° C, in which all specimens are of normal polarity. The mean pole position is consistent with a mid-Tertiary (late Oligocene) age, based on the apparent polar wander path (APWP) of Idnurm (1985, 1994). Unfortunately, the LT component is very similar to the direction of the present day magnetic field at Murrin Murrin (declination 001°; inclination -63°), so there is a possibility that it is a modern (mining-related) remanence. That is, a magnetic remanence is induced (a chemical remanent magnetization, CRM), from exposure of previously buried saprolite by mining operations by either drying (if saprolite was below the water table) or by oxidation, in the direction of the present geomagnetic field.
- ² 2. Two intermediate temperature components (IT1 and IT2), isolated between 300° and 580°C, which yield pole positions (Table 1) that lie to the northeast of the Mesozoic segment of the APWP for Australia (Embleton 1981). The two IT components probably represent unresolved (mixed) remanence components or are laboratory-induced (by heating during thermal demagnetisation), and therefore have no age significance.
 - 3. A high temperature component (HT), isolated above 580°C, which yields a pole position, close to, but not quite overlapping the late Jurassic segment of the APWP (Embleton 1981). The high thermal stability of this remanence suggests that it may be a reliable age indicator.

Three samples from saprolite collected from the test pit at MM2, yield a high field component (HF) which gives a mean pole position statistically identical to the pole position calculated from seven saprolite specimens from the Bulong test pit (Table 1). The poles lie well away from the Phanerozoic APWP, and appear to lie on the Proterozoic APWP (M. Idnurm pers. comm. 1998). This suggests that the magnetic remanences are not weathering-induced but, rather, represent primary remanences inherited from the rock.

Discussion

Palaeomagnetic age estimates in regolith materials are based on the assumption that weathering processes have produced secondary iron oxides that preserve a record of the magnetic field at the time they formed. The resultant ages, therefore, relate to the time of weathering, not to the age of the rocks. A good example of this principle was described by Schmidt & Embleton (1976), who reported palaeomagnetic results from Late Paleozoic and Mesozoic rocks in the Perth Basin and adjacent areas. They identified a stable high temperature magnetisation, similar in direction for all rocks, regardless of age, which they interpreted as a "blanket" remagnetization resulting from a period of regional lateritization. The age of the weathering-induced remagnetization was estimated to be Late Oligocene to Early Miocene, but more recent revisions of the APWP (Idnurm 1985, 1994) indicate a Late Miocene or Pliocene age. The Perth Basin pole (Table 1) is statistically significantly different from the Murrin Murrin LT pole (Table 1), and hence the inferred ages of weathering are also different.

Since weathering is an ongoing process, which has affected the Yilgarn Craton throughout the Phanerozoic, there is no *a priori* reason why only one weathering-induced remanence should be preserved. Thus, the regolith at Murrin Murrin could preserve imprints of more than one age. From the palaeomagnetic results discussed above, there are indications of both Tertiary and Mesozoic weathering imprints at Murrin Murrin. However, a full interpretation of the Murrin Murrin poles, and their inferred ages must await results of a rock magnetic study of the samples to isolate the phases contributing to the high temperature component of remanent magnetization.

· · · · · · ·

- Embleton, B.J. 1981. A review of the paleomagnetism of Australia and Antarctica. In: M.W. McElhinney and D.A. Valencio (Editors). Paleoreconstruction of the continents. American Geophysical Union Geodynamics Series 2, 77-92 pp.
- Idnurm, M. 1985. Late Mesozoic and Cenozoic palaeomagnetism of Australia I. A redetermined apparent polar wander path. Geophysical Journal of the Royal Astronomical Society 83, 399-418.
- Idnurm, M. 1994. New Late Eocene pole for Australia, time-averaging of remanence directions, and palaeogeographic reference systems. Geophysical Journal International 117, 827-833.
- Kirschvink, J.L. 1980. The least-squares line and plane and analysis of palaeomagnetic data. Geophysical Journal of the Royal Astronomical Society 45, 699-718.
- Schmidt, P.W. & Embleton, B.J.J. 1976. Palaeomagnetic results from sediments of the Perth Basin, Western Australia, and their bearing on the timing of regional lateritisation. Palaeogeography, Palaeoclimatology, Palaeoecology 19, 257-273.

APPENDIX 2: SMECTITE MINERALOGY OF NI LATERITE FROM MURRIN MURRIN

Y. NOACK, A. DECARREAU and A. GAUDIN CEREGE – Université AM III – CNRS – BP80 –13545 AIX en Provence Cedex 4 - France

Background

As part of an initial study of the crystal chemistry of Ni-bearing smectites in lateritic Ni-deposits, a combined x-ray diffraction (XRD), infrared (IR) and scanning electron microscopic (SEM) investigation was undertaken of samples from diamond drill core of the Murrin Murrin Ni-deposit. Samples were collected during two field trips to Murrin Murrin:

- October 1997, 25 samples were collected from drill core BHG1 and 10 samples from drill core CBDD5.
- 2. In November 1998, 35, 16, 46 and 6 samples were collected from cores CBDD8, CBDD3, CBDD5 and ADD3, respectively.

X-ray diffraction analysis

Bulk mineralogy

The mineralogy of the samples generally comprised serpentine (base of profile), smectite, quartz, opal, magnetite and maghemite, hematite and goethite in the oxidized zone at the top of the profile. Kaolinite is the main phase above the boundary between the smectite and the oxidized zone. Talc, chlorite, dolomite, gypsum and magnesite are also found as minor phases.

In CBDD3, maghemite (or magnetite) persists to the oxidized zone. In CBDD8, both maghemite and serpentine disappears at greater depth; the maghemite is replaced by goethite. In CBDD5, serpentine disappears near 37 m; maghemite disappears near 17m and is replaced by goethite.

Smectite mineralogy

The clay fraction (*i.e.*, $<2\mu$ m) of samples were collected by standard sedimentation techniques and poorly crystalline Fe oxides removed by treatment with TAMM's solution (*i.e.*, ammonium oxalate). All samples were Ca-saturated prior to XRD analysis.

X-ray diffraction patterns show a strong reflection between 12 and 15 Å, characteristic of smectite. The d-spacing of the (06.33) peak of 1.51 Å, is characteristic of dioctahedral smectite. After glycolation, the main smectite peak shifted to 17 Å, without traces of mixed-layered phases.

Lithium treatment allows distinction of montmorillonite (with octahedral charge) from beidellitenontronite (with tetrahedral charge). Most samples showed two peaks, one at 17 Å (beidellite or nontronite) and one at 9 Å (montmorillonite).

The smectites, therefore, appear to be mixed-layered nontronite/beidellite-montmorillonite; there is a variable contribution from the two end-members that is not related to sample depth.

Chemical composition

Drill core CBDD3 and CBDD8

Different mineralogical phases (smectites, serpentine, Fe oxides, Ti oxides and Cr oxides) of bulk samples were analyzed by SEM-EDS. Due to the intimate association of these phases in some samples, reported element concentrations should be regarded as estimates only.

For samples from CBDD3, four populations were recognized (Fig. 1):

- A. A mixture of Fe oxides and silicates (serpentine or smectites), with low Ni content.
- B. A mixture of Fe oxides and silicates (serpentine or smectites), with a close relationship between Fe and Ni content.
- C. Particles with high Mn and Co contents.
- D. Particles with high Ni contents (with 5 to 25% NiO) and various Fe and Si contents.

In samples from CBDD8, five populations were identified (Fig. 2):

A. A mixture of Fe oxides and silicates (serpentine or smectites), with low Ni content.

- B. A mixture of Fe oxides and silicates (serpentine or smectites), with a close relationship between the Fe and Ni contents.
- C. A population with moderately high Ni (2 to 5%), low Fe (<below 25%) and high Al contents.
- D. A population with high Ni and Fe content.
- E. Particles with high Mn and Co contents.

Principal componant analysis showed similar behaviour (Fig. 3 and 4) in both cores. Elements were grouped into four assocations:

- 1. Silicates (Si-Al-Mg).
- 2. Fe oxy-hydroxides (Fe).
- 3. Manganese oxides (Mn, Co).
- 4. Nickel, present as a separate group, was not associated with any of the other groups.

[®] Drill core BHG1 and CBDD5

Pure smectites were extracted from BHG1 and CBDD5 core samples as previously described and analyzed by SEM-EDS. The Al and Fe contents of the smectites show a strong negative relationship (Figures 5 and 7, respectively). The Ni contents of smectites from BHG1 were not related to abundances of other elements. However, a positive relationship was shown between Al and Ni contents for smectites from CBDD5. The Mg content for these samples also decreased from the bottom to the top of the core.

The structural formulae of smectites from BHG1 and CBDD5 were calculated, assuming smectite with 22 charges, and plotted in the octahedral Al-Fe³⁺-(Mg+Ni) triangle used by Guven (1988) for smectite classification. All smectite compositions fall within the Nontronite field, with a trend to the Montmorillonite-Beidellite field for BHG1 (Fig. 6) and CBDD5 (Fig. 8).

Infra-red spectrometry

Infrared characterization of smectite mineralogy was performed using two techniques:

2. PIMA (E. Ramanaidou, CSIRO Perth) for CBDD5 samples.

FTIR

At high wavelengths (> 3500 cm⁻¹), FTIR confirmed the purity of the smectite phase and its dioctahedral composition. At low wavelengths (< 1000 cm⁻¹), the Al₂OH, Fe³⁺₂OH and Fe³⁺OHMg bands are well developed, with a greater intensity of the Fe band (Fig. 9).

A comparison of spectra for an Fe-rich sample (36) and an Al-rich sample (37) shows the shift of the different bands to the high wave numbers with increasing Al content (Figures 10 and 11). No obvious bands that could be attributed to Ni were evident in the FTIR spectra.

FTIR study of Ca-saturated and Li-exchanged samples allows quantification of the octahedral and tetrahedral charge characteristics of smectite. The tetrahedral charge comprised 34 to 75 %, with an average of 58%, of the total charge and was generally higher than the octahedral charge (in 17 of 21 samples). Changes in the tetrahedral and octahedral charge distribution were not related to sample depth.

A comparison of spectra for green smectites hand picked from a fracture (19V) and smectites in the bulk rock (19RT), in the same sample, shows the latter to have a greater Fe content than smectites concentrated from the fracture surface (Fig. 12).

PIMA

PIMA spectroscopy (Fig. 13) confirmed the FTIR results, with a higher contribution of the montmorillonite end-member for the Al-rich sample (CBDD5-37) and for the nontronite end-member for the Fe-rich sample (CBDD5-36).

Surprisingly, Ni contents of the Al-rich smectite end member (*i.e.*, montmorillonite) showed a good positive relationship with the intensity of the 2216 nm (montmorillonite) band. That is, Ni is enriched in the montmorillonite end-member rather than the nontronite end-member, as might have been expected.

Isotopic analysis of kaolinite

Results of the isotopic analysis of kaolinite, concentrated from RC holes CBRC0724 and CBRC0796 at MM2, are presented in Table A2.1.

Drill hole	Sample depth	δ ¹⁸ Ο	Interpreted age
	(m)	(‰)	
CBRC0724	3	+13.1	
(9325 mE, 26300 mN)	4	+16.2	
	6	+15.1	Pre-mid
	7	+16.2	Tertiary
	8	+13.0	
	9	+15.8	
	12	+15.3	
CBRC0796	1	+25.1*	Post-mid
(9200 mE, 26100 mN)	4	+19.1	Tertiary
· · ·	5	+19.3	
	6	+19.1	
	11	+18.7	

Table A2.1. Oxygen isotopic composition and age data of kaolinite concentrated from the kaolinite-2 regolith unit at MM2, Murrin Murrin.

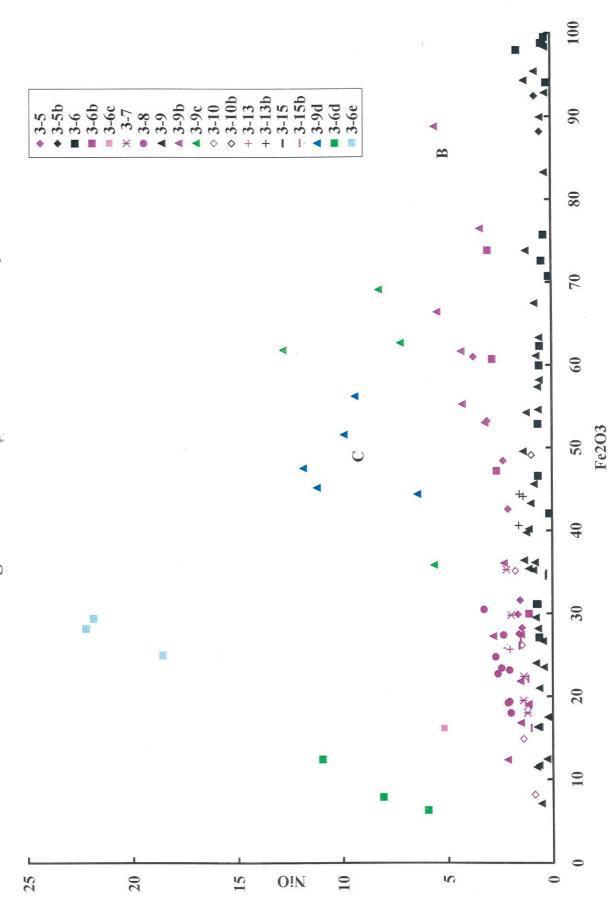
* The very high δ^{18} O value for the surface sample in RC hole CBRC0796 may be due to contamination by smectite, which was indicated as a minor to trace constituent by XRD, for some of these samples. The presence of 5-10 % smectite in the surface sample, with an isotopic composition of near +30 ‰ would contribute between +1.5 to +3.0 ‰ to give a more realistic δ^{18} O composition near +22-23 ‰ for kaolinite.

Comparison of δ^{18} O values (Table A2.1) to expected δ^{18} O values for the age ranges of kaolinite reported by Bird and Chivas (1989), indicates a mid-Tertiary age for these samples. This also presents a mid-Tertiary age as a minimum age for formation of the kaolinite-2 regolith unit in which the kaolinite occurs.

Conclusions

Smectites from the Murrin Murrin deposit appear, by XRD, FTIR and SEM characterization, as nontronite/beidellite-montmorillonite mixed-layered minerals. Ni contents increased with the aluminium content and/or the montmorillonite component in the smectite.

These mixed-layered smectites are not the phases with the greatest Ni contents. The phases richest in Ni, probably discrete Ni oxide/oxyhdroxides, were not isolated and identified in samples of the present study. Further research is required to characterize these phases. Further research expected includes:


- Very fine characterization of the smectite crystallographic structure.
- Comparison between green smectites in cracks and yellow-brown smectite, as replacement of olivine and serpentines, in the bulk rock, at the same depth (crystallographic structure, chemical composition).
- Localization of Ni in smectite and other phases (especially with Fe products).
- Oxygen and deuterium data for smectites (temperature of formation and water composition), with different nontronite/beidellite montmorillonite mixed-layered composition.
- Strontium compositon of carbonates and sulphates. Initial results for two dolomite samples, gave Sr⁸⁷/Sr⁸⁶ values near 0.713, indicative of an external (*i.e.*, felsic) origin for Ca.
- Investigation of the evolution (*i.e.*, structure, chemical composition, nickel abundance) of smectites in exposed cracks and fractures from the bottom to the top of weathering profiles, and at the fracture surface.

Additional samples, taken during the recent field-trip to Murrin Murrin in October 1999, will help to address these problems.

References

a line of the second

Bird, M.I. and Chivas, A.R. 1989. Stable-isotope geochronology of the Australian regolith. Geochimica et Cosmochimica Acta 53, 3239-3256. Fig. 1: Drill core CBDD3: SEM analysis.

135

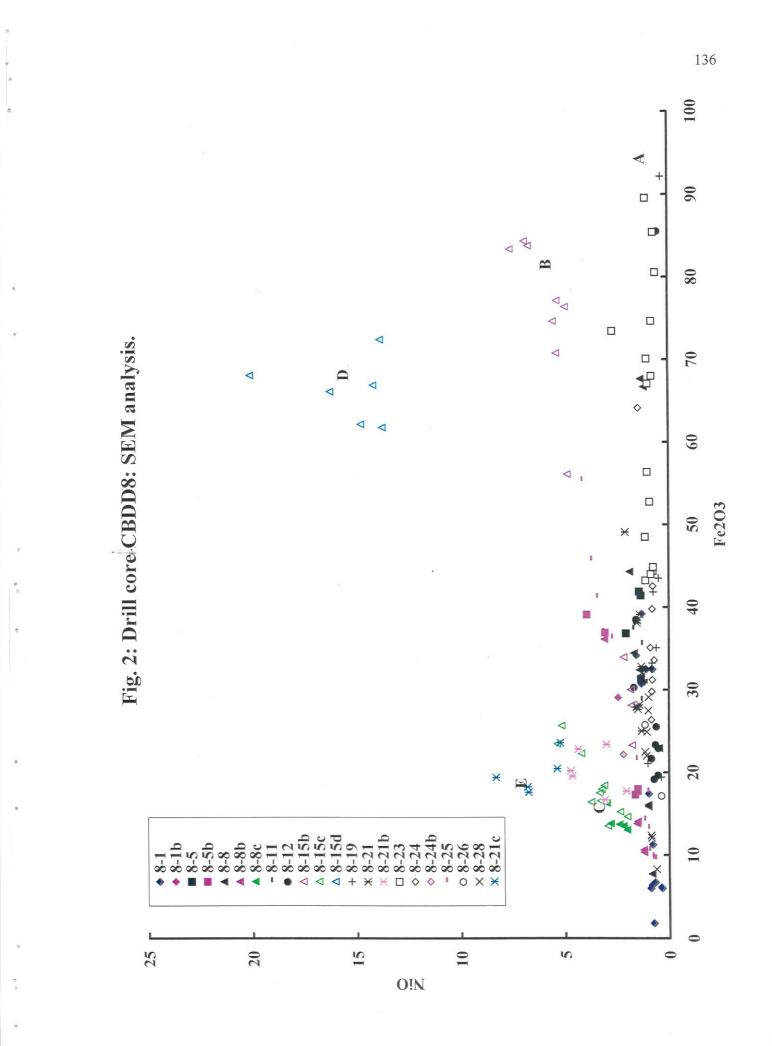
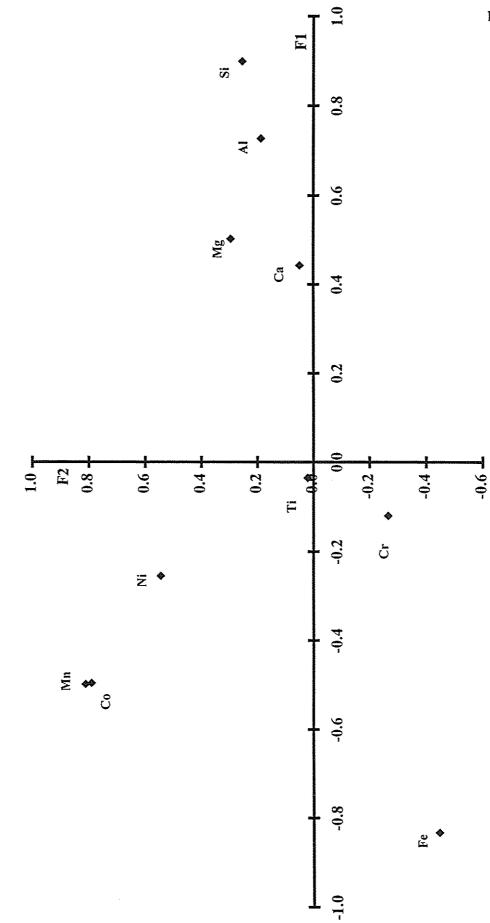



Fig. 3: Principal component analysis diagram for drill core CBDD3.

e in angeo

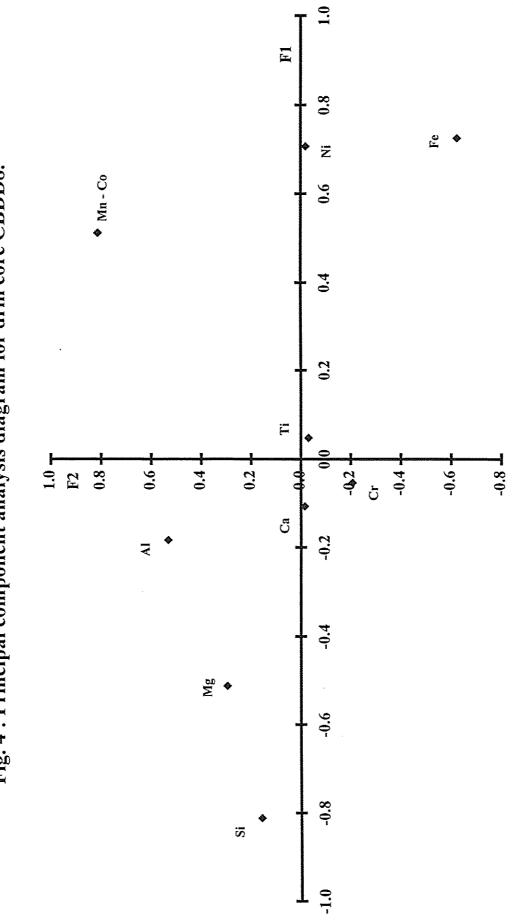
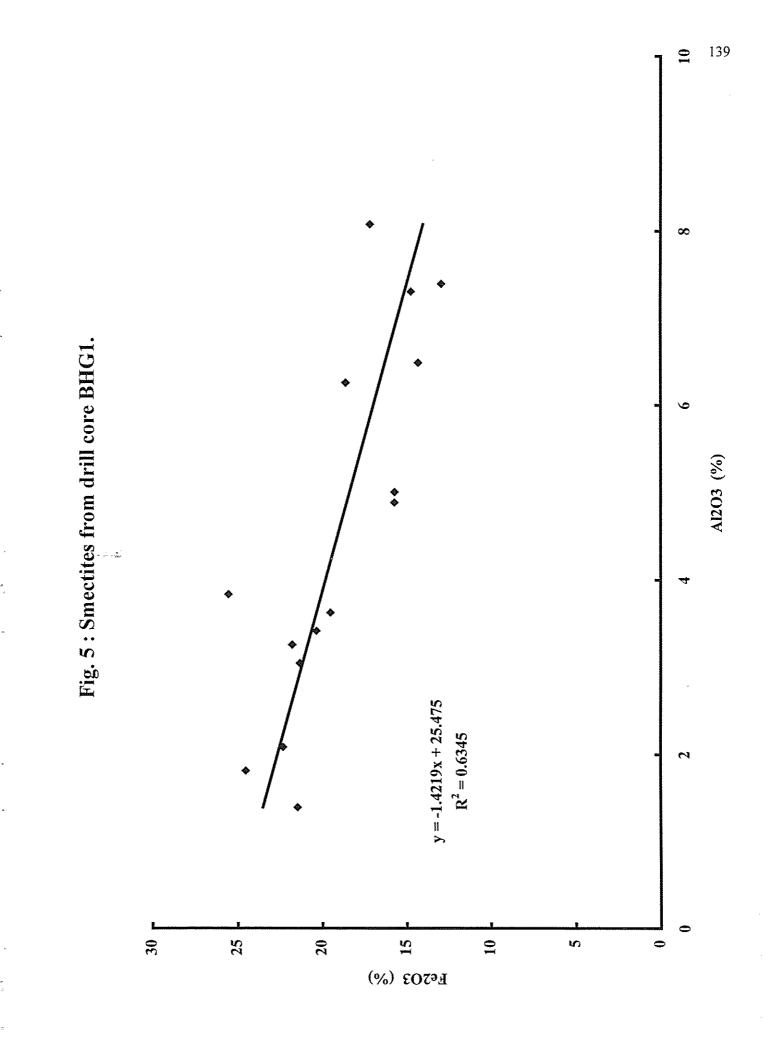



Fig. 4 : Principal component analysis diagram for drill core CBDD8.

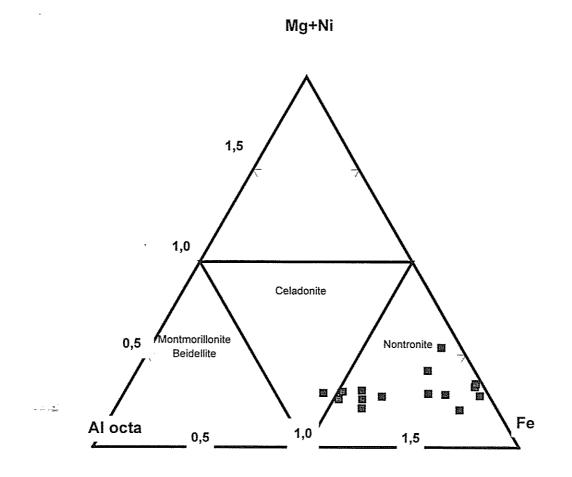
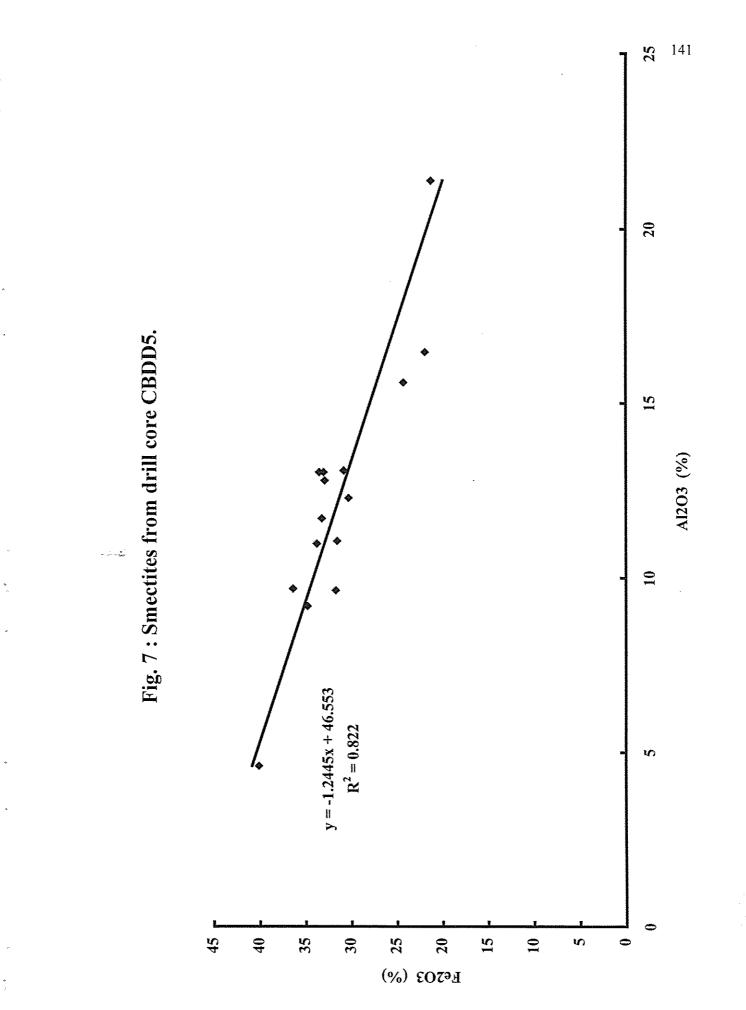
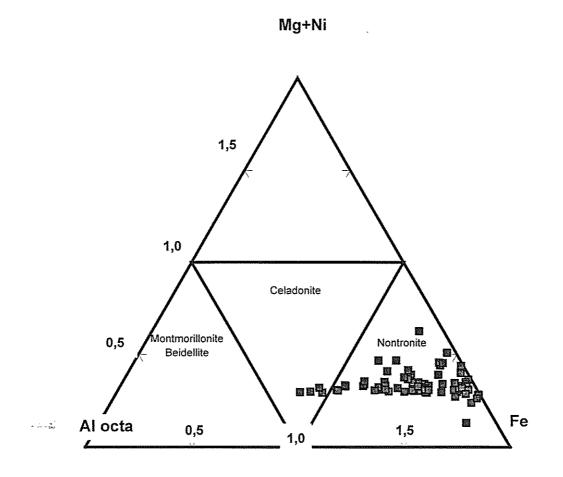




Fig. 6 : Smectites from drill core BHG1.

Fig. 8 : Smectites from drill core CBDD5.

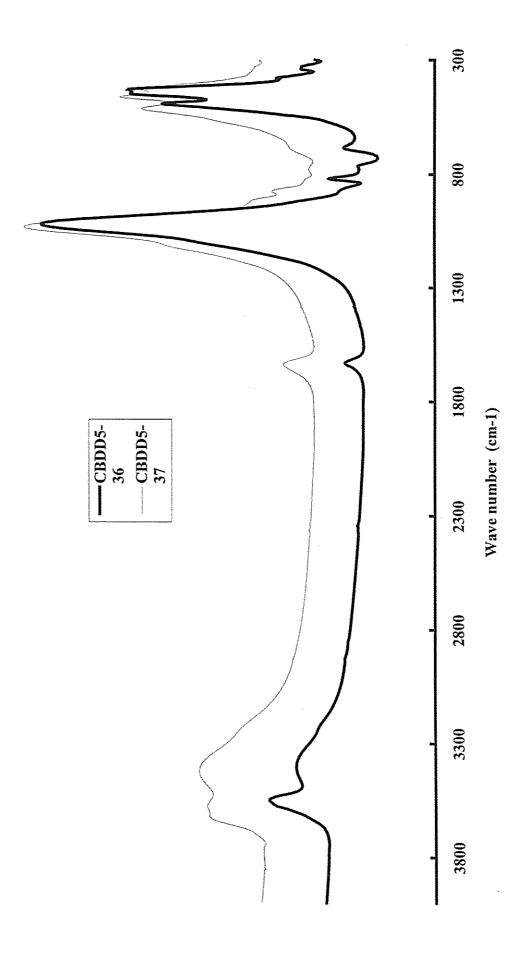
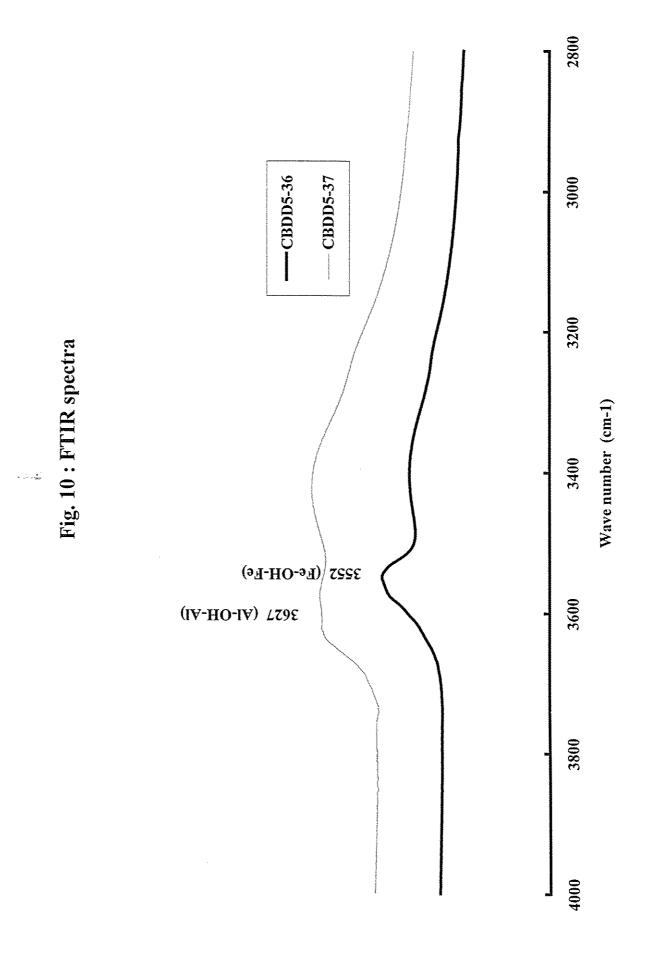



Fig. 9 : FTIR spectra

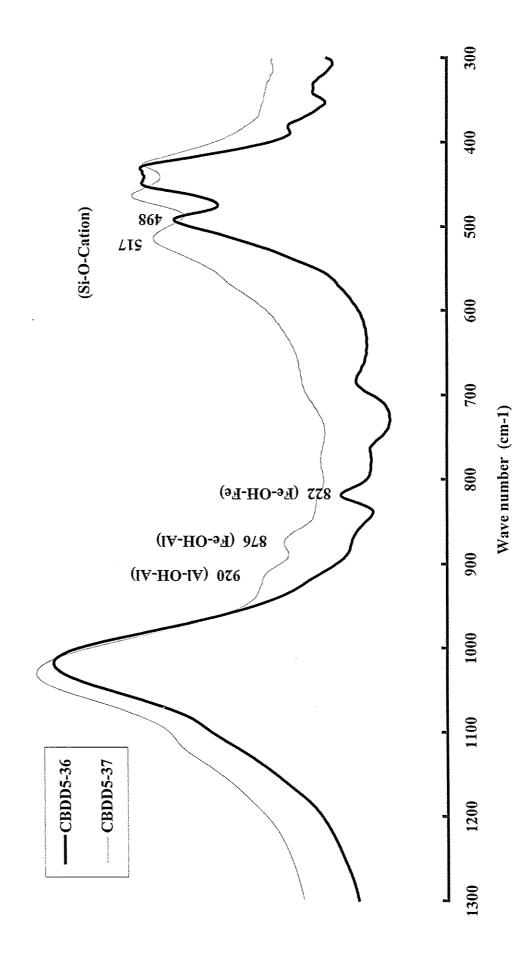


Fig. 11 : FTIR spectra

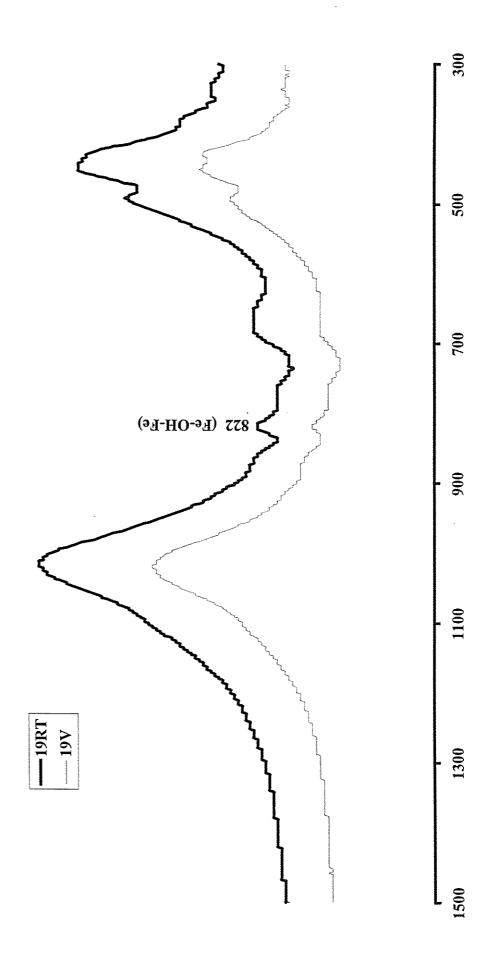
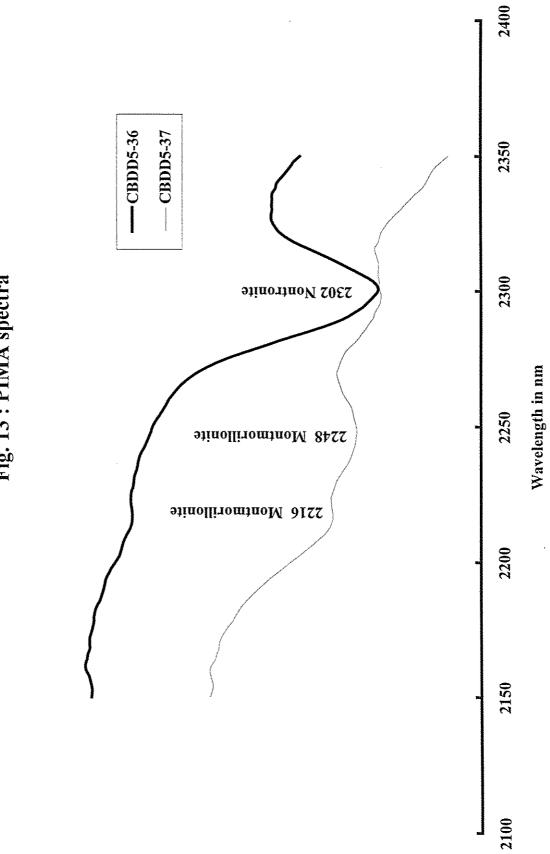



Fig. 12 : FTIR spectra for sample CBBD5-19

Appendix 3: Table A3.1. Drill holes selected for logging by PIMA (MM2).

· ···· ··· 345+

Hole ID	Easting (m)	Northing (m)	RL (m)	Depth (m)	Hole ID	Easting (m)	Northing (m)	RL (m)	Depth (m)
CBRC0234	9599.46	26200.26	458.46	30	CBRC1236	9276,77	26074.6	458.02	39
CBRC0235	9550.92	26200,86	458.37	23	CBRC1241	9273.74	26251.71	459.45	27
C8RC0236	9500.14	26201.26	458,66	34	CBRC1242	9299.99	26248.15	460.3	33
CBRC0237 CBRC0239	9449.04 9351.13	26197.98 26199.35	458.03 459.3	35 23	CBRC1245 CBRC1247	9300.17 9300.84	26148.62 26074.25	459,68 457,44	21 39
CBRC0239 CBRC0273	9597.02	26402.12	458.75	35	CBRC1256	9324.93	26074.9	457	33
CBRC0278	9352.46	26402.83	462.46	6	CBRC1260	9324.3	26249.81	460.82	39
CBRC0279	9301.51	26198.39	460.1	26	CBRC1261	9350.47	26249.86	460.85	39
CBRC0280	9251.45	26200.2	458.9	24	CBRC1384	9199.96	26300.87	457.81	12
CBRC0374 CBRC0591	9200.62 9549.91	26200.22 26501.91	457.76 459.88	12 48	CBRC1385 CBRC1386	9175.55 9224.66	26349.59 26349.72	457.9 458.52	18 27
CBRC0592	9600,16	26502.12	459.84	42	CBRC1387	9275.01	26349.96	459.77	33
CBRC0595	9749.43	26501.95	459.21	54	CBRC1388	9225	26400	458.7	30
CBRC0710	9277.52	25999.44	456.17	30	CBRC1391	9225	26450	458.9	30
CBRC0711	9250.27	26101.65	459.1	18	CBRC1392	9275	26450	459.6	39
CBRC0712 CBRC0713	9275.53 9300.2	26101.25 26101.62	459.14 458.68	18 12	CBRC1393 CBRC1395	9275 9275	26400 26500	459.6 459.8	27 33
CBRC0714	9325.02	26101.9	457.97	24	CBRC1396	9225	26500	459	6
CBRC0715	9350.21	26101,85	457.03	36	CBRC1404	9351.25	26074.91	456,26	48
CBRC0716	9375.53	26100.94	456.58	18	CBRC1501	9350.72	26149.18	458.02	40
CBRC0717	9399.84	26102.48	456.41	24	CBRC1502	9327.72	26149.32	458.76	28
CBRC0719 CBRC0720	9326.48 9275.76	26199.07 26198.69	460.05 459.64	12 24	CBRC1505 CBRC1647	9300.09 9281.38	26700.08 26199.99	463.46 459.73	16 39
CBRC0721	9249.94	26301.24	459.05	36	CBRC1657	9287.49	26199.92	459,94	45
CBRC0722	9275.17	26301.27	459.7	6	CBRC1665	9287.56	26250.13	460.02	39
CBRC0723	9299.96	26301.81	460.63	6	CBRC1672	9293.87	26249.85	460.24	39
CBRC0724	9324.96 9350,46	26300.75 26301.57	461.71	24 24	CBRC1680 CBRC1728	9294,06	26199.7	460.01	39
CBRC0725 CBRC0726	9350.48 9375.08	26301.57	462.39 462.15	24	CBRC1728 CBRC1736	9306.47 9306.21	26249.77 26199.79	460.8 460.26	42 30
CBRC0727	9400.18	26301.49	461.23	24	CBRC1749	9312,48	26249.26	460.72	42
CBRC0728	9374.85	26403,26	463.43	12	CBRC1757	9311.94	26199.85	460.18	36
CBRC0729	9424.63	26402.74	463.25	36	CBRC1771	9318.59	26200.03	460.11	24
CBRC0730	9474.2 9350,48	26402.84 26501.43	461.7	30 12	CBRC3351	9546.79	26149.65	457.45	52 58
CBRC0731 CBRC0732	9350.48 9375.3	26501.43	461.23 461.73	24	CBRC3352 CBRC3353	9499.55 9399.61	26150.04 26150.11	457.14 457.23	35
CBRC0733	9399.97	26501.68	462.33	36	CBRC3359	9549.99	26251.58	459.27	50
CBRC0734	9424,98	26501.84	462.42	30	CBRC3360	9495.41	26251.72	459.92	54
C8RC0735	9449,86	26501.88	461,91	24	C8RC3364	9347.07	26349	462.89	48
CBRC0736 CBRC0737	9376.04 9425.22	26601.62 26598.18	462.43 463,19	18 36	CBRC3365 CBRC3366	9299.11 9352.1	26601.09 26650.89	461.15 463.46	3 36
CBRC0738	9475.68	26596.7	462.86	30	CBRC3367	9402.06	26650.46	464.72	54
CBRC0739	9350,31	26701.37	464.66	24	CBRC3368	9451.65	26648,7	464.33	60
CBRC0740	9374,91	26700.97	465,59	18	CBRC3369	9501.23	26650.43	463.29	48
CBRC0741	9400.21	26701.8	466.39	36	CBRC3370	9551.67	26649.59	462.68	30
CBRC0742 CBRC0743	9424.62 9449.79	26701.15 26701.74	466.5 465.76	54 51	CBRC3456 CBRC3457	9350.23 9306.48	26550.65 26551	461.05 460.52	18 12
CBRC0743 CBRC0744	9500.03	26701.58	464.02	36	CBRC3458 CBRC3458	9452.98	26550.13	460.52	42
CBRC0745	9539.78	26701.83	463.01	18	CBRC3459	9404.67	26548.23	461.79	24
CBRC0746	9590.08	26701.83	462.39	24	CBRC3460	9501,96	26551.48	460.98	54
CBRC0747 CBRC0749	9649.85	26701.36	462.84	42	CBRC3461	9553.03	26551.44	460.49	48
CBRC0749 CBRC0751	9750.55 9850.08	26701.48 26701.75	459.94 457.81	18 12	CBRC3462 CBRC3467	9601.63 9399	26550.13 26450.1	460.78 463.01	42 42
CBRC0780	9499.9	26501.83	460.57	54	CBRC3468	9449,58	26450.57	462.15	54
CBRC0782	9450.62	26301.41	461.41	60	CBRC3469	9498.24	26449.5	460.48	42
CBRC0783	9500.29	26301.65	460.77	60	CBRC3470	9548.64	26449.72	459.37	36
CBRC0784 CBRC0785	9549.8 9599.4	26301.7 26302.1	459.86	30	CBRC3471	9596.97	26449.2	458.8	36
CBRC0785 CBRC0787	9700.34	26302.1	459.24 457.2	30 48	CBRC3487 CBRC3488	9447.94 9398.34	26349.01 26347.93	462.73 462.97	36 18
CBRC0795	9149.95	26102.03	457.11	12	CBRC3850	9412.73	26199.76	458.2	36
C8RC0796	9199.99	26102.03	458.54	24	CBRC3855	9424.95	26249.72	459.45	36
CBRC0797	9449.8	26102.74	456.34	42	CBRC3859	9425.04	26200.05	458.2	36
CBRC0798	9500.08	26101.72	456.31	24	CBRC3865	9449.68	26251.33	459,7	36
CBRC0799 CBRC0800	9550.05 9599.66	26102.01 26102.22	456.4 456.23	10 30	CBRC3870 CBRC3882	9437.65 9410.97	26200.27 26250.53	458.18 459.42	36 36
CBRC0803	9749.87	26101.68	455.15	36	CBRC3892	9364,47	26199.79	458.97	36
CBRC0878	9450.21	26077.32	455.83	45	CBRC3896	9362.18	26250.2	460.86	36
CBRC0880	9450.09	26154.63	457.23	51	CBRC3904	9374.88	26250.06	460.68	36
CBRC1223 CBRC1226	9249.92 9249.84	26249,95 26149,78	458.72 459.58	21 27	CBRC3909 CBRC3913	9387.47 9386.76	26199.92	458.39 460 14	36 36
CBRC1228 CBRC1228	9252,03	26074.56	459.50	27	00100313	01,000	26250.37	460.14	30

ARCCOMD 6440.00 77.96.51 644.02 71 ARCCOMD 600.03 72.208.47 74.00.86 15 ARCCOMD 949.08 71.08.21 71.03 21 ARCCOMD 940.08 72.90.27 444.01 20 ARCCOMD 944.43 72.00.66 47.93 23 ARCCOMD 950.14 72.50.2 444.14 20 ARCCOMD 944.21 72.00.44 47.00 21 ARCCOMD 950.14 72.90.44 12 72.66 43.48 23 ARCCOMD 944.26 72.00.14 47.00 21 ARCCOMD 969.41 72.20.44 41.5 2 ARCCOMD 944.26 72.01.4 47.93.85 24 ARCCOMD 969.41 72.20.44 44.05 13 ARCCOMD 969.41 72.20.44 44.05 14 44.05 44.07 44.07 44.07 44.05 44.07 71.90.14 44.05 71.90.14 44.05 71.90.14 44.05 71.91.90.14 44.05 71.90.9	Hole ID	Easting (m)	Northing (m)	RL (m)	Depth (m)	Hole ID	Easting (m)	Northing (m)	RL (m)	Depth (m)
ARCCOSS 9490.05 7188.65 47.91 25 ARCOFRE 040.02 725.22 44.01.87 20 ARCCOM0 954.43 7200.66 475.83 23 ARCOFRE 940.02 725.22 44.01.87 27 ARCCOM1 958.87 7200.74 470.05 21 ARCOFRE 950.14 725.06 44.0.87 33 ARCCOM4 945.87 720.14 470.05 21 ARCOFRE 950.14 725.05 44.15 31 ARCOFRE 958.4 725.22 44.01.81 31 ARCORDE 944.86 7209.52 44.15 32 ARCORDE 958.41 7208.41 425.6 18 ARCORDE 944.98 7218.51 44.15 32 ARCORDE 921.53 721.86.1 423.88 12 ARCORDE 945.05 724.84 44.07 73.08 ARCORDE 924.97 71.98.16 424.58 12 ARCORDE 944.92 7208.85 424.15 12 ARC	ARC0036	9498.09	71796.51	434,83	21	ARC0785	9099.32	72298,47	420.68	15
ARCCO09 9446.86 71892.33 47.13 21 ARCO769 9400.82 7252.27 444.41 20 ARCCO40 9548.84 7200.45 435.85 21 ARCCO791 9501.4 7250.84 434.58 33 ARCCO40 9448.86 7200.47 435.05 21 ARCCO793 9201.07 7248.35 421.7 27 ARCCO40 9448.96 7209.57 435.05 244.19 38 ARCCO795 9568.4 7250.24 43.81 15 ARCCO40 9448.97 72294.46 442.1 30 ARCC0785 9568.4 7250.247 448.1 15 ARCCO40 9449.87 72284.4 442.1 30 ARCC085 9540.3 7250.851 121.8 ARCC040 9445.7 7238.64 442.1 30 ARCC085 924.62 770.008 430.8 12 ARCC041 943.4 447.64 30 ARCC085 924.62 770.008 430.8 27 770.916	ARC0037	9100.06	72399.95	419.27	9	ARC0786	9048.38	72298.22	420.83	15
ARCOORD S46.3 TODOLGE AFT.079 S0314 TSD2 ARCOFT S0314 TSD2 S1314 TSD2 S131 S131	ARC0038	9499.08	71898.66	437.91	25	ARC0788	9046.45	72102.03	429.57	15
ARCOM 9488 7020.45 475.03 21 ARCOM2 920.7 72489.37 427.68 21 ARCOM2 9485.66 72059.77 435.06 30 ARCOM2 9469.37 427.68 1 ARCOM4 946.67 72059.27 442.9 38 ARCOM2 944.64 423.1 45 ARCOM4 944.66 72059.27 442.9 38 ARCOM2 544.64 720.22 44.9 15 ARCOM4 944.89 722.94.6 44.01 30 ARCOS8 973.38 720.95.1 433.5 22 ARCOS9 949.34 7249.45 442.1 30 ARCOS8 954.05 720.05.2 423.57 15 ARCOM2 944.94 473.61 44.7 7100.05 423.57 15 ARCOM2 944.97 770.05 433.14 6 ARCOS8 924.97 770.05 423.57 15 ARCOM2 944.97 770.05 433.14 6 ARCOS8 929.21 </td <td>ARC0039</td> <td>9446.86</td> <td>71899.23</td> <td>437.13</td> <td>21</td> <td>ARC0789</td> <td>9400.82</td> <td>72502.67</td> <td>444,41</td> <td>20</td>	ARC0039	9446.86	71899.23	437.13	21	ARC0789	9400.82	72502.67	444,41	20
ARCOM2 9452 72001.4 47.03 21 ARCOM2 9462 72048.5 721.7 27 ARCOM4 9445.86 72095.62 40.15 39 ARCOM4 9445.71 72448.84 423.31 45 ARCOM4 9449.88 72295.64 442.01 30 ARCOM59 5958.4 72502.25 43.41 15 ARCOM6 9449.87 72295.84 442.1 30 ARCOM59 923.36 7210.05 433.8 27 ARCOM5 943.54 7240.54 442.57 24 ARCOM59 923.86 7210.05 432.8 27 ARCOM5 920.17 71696.54 442.57 24 ARCOM59 923.84 720.05 432.8 27 ARCOM5 920.17 71696.54 422.51 15 ARCOM5 920.17 71696.16 432.02 27 ARCO102 944.67 7170.06 433.14 ARCOM5 920.17 7169.14 433.02 21 ARCO102						ARC0790			440.87	27
ARCOM3 969.58 72095.77 433.06 30 ARCOM3 921.03 7248.35 421.7 2 ARCOM4 946.61 72050.2 440.15 38 ARCOM5 959.4 7250.25 434.61 15 ARCOM45 946.98 7250.24 440.47 30 ARCOM55 959.34 7250.22 440.69 15 ARCOM45 946.98 7228.46 444.07 30 ARCOES5 9123.36 7220.41 435.85 12 ARCOM50 946.35 7220.45 442.51 24 ARCOES5 9123.76 7200.92 433.67 16 ARCOM50 946.31 7248.64 447.81 30 ARCOES5 920.17 7166.63 425.27 15 ARCOM50 924.21 7248.64 447.81 30 ARCOES5 920.87 7166.63 425.27 17 15 440.22 7 7 430.60 27 14 15 440.02 27 14 17 166.83						ARC0791	9301.4	72500.64	434.98	33
ARCOM 644566 7209562 440.15 99 ARCOM9 94571 724458 423.11 45 ARCOM6 9449.88 72190.51 423.93 42 ARCOM79 550.34 72502.25 43.41 15 ARCOM6 9449.88 72250.44 42.1 30 ARCOB99 523.28 7210.91 423.86 12 ARCOM9 9483.52 72205.44 442.1 30 ARCOB9 923.28 7210.91 425.85 12 ARCOM2 940.55 7268.64 447.61 2 ARCOB8 524.82 170.09 425.57 15 ARCOM2 922.6 7288.64 47.71 24 ARCOB8 524.94 7216.51 420.2 27 ARCO12 930.47 7170.66 433.14 6 ARCOB9 922.17 7186.19 440.2 27 ARCO12 930.15 71669.54 433.2 19 ARCOB9 922.17 7186.19 440.2 27 ARCO1										
ARCOME 9480.04 72200.12 442.9 38 ARCOMES 9589.4 72502.22 44.819 15 ARCOME 9448.9 72209.40 444.07 30 ARCORES 9173.85 7220.41 423.66 18 ARCOME 9489.34 7220.854 442.1 30 ARCORES 9173.85 7220.91 433.8 27 ARCOMES 9545.65 7240.04 447.81 30 ARCORES 9249.62 77050.61 422.57 15 ARCOMES 9249.25 72388.65 442.41 33 ARCORES 9249.62 77040.51 430.62 27 ARCOMES 9249.21 7704.65 433.2 19 ARCORES 9249.21 7144.74 437.62 27 ARCO125 927.22 7214.91 433.2 18 ARCORES 924.92 7144.74 427.67 27 ARCO125 928.22 7149.74 433.2 33 33 33 33 33 33 33										
ARCOME 944.98 72199.51 433.85 24 ARCOME 940.34 7250.42 40.89 15 ARCOME 958.52 72295.84 442.1 30 ARCOMES 943.65 72196.61 425.86 12 ARCOMES 943.44 7240.54 442.57 24 ARCOMES 943.65 7200.92 433.8 27 ARCOMES 944.15 12 ARCOMES 944.06 7200.92 433.8 27 ARCOMES 944.17 7208.64 447.61 24 ARCOMES 924.96 7206.05 422.54 15 ARCOMES 924.64 7100.06 433.44 6 ARCOMES 924.94 7204.91 43.02 27 ARCO125 927.24 7160.06 433.44 6 ARCOMES 924.94 7148.74 43.02 27 ARCO125 927.22 7100.05 435.11 17 ARCO126 924.97 7148.47 43.02 71 33.3 7148.73 33.1										
ARCOME 944.89 7229.84 944.07 30 ARCORS 973.86 7229.81 42.366 18 ARCOMP 983.34 72400.55 441.51 12 ARCORS 973.87 7200.92 433.67 18 ARCORS 945.05 7240.05 442.57 15 ARCORS 945.65 726.86 47.51 15 ARCORS 945.05 7268.06 447.51 33 ARCORS 924.87 71696.05 422.51 15 ARCORS 945.05 7288.05 442.51 33 ARCORS 924.87 71696.15 422.51 27 ARCO121 050.16 71698.04 433.2 19 ARCORS 924.87 7148.17 47.87 27 ARCO122 923.21 7191.74 47.86 32.2 7 33.3 33 33 33 33 33 33 33 33.2 33 33.2 33 33.3 33.3 33.3 33.3 33.3 33.3										
ARC0069 9398.82 72298.44 421.1 30 ARC02659 9223.68 7200.82 433.67 18 ARC0050 9450.66 72098.41 433.64 12 ARC0885 9549.05 7209.93.1 433.8 12 ARC0051 9450.56 72498.04 447.61 24 ARC0885 9540.67 7290.93 432.63 27 ARC0049 97197.03 72388.65 424.51 33 ARC0895 924.94 72150.19 434.02 27 ARC0121 9306.16 71638.84 433.2 19 ARC0299 9224.92 7194.94.7 434.62 27 ARC0122 927.24 17189.10 434.02 27 33 33 ARC0122 927.94 7190.05 43.42.6 19 ARC1029 922.95 724.94.9 43.22 27 ARC0122 928.02 7190.05 43.42.8 15 ARC1019 922.49 7198.94 43.52 33 ARC0122 944.93										
ARC0050 949:34 72400.88 941.51 12 ARC0635 940.62 77299.56 733.8 27 ARC0052 949.21 7298.88 447.64 30 ARC0088 9540.62 77100.09 425.54 15 ARC0053 9540.55 72498.88 447.64 30 ARC088 9740.83 7209.51 423.69 27 ARC0054 9520.57 72389.85 423.51 33 ARC088 9740.81 7204.91.64 433.69 27 ARC0122 9536.16 71689.64 433.2 19 ARC0898 972.04.97 7180.19 433.69 27 ARC0122 9532.1 17178.78 43.4.6 30 ARC0899 972.19 7184.74 47.63.32 33.2 33.2 33.2 33.2 33.2 43.61 33.2 33.2 33.2 33.2 33.2 33.2 33.2 33.2 33.2 33.2 33.2 33.2 33.2 33.2 33.2 33.2 33.2 33.2 <td></td>										
ARCC005 94:00.66 72:00.45 44:2.57 24 ARCC088 94:40.67 71700.09 40:3.67 15 ARCC005 94:50.5 72:48.0.4 47.76 24 ARCC088 57:40.5 77:10.5 40:5.5 15 ARCC004 97:19 7:238.85 424.51 23 ARCC088 57:40.47 77:40.47 43:40.62 27 ARC0121 93:56.16 71:59.19 43:44.7 71:70.06 43:3.1 16 ARCC089 57:40.5 72:14.9 47:47.7 47:47.7 47:47.7 47:47.7 47:47.7 47:47.7 47:47.7 47:47.7 47:47.7 47:87.7 17:87.87										
ARC0052 9:49:421 7:2498.85 47.764 30 ARC0885 9:249.62 7:1698.65 422.54 15 ARC0054 9:197.3 7:2398.65 424.51 33 ARC0885 9:249.87 7:2698.75 428.53 27 ARC0012 9:326.16 7:6698.65 423.29 27 ARC0121 9:326.16 7:6698.64 433.2 21 ARC0122 9:324.11 7:789.78 434.46 30 ARC0295 9:225.2 7:1494.74 47.72 7 ARC0122 5:299.22 7:1901.66 432.28 118 ARC1004 5:224.85 7:1903.66 433.2 21 ARC0122 5:299.22 7:1901.66 432.63 15 ARC1004 5:224.85 7:1903.66 431.85 15 ARC1010 5:224.85 7:1903.66 431.85 15 ARC1012 5:249.85 7:1903.26 432.65 33 ARC0132 5:900.7 7:000.32 43.2 16 ARC1016 5:999.47 7:1903.42										
ARC003 9450.5 72480.04 447.81 24 ARC0646 97216.05 422.53 27 ARC0046 9512.6 72380.81 422.39 30 ARC088 9524.44 77040.02 77 ARC0120 9304.47 77040.06 433.14 16 ARC088 9524.27 71494.74 43.69 21 ARC0121 9305.16 7169.19 434.42 17 ARC0123 927.24 7149.74 43.46 33 ARC0125 9225.99 7204.92 422.53 33 ARC0125 927.24 7190.05 43.51 17 ARC1009 922.45 7194.95 43.32 33 ARC0125 9149.13 7193.69 435.03 24 ARC1015 912.43 7180.36 432.55 33 ARC0125 9149.13 7193.89 435.5 15 ARC1015 919.47 7216.03 432.85 33 ARC0131 929.10 7193.39 43.55 18 ARC1015 919.47 <										
ARC0064 9197.3 72398.65 424.51 33 ARC0960 9249.88 72160.53 428.59 27 ARC0120 9348.47 71700.66 433.14 16 ARC0985 9249.47 71590.19 430.26 27 ARC0121 9305.16 71698.174 433.19 27 7444.47 427.87 27 ARC0122 9326.11 71789.78 434.46 30 ARC1009 9224.45 7101.52 433.51 27 ARC0125 9279.22 71901.55 455.11 16 ARC1009 9224.45 7194.93 433.21 33 ARC0125 9198.25 71300.52 455.03 24 ARC1101 9224.45 71694.92 433.22 27 ARC0125 9198.26 7190.52 428.45 15 ARC1101 9199.47 7150.33 428.65 33 ARC0120 9175.90 7190.52 7240.44 427.69 32 27 ARC0121 9174.92 71980.72 7240.9										
ARCOBE 9292.6 7238.91 429.29 20 ARCOBE 922.47 7294.9.75 430.62 27 ARCO121 936.16 71696.94 433.2 19 ARCO88 922.40 7164.9.74 433.99 21 ARCO122 9271.24 7180.98 434.61 30 ARCO89 9225.99 7204.9.52 429.73 33 ARCO125 9279.22 71801.26 435.14 17 ARCO129 922.45 7204.9.52 429.73 33 ARCO125 9279.22 7180.02 435.14 17 ARCO129 9224.85 71949.95 433.2 23 ARCO122 9196.25 7180.02 434.92 18 ARCO129 910.17 7190.68 431.85 15 ARCO119 920.12 7204.63 428.89 27 ARCO139 992.87 71993.39 431.85 15 ARC0120 914.95 7204.63 428.89 27 ARCO139 992.87 71999.39 431.85 15										
ARC012 9348.47 71700.66 433.14 6 ARC0289 922.41 71489.19 413.09 21 ARC0121 9504.11 71789.78 43.46 30 ARC0289 922.21 7148.47 423.89 21 ARC0125 9579.22 71901.26 435.14 17 ARC0299 922.45 7012.32 430.66 27 ARC0125 9579.22 71901.26 435.14 17 ARC1020 922.455 71090.55 433.52 23 ARC0125 9145.13 71901.05 436.03 24 ARC1016 922.435 7189.52 433.21 27 ARC0125 9149.22 71901.05 438.03 24 ARC1015 9149.84 7150.25 432.55 33 ARC0132 9149.22 7190.44 743.04 744.43 934.45 33 ARC0138 929.02 7149.93 431.73 23 77 474.04 7149.73 433.73 27 ARC0139 9149.24										
ARC0122 S924.11 7179.72 7180.06 422.65 19 ARC0029 S925.25 7204.94 740.72 27 ARC0125 S299.22 71901.26 435.11 17 ARC1020 S924.45 72012.32 430.66 27 ARC0125 S299.22 71901.26 435.11 18 ARC1020 S924.33 71980.85 433.1 27 ARC0127 S198.25 71800.62 434.92 18 ARC1020 S924.33 71949.85 433.1 27 ARC0128 9149.13 71801.06 431.85 15 ARC11019 S920.62 432.8 15 ARC1119 S920.12 7244.63 428.89 27 ARC0132 9199.28 71965.39 431.5 18 ARC1120 9175.65 7216.03 428.6 39 ARC0132 9199.28 71995.39 431.7 0 ARC1200 9175.86 7160.44 435.6 30 ARC0132 9199.13 7200.62 43.17 20 <td></td> <td></td> <td></td> <td></td> <td>6</td> <td></td> <td></td> <td></td> <td></td> <td></td>					6					
ARC0123 9277.24 7180.06 432.68 19 ARC0025 9224.55 72049.32 430.62 27 ARC0125 9247.55 71900.52 435.11 18 ARC1000 9224.85 71949.35 433.32 33 ARC0127 9198.25 71900.62 434.92 18 ARC1010 9224.38 71989.79 433.1 27 ARC0128 9100.17 71903.68 431.85 15 ARC1101 9224.93 71949.92 433.22 27 ARC0139 9928 71993.28 430.19 26 ARC1101 9224.93 71949.94 26.45 33 ARC0133 9192.8 71993.93 431.55 18 ARC1022 9102.02 72149.43 433.73 27 ARC0133 9149.22 71998.39 431.55 18 ARC1020 9175.58 7190.47 425.56 30 ARC0132 9914.52 7200.23 429.64 12 ARC1203 9175.08 7198.93 434.52	ARC0121	9306,16	71698.94	433.2	19	ARC0989	9249.21	71849.74	433.99	21
ARCO125 9299.22 71901.26 435.14 17 ARC1000 9224.45 72012.32 430.66 27 ARCO127 9198.25 71900.62 434.92 18 ARC1012 9224.83 71894.95 433.32 23 ARC0128 9149.13 71901.68 431.85 15 ARC1012 9224.83 7184.952 433.22 27 ARC0128 9199.24 71900.68 431.85 15 ARC1016 9199.44 71550.23 428.66 33 ARC0133 9199.28 71995.38 430.19 26 ARC1028 914.95 71904.63 428.66 39 ARC0134 9091.81 7200.62 434.17 20 ARC1028 914.95 7194.94 425.65 30 ARC0133 9199.28 7198.99 431.57 200.42 ARC1203 9175.58 7214.94 425.65 30 ARC0231 934.45 7200.57 428.01 23 ARC1203 9175.86 7184.71 432.46	ARC0122	9324.11	71798.78	434.46	30	ARC0990	9225.2	72149.47	427.87	27
ARC0122 9247.58 71900.52 435.11 18 ARC1004 9224.85 71949.55 71900.52 435.11 27 ARC0123 9149.13 71910.06 436.03 24 ARC1012 9224.33 71899.79 435.1 27 ARC0132 9298.02 7200.02 432.8 15 ARC1015 9199.44 72150.33 426.65 33 ARC0133 9298.02 7200.04 432 10 ARC1012 919.44 72150.33 426.65 39 ARC0133 919.28 71993.39 431.55 18 ARC1025 914.97 7149.3 425.66 39 ARC0134 909.18 7200.05 425.76 10 ARC1200 9175.26 7204.47 427.99 51 ARC0230 939.16 72100.57 422.61 12 ARC1206 917.49 7194.67 432.46 27 ARC0231 934.62 7200.51 428.01 12 ARC1206 917.492 71850.31 436.12 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>ARC0997</td> <td></td> <td>72049.92</td> <td>429.73</td> <td></td>						ARC0997		72049.92	429.73	
ARC0127 9198.25 7190.062 424.92 18 ARC1008 6224.33 71899.79 435.1 27 ARC0128 910.17 71903.68 431.85 15 ARC1015 9199.84 71950.25 432.65 33 ARC0130 9298.02 7200.02 432.8 10 ARC1016 9199.84 71950.25 432.65 33 ARC0131 9298.02 7200.04 432.1 10 ARC1012 916.95 7204.96 426.66 39 ARC0132 9199.28 71950.38 430.19 26 ARC1028 914.95 7150.93 433.73 27 ARC0134 9093.18 7200.62 431.17 20 ARC1203 9175.95 7204.947 425.65 30 ARC0230 934.55 7200.62 432.61 23 ARC1203 9175.49 7149.7 432.248 27 ARC0230 938.13 7400.31 432.05 21 ARC1210 9174.49 71495.33 436.2 27										
ARC0122 9149.13 71901.09 436.03 2.4 ARC1012 6224.93 71849.26 432.25 27 ARC013 929.02 7200.32 432.6 15 ARC1016 9199.94 72150.33 426.65 33 ARC0131 924.05 7200.04 432 10 ARC1019 920.12 7204.96 426.66 39 ARC0133 919.28 71993.39 431.55 18 ARC1025 914.97 7149.47 433.73 27 ARC0133 9091.18 7200.052 425.76 10 ARC1200 9175.25 7204.94 742.56 30 ARC0233 9398.6 7199.99 432.79 12 ARC1200 9175.25 7204.94 742.79 51 ARC0230 9391.3 7240.01 432.96 18 ARC1210 9174.92 7185.03 434.62 27 ARC0200 9391.3 7240.07 432.96 18 ARC1210 9174.92 7185.03 434.62 27										
ARC0129 9100.17 71903.68 431.85 15 ARC1016 9199.84 71952.85 432.65 33 ARC0130 929.02 72000.4 432 10 ARC1019 9200.12 72049.63 428.89 27 ARC0131 9199.26 71955.38 430.19 26 ARC1022 9150.02 72149.3 425.66 39 ARC0131 9093.81 72000.62 434.17 20 ARC1028 9149.97 7194.97.3 423.65 30 ARC0132 9035.86 72000.57 432.75 10 ARC1203 9175.95 7194.97 432.46 27 ARC0230 938.6 7199.87 432.46 27 ARC230 9174.93 7194.97 432.46 27 ARC0303 939.31 72400.31 434.09 18 ARC1210 9174.92 7195.03 438.61 24 ARC0303 939.31 72400.37 426.82 42 ARC1256 930.71 71650.25 432.15 11 <td></td>										
ARC0130 9299.02 72000.32 432.8 15 ARC1016 9199.94 72150.33 426.65 33 ARC0131 9149.22 71955.38 430.19 26 ARC1022 9150.02 72149.3 422.66 39 ARC0133 9149.22 71993.39 431.55 18 ARC1025 9149.59 72050.23 422.66 39 ARC0135 9039.18 72000.56 425.76 10 ARC1200 9175.95 7209.47 422.55 30 ARC0230 934.65 72001.23 429.61 12 ARC1206 9174.49 7189.39 432.62 27 ARC0230 934.64 7200.37 428.01 12 ARC1206 9174.49 7189.39 434.62 27 ARC0303 939.13 72400.47 432.98 18 ARC1211 9150.25 1150.33 438.81 24 ARC0301 944.87 7249.57 421.84 420.93 18 ARC1214 9150.45 7160.25 422										
ARC0131 2249.05 72001.4 432 10 ARC1019 9200.12 72049.83 428.89 27 ARC0132 9199.28 71995.38 430.19 26 ARC1022 9150.02 72149.9 426.46 39 ARC0133 9099.18 72000.62 424.17 20 ARC1028 9149.59 71949.73 433.73 27 ARC0135 9035.86 72000.62 425.76 10 ARC1203 9175.26 72049.47 422.45 51 ARC0230 9344.55 72001.23 429.61 12 ARC1206 9175.08 71949.7 432.45 27 ARC0307 939.13 72400.37 434.09 18 ARC1210 9174.92 7185.33 436.81 24 ARC0301 944.94 72490.55 421.83 42 ARC1256 9200.27 17650.25 422.35 18 ARC0310 944.94 7298.95 421.83 42 ARC1256 9200.27 17651.25 425.51 1										
ARC0132 9199.28 71993.39 430.19 26 ARC1022 919.02 7214.94 429.66 39 ARC0133 9149.92 71993.39 431.55 18 ARC1026 9149.59 72060.23 429.66 39 ARC0134 9095.89 72000.56 425.76 10 ARC1200 9175.89 72169.47 427.99 51 ARC0220 9344.55 7200.57 429.61 12 ARC1206 9174.49 71949.7 422.48 27 ARC0230 934.71 7238.07 432.98 18 ARC1210 9176.08 71989.85 435.51 21 ARC0301 9149.48 72403.11 434.09 18 ARC1211 9150.56 71850.33 436.81 24 ARC0301 9149.48 72498.07 421.83 42 ARC1257 924.66 71690.25 422.36 18 ARC0321 9049.37 7240.75 431.42 20 ARC1256 909.42 71651.48 430.93 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
ARC0133 9149.52 71993.33 431.55 18 ARC1025 9149.57 71949.73 433.73 27 ARC0135 9035.98 72000.62 434.17 20 ARC1028 9149.97 71949.73 433.73 27 ARC0135 9035.98 7200.65 425.75 10 ARC1203 9175.26 72044.74 427.99 51 ARC0221 9145.24 72100.77 428.01 23 ARC1210 9174.92 71850.33 436.61 24 ARC0303 9399.13 72400.74 425.92 42 ARC1210 9174.92 71850.55 432.13 14 ARC0311 9049.88 72400.75 418.14 22 ARC1250 9309.42 71851.48 430.93 18 ARC0323 9149.82 7220.57 424.64 18 ARC1250 909.42 71851.48 430.93 18 ARC0323 9150.29 7220.4 425.99 17 ARC1250 909.42 71851.48 435.3 <										
ARC0124 9099.18 72000.22 43.17 20 ARC1202 9175.98 72150.94 425.56 30 ARC0220 9394.6 71999.9 432.79 12 ARC1200 9175.98 72150.94 425.56 30 ARC0220 9344.55 7201.23 428.61 12 ARC1200 9175.98 7199.97 432.48 27 ARC0307 9399.13 72400.31 434.09 16 ARC1210 9174.92 71890.87 334.62 27 ARC0308 9347.41 7338.07 432.98 18 ARC1210 9174.92 71850.85 332.13 14 ARC0310 944.88 72490.47 428.92 42 ARC1257 9246.66 71640.25 426.92 24 ARC0321 9049.93 72100.75 418.14 22 ARC1256 9309.42 71851.48 430.33 18 ARC0321 9049.83 72108.54 431.42 20 ARC1256 9305.74 72149.75 428.44 <										
ARC0125 9035.98 72000.56 425.76 10 ARC1203 9175.26 72109.44 425.56 30 ARC0220 9344.55 72001.23 42561 12 ARC1203 9175.26 72049.47 427.99 51 ARC0220 9344.55 7200.73 428.01 23 ARC1206 9174.92 71850.39 434.62 27 ARC0300 939.13 72400.31 434.09 18 ARC1210 9174.92 71850.33 436.81 24 ARC0310 9344.58 72400.47 425.92 42 ARC1256 9300.71 71650.55 432.13 14 ARC0311 9049.93 72400.75 418.14 22 ARC1250 904.92 71651.48 430.93 18 ARC0323 9150.29 7220.5 424.64 18 ARC1260 904.93 7144.84 733.3 18 ARC0323 9150.27 7220.4 425.59 24 ARC1263 930.01 7214.97.5 429.4 24										
ARC0229 9398.6 7198.9 432.79 12 ARC1203 9175.26 7204.74 427.99 51 ARC0230 9344.55 72001.23 428.61 12 ARC1206 9174.49 7149.7 432.49 21 ARC0230 9399.13 72400.31 434.09 18 ARC1210 9174.82 71850.33 436.81 24 ARC0301 9246.88 72400.74 426.92 42 ARC1257 9249.66 71649.25 426.92 24 ARC0311 9049.33 72400.75 418.14 22 ARC1257 9249.66 71649.25 426.92 24 ARC0321 9049.32 72198.95 431.42 20 ARC1261 9399.68 72149.85 435.3 24 ARC0322 9098.82 72198.95 431.42 20 ARC1261 9399.68 72149.85 425.51 18 ARC0323 950.23 72200.54 425.69 17 ARC1261 9390.67 7214.95 422.46 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
ARC0220 9344.55 72001.23 429.61 12 ARC1206 9174.49 7189.77 432.46 27 ARC0207 939.13 72100.57 428.01 23 ARC1208 9175.08 7189.95 435.51 21 ARC0307 939.13 72400.31 434.09 16 ARC1210 9174.92 71850.33 436.81 24 ARC0308 9347.41 72395.59 421.83 42 ARC1255 9206.66 71649.25 422.85 18 ARC0311 9049.37 72400.75 418.14 22 ARC1255 9200.28 71550.29 422.35 18 ARC0322 9098.82 72198.92 426.04 18 ARC1261 939.68 72149.55 425.51 18 ARC0323 9150.29 7220.04 425.59 24 ARC1262 9300.91 72149.55 429.44 24 ARC0328 9293.41 7219.75 428.47 18 ARC1265 9100.45 72249.97 422.66 <										
ARC0307 9399.13 72400.31 434.09 16 ARC1210 9174.92 71850.39 434.62 27 ARC0308 9347.41 72398.07 432.98 18 ARC1211 9150.56 711850.33 438.81 24 ARC0310 9149.48 72395.59 421.83 42 ARC1255 9300.17 71650.55 425.82 24 ARC0321 9049.43 72490.75 418.14 22 ARC1256 9300.28 71649.25 422.36 18 ARC0321 9049.81 7218.95 431.42 20 ARC1260 904.93 71851.4 425.51 425.51 18 ARC0322 9098.27 7218.74 425.09 17 ARC1263 9300.91 72149.75 428.44 24 ARC0326 9293.34 7219.76 428.48 18 ARC1265 9150.45 72250.59 422.46 18 ARC0328 9400.69 7219.75 428.47 18 ARC1265 9150.45 72250.05	ARC0230	9344.55	72001.23		12					
ARC0308 9347.41 72398.07 432.98 18 ARC1211 9150.56 71850.33 436.81 24 ARC0309 9246.88 72400.47 426.92 42 ARC1255 9240.66 71650.65 432.13 14 ARC0311 9049.33 72400.75 418.14 22 ARC1255 920.28 71650.29 422.36 18 ARC0321 9048.16 72198.95 431.42 20 ARC1260 9049.39 71851.48 430.93 18 ARC0322 9098.82 72198.95 431.42 20 ARC1260 9049.39 71851.48 430.93 18 ARC0325 9920.53 72200.4 425.09 17 ARC1263 9300.91 72149.95 435.3 24 ARC0326 9299.34 72187.74 425.59 24 ARC1265 9100.86 72249.97 425.6 24 ARC0328 940.66 72187.7 428.48 18 ARC1265 9100.45 72250.05 422.46	ARC0231	9149,24	72100.57	428.01	23	ARC1208	9175.08	71899.85	435.51	21
ARC0309 9246.88 72400.47 426.92 42 ARC1255 9300.71 71650.65 432.13 14 ARC0310 914.9.48 72399.59 421.83 42 ARC1255 9200.28 71650.25 422.80 18 ARC0311 9049.31 72400.75 418.14 22 ARC1259 9099.42 71851.48 430.93 18 ARC0321 9048.16 72198.95 431.42 20 ARC1260 9049.39 71452.15 422.51 18 ARC0322 909.53 72200.4 425.09 17 ARC1261 9300.91 72149.95 423.44 24 ARC0325 929.34 7210.54 425.09 17 ARC1261 9300.91 72149.98 427.93 18 ARC0325 929.34 7218.74 425.75 22 ARC1265 9150.45 72250.96 422.46 18 ARC0326 9400.66 7218.72 437.33 22 ARC1265 9150.47 7250.31 422.46 <	ARC0307	9399,13	72400.31	434.09	18	ARC1210	9174.92	71850.39	434.62	27
ARC0310 9149.48 72399.59 421.83 42 ARC1257 9249.66 71649.25 426.92 24 ARC0311 9049.33 72400.75 418.14 22 ARC1255 9200.28 71851.48 430.30 18 ARC0321 9098.82 72198.52 428.04 12 ARC1260 9049.39 71852.15 425.51 18 ARC0322 9098.82 72109.7 424.64 18 ARC1261 9399.68 72149.85 435.3 24 ARC0325 9206.53 72200.4 425.09 17 ARC1263 9300.91 72149.85 435.3 24 ARC0325 9293.41 72187.75 422 ARC1263 9300.91 72149.98 427.93 18 ARC0326 9293.47 7188.74 425.75 22 ARC1266 9193.8 72249.97 425.6 24 ARC0329 9552.87 7220.02 437.33 22 ARC1266 9193.8 72250.08 423.06 12	ARC0308	9347.41	72398.07	432.98	18	ARC1211	9150.56	71850.33	436.81	24
ARC0311 9049.93 72400.75 418.14 22 ARC1258 9200.28 71650.29 422.36 18 ARC0321 9048.16 72198.95 431.42 20 ARC1250 9094.39 71851.46 430.93 18 ARC0323 9150.29 72202.5 424.64 18 ARC1261 9399.68 72149.75 422.44 24 ARC0322 9206.53 72200.4 425.09 17 ARC1262 9350.74 72149.75 422.6 24 ARC0325 9299.34 72198.74 425.75 22 ARC1263 9100.86 72249.97 422.6 12 ARC0326 9299.34 72198.72 432.74 18 ARC1265 9150.47 72249.97 425.6 24 ARC0329 9552.87 72200.62 437.33 22 ARC1268 930.17 72249.74 424.57 18 ARC0330 9599.27 72197.53 431.91 6 ARC1268 930.17 72249.74 424.57 18 ARC0333 9601.18 7199.54 433.5 24 ARC	ARC0309		72400.47	426.92	42	ARC1256	9300.71	71650.65	432.13	14
ARC0321 9048.16 72198.92 428.04 12 ARC1259 9099.42 71851.48 430.93 18 ARC0322 9098.82 72198.95 431.42 20 ARC1260 9049.39 71852.15 425.51 18 ARC0324 9200.53 72200.4 425.09 17 ARC1261 9399.68 72149.75 429.44 24 ARC0325 9290.53 72198.74 425.75 22 ARC1263 9300.91 72149.75 422.46 18 ARC0325 9299.34 72198.74 425.75 22 ARC1263 910.85 72249.97 422.6 18 ARC0328 9400.69 72198.72 432.74 18 ARC1266 919.8 72250.08 422.46 12 ARC0331 9607.16 71905.5 429.99 12 ARC1269 9350.34 72248.76 432.04 24 ARC0333 9647.16 71905.5 429.99 12 ARC1270 9398.62 72249.03 433.62 <								71649.25	426.92	24
ARC0322 9098.82 72198.95 431.42 20 ARC1260 9049.39 71852.15 425.51 18 ARC0323 9150.29 72202.5 424.64 18 ARC1261 9399.85 72149.75 429.44 24 ARC0325 9246.33 72200.94 425.59 24 ARC1263 9300.91 72149.75 429.44 24 ARC0326 9293.34 72198.74 425.75 22 ARC1265 9150.45 72250.94 422.46 18 ARC0327 9350.53 72197.56 428.48 18 ARC1265 9159.45 72250.09 422.46 18 ARC0327 9559.27 72197.53 431.91 6 ARC1268 9300.31 72249.74 428.42 24 ARC0331 9607.16 71905.71 433.3 15 ARC1270 938.86 72249.74 428.42 24 ARC0333 9601.28 7199.61 429.95 18 ARC1270 938.86 72249.03 435.62 24 ARC0337 9398.55 7179.76 431.09 24										
ARC0323 9150.29 72202.5 424.64 18 ARC1261 9399.68 72149.85 435.3 24 ARC0324 9200.53 72200.4 425.09 17 ARC1262 9350.74 72149.75 429.44 24 ARC0325 9246.33 72200.94 425.59 22 ARC1263 9300.91 72149.98 427.93 18 ARC0326 9293.34 72187.74 425.75 22 ARC1265 9150.45 72240.97 425.6 24 ARC0328 9400.69 72198.72 432.74 18 ARC1266 9199.8 72250.18 424.57 18 ARC0330 9559.27 72197.53 431.91 6 ARC1268 9300.17 72249.74 428.52 24 ARC0333 9607.16 71902.71 433.3 15 ARC1270 9398.66 72249.03 435.62 24 ARC0333 9601.28 71998.61 429.95 18 ARC1271 9398.66 72249.03 435.62 24 ARC0337 9398.55 71798.95 433.5 24 A										
ARC0324 9200.53 72200.4 425.09 17 ARC1262 9300.74 72149.75 429.44 24 ARC0325 9246.33 72200.94 426.59 24 ARC1263 9300.91 72149.95 422.42 ARC0326 9299.34 72198.74 425.75 22 ARC1264 9100.85 72249.97 425.6 24 ARC0327 9350.53 72197.56 428.48 18 ARC1265 9150.45 72250.08 422.46 18 ARC0329 9552.87 72200.62 437.33 22 ARC1267 924.43 72250.11 424.57 18 ARC0330 959.27 72197.53 431.91 6 ARC1269 9350.34 72249.74 428.42 24 ARC0332 9555.79 71902.71 433.3 15 ARC1270 9398.66 72249.03 435.62 24 ARC0333 960.128 71998.54 433.5 24 ARC1272 9300.78 72350.31 432.68 18 ARC0337 9398.55 71799.76 431.09 24 ARC1274										
ARC0325 9246.33 72200.94 425.59 24 ARC1263 9300.91 72149.98 427.93 18 ARC0326 9299.34 72198.74 425.75 22 ARC1264 9100.86 72249.97 425.6 24 ARC0327 9350.53 72197.56 428.48 18 ARC1265 9150.45 72250.09 422.46 18 ARC0329 9552.87 72200.62 437.33 22 ARC1267 9249.43 72250.11 424.57 18 ARC0331 9607.16 71905.5 429.99 12 ARC1270 9398.86 72249.74 428.42 24 ARC0333 9601.28 71908.51 429.95 18 ARC1270 9398.86 72249.03 435.62 24 ARC0333 9601.28 7199.86 429.95 18 ARC1271 9346.62 72349.38 437.83 24 ARC0336 9447.96 71798.95 433.5 24 ARC1272 9200.7 72349.85 421.82 18 ARC0367 9199.69 71788.08 426.99 12 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
ARC0326 9299.34 72198.74 425.75 22 ARC1264 9100.86 72249.97 425.6 24 ARC0327 9350.53 72197.56 428.48 18 ARC1265 9150.45 72250.69 422.46 18 ARC0329 9552.87 72200.62 437.33 22 ARC1267 9249.43 72250.08 423.06 12 ARC0330 9599.27 72197.53 431.91 6 ARC1269 9300.17 72249.74 428.42 24 ARC0332 9555.79 71902.71 433.3 15 ARC1270 9398.65 72249.03 435.62 24 ARC0333 9601.28 7198.95 433.5 24 ARC1272 9300.78 72350.31 432.68 18 ARC0337 9398.55 71799.76 431.09 24 ARC1274 920.2 72349.85 424.32 18 ARC0369 9097.71 71798.95 433.47 12 ARC1275 9150.1 72349.85 424.32 18 ARC0369 9097.71 71779.47 427.16 24 A										
ARC0327 9350.53 72197.56 428.48 18 ARC1265 9150.45 72250.59 422.46 18 ARC0328 9400.69 72198.72 432.74 18 ARC1266 919.8 72250.08 423.06 12 ARC0329 9552.87 72200.62 437.33 22 ARC1267 9254.43 72250.11 424.57 18 ARC0330 9592.77 72197.53 431.91 6 ARC1268 9300.17 72249.74 428.42 24 ARC0331 9607.16 71905.5 429.99 12 ARC1270 9398.65 72249.03 435.62 24 ARC0333 9601.28 7198.61 429.95 18 ARC1271 934.62 72349.38 437.83 24 ARC0336 9447.96 71788.08 426.99 12 ARC1273 9249.42 72360.67 427.82 42 ARC0369 9097.11 7178.08 426.99 12 ARC1276 910.1 72349.8 421.91 18 ARC0369 9096.01 71773.16 423.47 12 ARC										
ARC0328 9400.69 72198.72 432.74 18 ARC1266 9199.8 72250.08 423.06 12 ARC0329 9552.87 72200.62 437.33 22 ARC1267 9249.43 72250.11 424.57 18 ARC0330 9599.27 72197.53 431.91 6 ARC1269 9350.37 72249.74 428.42 24 ARC0331 9601.28 71992.71 433.3 15 ARC1270 9398.65 72249.03 435.62 24 ARC0333 9601.28 71998.61 429.95 18 ARC1271 9348.62 7239.31 432.68 18 ARC0337 9398.55 71799.76 431.09 24 ARC1274 9200.2 72349.85 424.32 18 ARC0367 9199.69 71788.08 426.99 12 ARC1274 9200.2 72349.85 421.91 18 ARC0369 9047.1 71778.44 429.2 26 ARC1275 9150.1 72349.8 421.91										
ARC0329 9552.87 72200.62 437.33 22 ARC1267 9249.43 72250.11 424.57 18 ARC0330 9599.27 72197.53 431.91 6 ARC1268 9300.17 72249.74 428.42 24 ARC0331 9607.16 71905.5 429.99 12 ARC1269 9350.34 72248.76 432.04 24 ARC0332 9555.79 71902.71 433.3 15 ARC1271 9348.65 72249.03 435.62 24 ARC0335 9601.28 71998.61 429.95 18 ARC1271 9348.66 72350.31 432.68 18 ARC0337 9398.55 71799.76 431.09 24 ARC1273 9249.42 72350.67 427.82 42 ARC0368 9146.68 71784.34 429.2 26 ARC1276 9105 72350.79 420.27 12 ARC0306 9149.65 71698.32 421.6 15 ARC1276 9105 72350.79 420.27 12 ARC0600 9149.65 71698.32 421.6 15 ARC12										
ARC0330 9599.27 72197.53 431.91 6 ARC1268 9300.17 72249.74 428.42 24 ARC0331 9607.16 71905.5 429.99 12 ARC1269 9350.34 72248.76 432.04 24 ARC0332 9555.79 71902.71 433.3 15 ARC1270 9398.86 72249.03 435.62 24 ARC0333 9601.28 71998.61 429.95 18 ARC1271 9348.62 72349.38 437.83 24 ARC0337 9398.55 71799.76 431.09 24 ARC1273 9249.42 72350.67 427.82 42 ARC0368 9146.68 71784.94 429.2 26 ARC1275 9150.1 72349.85 424.92 18 ARC0369 909.71 71773.47 427.16 24 ARC1275 910.5 72350.79 420.27 12 ARC0370 9060.61 71773.16 423.47 12 ARC1276 9300.18 72450.74 438.58 24 ARC0600 9149.65 71698.32 421.6 15 AR										
ARC0331 9607.16 71905.5 429.99 12 ARC1269 9350.34 72248.76 432.04 24 ARC0332 9555.79 71902.71 433.3 15 ARC1270 9398.86 72249.03 435.62 24 ARC0333 9601.28 71998.61 429.95 18 ARC1271 9346.62 72349.38 437.83 24 ARC0337 9398.55 71799.76 431.09 24 ARC1273 9249.42 72350.67 427.82 42 ARC0367 9199.69 71788.08 426.99 12 ARC1275 9150.1 72349.85 424.92 18 ARC0368 9146.68 71784.34 429.2 26 ARC1275 9150.1 72350.79 420.27 12 ARC0370 9060.61 71773.16 423.47 12 ARC1279 9349.61 72450.74 438.58 24 ARC0600 9149.65 71698.32 421.6 15 ARC1279 9349.61 72450.74 438.58 24 ARC0600 9149.65 71698.32 421.6 15										
ARC0332 9555.79 71902.71 433.3 15 ARC1270 9398.86 72249.03 435.62 24 ARC0333 9601.28 71998.61 429.95 18 ARC1271 9348.62 72349.38 437.63 24 ARC0336 9447.96 71798.95 433.5 24 ARC1272 9300.78 72350.31 432.68 18 ARC0337 9398.55 71799.76 431.09 24 ARC1273 9249.42 72350.67 427.82 42 ARC0367 9199.69 71788.08 426.99 12 ARC1275 9150.1 72349.8 421.91 18 ARC0368 9146.68 71774.74 427.16 24 ARC1276 9105 72350.79 420.27 12 ARC0300 9149.65 71698.32 421.6 15 ARC1279 9349.61 72450.74 438.58 24 ARC0601 909.32 71700.02 421.15 15 ARC1279 9251.18 72450.74 438.58 24 ARC0605 9149.7 71748.31 424.9 14 ARC1										
ARC0336 9447.96 71798.95 433.5 24 ARC1272 9300.78 72350.31 432.68 18 ARC0337 9398.55 71799.76 431.09 24 ARC1273 9249.42 72350.67 427.82 42 ARC0367 9199.69 71788.08 426.99 12 ARC1274 9200.2 72349.8 424.32 18 ARC0368 9146.68 71784.34 429.2 26 ARC1275 9105 72350.79 420.27 12 ARC0369 9097.71 71779.47 427.16 24 ARC1276 9105 72350.79 420.27 12 ARC0600 9149.65 71698.32 421.6 15 ARC1278 9300.18 72450.74 438.58 24 ARC0601 9099.32 71700.02 421.15 15 ARC1279 9251.18 72450.64 432.79 36 ARC0605 9149.7 71748.32 425.46 14 ARC1280 920.65 72449.9 423.47 42 ARC0606 9149.7 71748.32 425.46 14 ARC1281<	ARC0332	9555.79	71902.71	433.3	15		9398.86			
ARC0337 9398.55 71799.76 431.09 24 ARC1273 9249.42 72350.67 427.82 42 ARC0367 9199.69 71788.08 426.99 12 ARC1274 9200.2 72349.85 424.32 18 ARC0368 9146.68 71784.34 429.2 26 ARC1275 9150.1 72349.8 421.91 18 ARC0369 9097.71 71779.47 427.16 24 ARC1276 9105 72350.79 420.27 12 ARC0370 9060.61 71773.16 423.47 12 ARC1278 9300.18 72450.74 438.58 24 ARC0600 9149.55 71698.32 421.6 15 ARC1279 9251.18 72450.64 432.79 36 ARC0601 909.32 7170.02 421.15 15 ARC1280 9200.65 7249.9 423.47 42 ARC0605 9149.7 71748.32 425.46 14 ARC1281 910.39 72451.59 421.43 12 ARC0606 9149.7 71648.32 425.45 14 ARC1282<						ARC1271	9348.62	72349.38	437.83	24
ARC0367 9199.69 71788.08 426.99 12 ARC1274 920.2 72349.85 424.32 18 ARC0368 9146.68 71784.34 429.2 26 ARC1275 9150.1 72349.85 421.91 18 ARC0368 9097.71 71779.47 427.16 24 ARC1276 9105 72350.79 420.27 12 ARC0370 9060.61 71773.16 423.47 12 ARC1277 9349.61 72450.74 438.58 24 ARC0600 9149.65 71698.32 421.6 15 ARC1279 9251.18 72450.64 432.79 36 ARC0601 9099.32 71700.02 421.15 15 ARC1280 9200.65 7249.9 423.47 42 ARC0605 9149.7 71748.32 425.46 14 ARC1280 920.65 72451.59 421.43 12 ARC0606 9149.7 71650.68 419.23 16 ARC1282 9151.27 72451.17 421.32 30<										
ARC0368 9146.68 71784.34 429.2 26 ARC1275 9150.1 72349.8 421.91 18 ARC0369 9097.71 71779.47 427.16 24 ARC1276 9105 72350.79 420.27 12 ARC0370 9060.61 71773.16 423.47 12 ARC1277 9349.61 72450.74 438.58 24 ARC0600 9149.65 71698.32 421.6 15 ARC1279 9320.18 72450.64 432.79 36 ARC0601 909.32 71700.02 421.15 15 ARC1279 9251.18 72450.64 432.79 36 ARC0604 9102.74 71748.31 424.9 14 ARC1280 9200.65 72449.9 423.47 42 ARC0605 9149.7 71748.32 425.46 14 ARC1282 9151.27 72451.59 421.43 12 ARC0607 9100.72 71650.418.92 9 ARC1282 9151.57 7254.32 421.89 12 <										
ARC0369 9097.71 71779.47 427.16 24 ARC1276 9105 72350.79 420.27 12 ARC0370 9060.61 71773.16 423.47 12 ARC1277 9349.61 72450.74 438.58 24 ARC0600 9149.65 71698.32 421.6 15 ARC1278 9300.18 72450.64 432.79 36 ARC0601 9099.32 71700.02 421.15 15 ARC1279 9251.18 72450.64 432.79 36 ARC0604 9102.74 71748.31 424.9 14 ARC1280 920.65 72449.9 423.47 42 ARC0605 9149.7 71748.32 425.46 14 ARC1281 9101.39 72451.59 421.43 12 ARC0607 9100.72 71651.68 419.23 16 ARC1283 9052.52 72543.32 421.69 12 ARC0607 9100.72 71650 418.92 9 ARC1283 9052.52 72543.32 421.69 12										
ARC0370 9060.61 71773.16 423.47 12 ARC1277 9349.61 72450.74 438.58 24 ARC0600 9149.65 71698.32 421.6 15 ARC1278 9300.18 72450.64 432.79 36 ARC0601 909.32 71700.02 421.15 15 ARC1279 9251.18 72450.64 432.79 36 ARC0604 9102.74 71748.31 424.9 14 ARC1280 9200.65 72449.9 423.47 42 ARC0605 9149.7 71748.32 425.46 14 ARC1280 9200.65 72451.59 421.43 12 ARC06067 9149.5 71650 418.92 9 ARC1283 9151.27 72451.17 421.23 30 ARC0774 9349.09 72102.48 429.56 27 ARC1285 9151.27 7253.32 427.51 30 ARC0775 9294.1 72096.41 430.67 27 ARC1285 9151.52 72541.9 428.28 30 ARC0776 9248.76 72100.88 431.5 15 ARC128										
ARC06009149.6571698.32421.615ARC12789300.1872450.64432.7936ARC06019099.3271700.02421.1515ARC12799251.1872451.72426.5135ARC06049102.7471748.31424.914ARC12809200.6572449.9423.4742ARC06059149.771748.32425.4614ARC12819101.3972451.59421.4312ARC06069149.771651.68419.2316ARC12829151.2772451.17421.3230ARC06079100.7271650418.929ARC12839052.5272534.32421.8912ARC07749349.0972102.48429.5627ARC12859151.5272541.9428.2830ARC07759294.172096.41430.6727ARC12859151.5272541.9428.2830ARC07769248.7672100.88431.515ARC12879250.0472547.87427.8220ARC0778958.967229.09433.8815ARC1289929.3572550.54433.2830ARC07809349.4472298.74436.7633ARC1289940.5672550.54433.2830ARC07819299.8772301.39431.527ARC1289949.5572551.03436.5418ARC07829250.372296.79426.9421ARC14789049.5371900.71425.429 </td <td></td>										
ARC06019099.3271700.02421.1515ARC12799251.1872451.72426.5135ARC06049102.7471748.31424.914ARC12809200.6572449.9423.4742ARC06059149.771748.32425.4614ARC12819101.3972451.59421.4312ARC06069149.771651.68419.2316ARC12829151.2772451.17421.3230ARC06079100.7271650418.929ARC12849101.1772539.33427.5130ARC07749349.0972102.48429.5627ARC12859151.5272541.9428.2830ARC07759294.172096.41430.6727ARC12859151.5272541.9428.2830ARC07769248.7672100.88431.515ARC1286919.9672545.83424.7621ARC07789598.9672290.99433.8815ARC12879250.0472547.87427.8220ARC07809349.4472298.74436.7633ARC1289940.5672550.54433.2830ARC0781929.8772301.39431.527ARC1289934.9572551.03436.5418ARC07829250.372296.79426.9421ARC14789049.5371900.71425.429ARC07839200.3672301.21423.515ARC14799297.6472049.95431.9917<										
ARC0604 9102.74 71748.31 424.9 14 ARC1280 9200.65 72449.9 423.47 42 ARC0605 9149.7 71748.32 425.46 14 ARC1281 9101.39 72451.59 421.43 12 ARC0606 9149.5 71651.68 419.23 16 ARC1282 9151.27 72451.17 421.32 30 ARC0607 9100.72 71650 418.92 9 ARC1283 9052.52 72534.32 421.89 12 ARC0774 9349.09 72102.48 429.56 27 ARC1284 9101.17 72539.33 427.51 30 ARC0775 9294.1 72096.41 430.67 27 ARC1285 9151.52 72541.9 428.28 30 ARC0776 9248.76 72100.88 431.5 15 ARC1285 919.96 72545.83 424.76 21 ARC0778 9588.96 72299.09 433.88 15 ARC1286 929.36 72550.54 433.28 30 ARC0780 9349.44 72298.74 436.76 33 ARC128										
ARC0605 9149.7 71748.32 425.46 14 ARC1281 9101.39 72451.59 421.43 12 ARC0606 9149.5 71651.68 419.23 16 ARC1282 9151.27 72451.59 421.43 12 30 ARC0607 9100.72 71650 418.92 9 ARC1283 9052.52 72534.32 421.69 12 ARC0774 9349.09 72102.48 429.56 27 ARC1284 9101.17 72539.33 427.51 30 ARC0775 9294.1 7200.641 430.67 27 ARC1285 9151.52 72541.9 428.28 30 ARC0776 9248.76 72100.88 431.5 15 ARC1285 919.96 72545.83 424.76 21 ARC0777 9198.39 72101.85 427.81 15 ARC1288 929.04 72547.87 427.82 20 ARC0778 9588.96 72299.09 433.88 15 ARC1289 9290.36 72550.54 433.2										
ARC0606 9149.5 71651.68 419.23 16 ARC1282 9151.27 72451.17 421.32 30 ARC0607 9100.72 71650 418.92 9 ARC1283 9052.52 72534.32 421.89 12 ARC0774 9349.09 72102.48 429.56 27 ARC1284 9101.17 72539.33 427.51 30 ARC0775 9294.1 72096.41 430.67 27 ARC1285 9151.52 72541.9 428.28 30 ARC0776 9248.76 72100.88 431.5 15 ARC1285 9199.96 72545.83 424.76 21 ARC0777 9198.39 72101.85 427.81 15 ARC1287 9250.04 72547.87 427.82 20 ARC07780 938.96 72298.74 436.76 33 ARC1289 929.36 72550.54 433.28 30 ARC0780 9349.44 72298.74 436.76 33 ARC129 9400.56 72550.05 441.66										
ARC0607 9100.72 71650 418.92 9 ARC1283 9052.52 72534.32 421.89 12 ARC0774 9349.09 72102.48 429.56 27 ARC1284 9101.17 72539.33 427.51 30 ARC0775 9294.1 72096.41 430.67 27 ARC1285 9151.52 72541.9 428.28 30 ARC0776 9248.76 72100.88 431.5 15 ARC1286 9199.96 72545.83 424.76 21 ARC0777 9198.39 72101.85 427.81 15 ARC1287 9250.04 72547.87 427.82 20 ARC0778 9598.96 72299.09 433.88 15 ARC1289 929.36 72550.54 433.28 30 ARC0780 9349.44 72298.74 436.76 33 ARC1289 940.56 72550.05 441.66 28 ARC0781 929.87 72301.39 431.5 27 ARC129 940.55 72551.03 436.54 18<										
ARC0774 9349.09 72102.48 429.56 27 ARC1284 9101.17 72539.33 427.51 30 ARC0775 9294.1 72096.41 430.67 27 ARC1285 9151.52 72541.9 428.28 30 ARC0776 9248.76 72100.88 431.5 15 ARC1286 9199.96 72545.83 424.76 21 ARC0777 9198.39 72101.85 427.81 15 ARC1287 9250.04 72547.87 427.82 20 ARC0778 9598.96 72298.74 436.76 33 ARC1289 9299.36 72550.54 433.28 30 ARC0780 9349.44 72298.74 436.76 33 ARC1289 9400.56 72550.05 441.66 28 ARC0781 9298.87 72301.39 431.5 27 ARC1290 9349.95 72551.03 436.54 18 ARC0782 9250.3 72296.79 426.94 21 ARC1478 9049.53 71900.71 425.42										
ARC0775 9294.1 72096.41 430.67 27 ARC1285 9151.52 72541.9 428.28 30 ARC0776 9248.76 72100.88 431.5 15 ARC1286 9199.96 72545.83 424.76 21 ARC0777 9198.39 72101.85 427.81 15 ARC1287 9250.04 72545.83 424.76 21 ARC0778 9598.96 72290.99 433.88 15 ARC1287 9299.35 72550.54 433.28 30 ARC0780 9349.44 72298.74 436.76 33 ARC1289 9400.56 72550.54 433.28 30 ARC0781 9298.87 72301.39 431.5 27 ARC1290 9349.95 72550.05 441.66 28 ARC0781 9298.87 72301.39 431.5 27 ARC1290 9349.95 72551.03 436.54 18 ARC0782 9250.3 72296.79 426.94 21 ARC1478 9049.53 71900.71 425.42										
ARC0777 9198.39 72101.85 427.81 15 ARC1287 9250.04 72547.87 427.82 20 ARC0778 9598.96 72299.09 433.88 15 ARC1288 9299.36 72550.54 433.28 30 ARC0780 9349.44 72298.74 436.76 33 ARC1289 9400.56 72550.05 441.66 28 ARC0781 9299.87 72301.39 431.5 27 ARC1290 9349.95 72551.03 436.54 18 ARC0782 9250.3 72296.79 426.94 21 ARC1478 9049.53 71900.71 425.42 9 ARC0783 9200.36 72301.21 423.5 15 ARC1479 9297.64 72049.95 431.99 17	ARC0775									
ARC0778 9598.96 72299.09 433.88 15 ARC1288 9299.36 72550.54 433.28 30 ARC0780 9349.44 72298.74 436.76 33 ARC1289 9400.56 72550.05 441.66 28 ARC0781 9299.87 72301.39 431.5 27 ARC1290 9349.95 72551.03 436.54 18 ARC0782 9250.3 72296.79 426.94 21 ARC1478 9049.53 71900.71 425.42 9 ARC0783 9200.36 72301.21 423.5 15 ARC1479 9297.64 72049.95 431.99 17						ARC1286		72545.83	424.76	21
ARC0780 9349.44 72298.74 436.76 33 ARC1289 9400.56 72550.05 441.66 28 ARC0781 9299.87 72301.39 431.5 27 ARC1290 9349.95 72551.03 436.54 18 ARC0782 9250.3 72296.79 426.94 21 ARC1478 9049.53 71900.71 425.42 9 ARC0783 9200.36 72301.21 423.5 15 ARC1479 9297.64 72049.95 431.99 17										20
ARC0781 9299.87 72301.39 431.5 27 ARC1290 9349.95 72551.03 436.54 18 ARC0782 9250.3 72296.79 426.94 21 ARC1478 9049.53 71900.71 425.42 9 ARC0783 9200.36 72301.21 423.5 15 ARC1479 9297.64 72049.95 431.99 17										
ARC0782 9250.3 72296.79 426.94 21 ARC1478 9049.53 71900.71 425.42 9 ARC0783 9200.36 72301.21 423.5 15 ARC1479 9297.64 72049.95 431.99 17										
ARC0783 9200.36 72301.21 423.5 15 ARC1479 9297.64 72049.95 431,99 17										
ARGUIC4 9100 12301.01 421.52 21						ARC1479	9297.64	72049.95	431,99	17
		9190	12001.01	721.32	<i>∠i</i>					www

e ... e sere

-

149

.

Appendix 4: Table A4.1. XRF analyses of selected RC holes for MM2.	Table A	4.1. XR	tF anal	yses of st	elected	RC hole	s for M	M2.		and the second												-								
Hole ID	Depth	IN%	%Co	o SiO2	AI203	3 Fe203	0 MnO			CaO Na	NaZO KS	K20 TIO2	2 P205	5 Ba	0 Ce	ö	ບັ	õ	Ga –	La Nb	d Pb	4R	S	ર્જ	>	بر	μŹ	21	OXIDES	TotalTr
	(iii)				*	%	%	%		%	%	% %	%	udd	mqq 1	mqq	mdd	mqq	d udd	mqq mqq	mqq m	mdd 11	mdd	mdd	mdd 1	Edd	Шdd	mdd	%	mdd
CBRC0796																;		1					1			;	ļ	ţ	1	
30379	4 100	0.19			,			51 0.66			0.15 0.	0.07 0.51				430	7684	21			4 9	<u>ہ</u>	0/6			2:	99	6	9.59 1	90011
30381	e	0.136			-							04 0.32	2 0.009	9 91 9	Ņ	280	3359	ខ្លួ	₽;	· •			29300	0 42	125	÷ ۲	5	9 <u>7</u> 9	15.9	35091
30383	4	0.133			·					2,44 0,						450	3708	25					1163			a ·	5	40	8.69	1/656
30384	¥D.	0.164			·											490	4316	90					2220			4	51	69	85.9	8303
30390	₽	0.278						46 1.02			0.16 0.1					390	5741	66					360			0	5	26	83.8	10240
30391	=	0.32			÷.,											600	13155	70					295			æ	232	24	81.7	18072
30392	12	0.632	0.039							0.38 0.						660	9166	80					370			13	231	22	81,1	17434
30393	13	1,24	0.182													1090	6326	2				ņ	560			Ð	220	16	79.2	22761
30395	15	1.224		11 37.72	5.39	24.86	6 0.498									066	6466	51					450			÷	202	35	7.9.7	21563
30397	17	1,114			5.44	24,63	3 0.405									730	6598	6 1			9		290			Ξ	172	14	81.0	19751
30398	18	0.839	0.031	11 37.12	4.28	19,40	0 0.274		18.26 2.3		0.27 0.1	-	-			520	5439	53		•	_	7	220			12	123	13	82.1	15409
30404	24	0.71	0.024		4.68	19.40	0 0.315			0,38 0.	-	0.05 0.19	9 0.001			200	5340	55					20			13	127	17	83.5	13282
CBRC0797																														
30405	÷	0.082	0,003	13 40.73	17.31	27.79	9 0.031	31 0.86		0.42 0.	0.13 0.1	24 0.56	6 0.011	_		30	5390	22		7	7	17	10		192	Ŧ	19	120	88.1	7068
30406	N	0.068								-	0.11 0.	16 0.80	0	_	~	40	6601	19		12 7	17	10	280	43	267	Ð	17	152	88.3	10355
30407	ť	0.04								-		0.04 2.29	0	•		90 100	13730	18				~	370		583	ø	26	262	89.7	15726
30410	6	0.085			,			-				0.05 0.88				290	14316	32		4 12			1150		236	B	33	197	81.3	17266
30414	6	0.318	0.022	2 14.28	16.73	51.94	4 0.047	47 0.49			-					180	12726	42					200	16	155	\$	88	54	84.2	17179
30415	₽	0.285		3 13,47			0 0.066	66 0.42								120	7846	46					430		168	Ŧ	80	33	85.2	11835
30417	12	0.524	0.557		18.99			_							_	50	7809	80					150		150	9	95	3	83.0	20620
30419	14	0.915	0,136													60	6848	55					20		237	Ø	194	16	81.1	18452
30420	15	1,417	, 0,099									0.08 0.19				100	7521	46					30		113	9	145	18	6.77	23275
30423	18	0.752	0.072	2 40.70												180	5785	30					40		79	Ø	123	¢	85,1	14644
30425	19	1,128										0.08 0.13				230	4101	21					20		53		103	Ð	83.1	16761
30426	20	1.128								0.52 0.			0 0.001	4	ņ	285	3755	2	ę	1 - -	2	Ϋ́.	8	£.	44	Ð	120	8	82.7	15978
30429	23	0.879										0.07 0.05				210	3375	27			cy.		0		49		66	2	84,9	12868
30430	24	0.831														200	2457	21	ę	~~ ·	ŝ		4 0		2		5	ø	86.1	11735
30432	26	0.918				-										80	2868	10	~	0	¢		6		66	¢	80	ø	85.3	12850
30435	29	0.67				10.12										130	1627	16	(7)	۲ بست		en 1	e :		23	5	5	(n) -	30.6	8953
30440	ş	0.616			-	10.78						_	~			8	1702	9	0	5 ·	τ ·		2		4	~ :	ŝ	9	89.7	8285
30441	35	0.816				14.87						-	~		0	120	2416	21	•	φ ,	- -	*	20		8	₽.	76	3	86.8	11137
30445	39	0.484			_	9.02					-	-				80	1659	5	N	2	~	-	2	16	36	4	96	9	80.0	6888
30446	40	0.419				5.39				-	-	0.03 0.00	0 0.002			69	1150	ณ	c	7 N	-	~	ç	Ţ	17	4	33	ო	64.7	5546
30448	42	0.338	0.009	9 26.95	0,43	5,65	0.085	85 27.60		4,22 0.	0.02 0.0	03 0.00	-			9	1077	e	Ŷ	0 0	5	?	0	×.	4	2	35	9	65.0	4647
CRRC0799																														
30475	÷	0.325	0.023	3 48.72	10.62	23.99		55 1.43		0.33 0.	0.11 0.	0.17 0.26				40	14371	46		16 2	¥		160			14	118	58	85.7	18574
30476	2	0,533					0.031									20	1502	15					20			₽	32	81	83.0	7451
30479	ŝ	0,35												3 52		40	290	1 0					¢			=	22	103	82.2	4368
30480	¢	0.322			13.57	5.07	0.030									90	239	~					¢			6	3	104	83.4	4060
30481	۲	0.27									0.50 0.0	0.35 0.31		****	Ħ	150	223	14	18	14 1	15	53	210	90	28	6	24	101	82.6	4904
30484	1	0.201	0.006	- 1	14.71	4.56	0.035	35 3.72		0.72 1.	- 1	- 1	5 0.004			130	85	6					90			14	44	121	86,2	3419

• -- • - • •

Hole ID	Depth	N%	%Co	SI02 /	AI203 Fe203 % %	Fe203 %	MnO %	0 ⁶ W	CaO %	Na20 %	K20 T	TI02 P2	P2O5 B % pp	Ba Ce Dom Dom		b Ba	S E	eg Eg	La la		Pb Rb ppm ppm	s u	n Sr mgg	> u	≻ udd	uz mad	Zr O	oxides %	TotalTr
00000791	1.1.													1	1				1	1	1	1		•	E	-			
26821	÷	0.052	0.002	61.96	15.60	4,90	0,029	1.07	3.96	0,16	-	-						5	æ	9	5				10	27	123	88.4	2035
26822	• 04	0.041	0.002	62.00	20.89	4.93	0.030	0.67	0.66	0,15	0.08 0	0.81 0.1	0.009 5	54 25				21	ů	ŝ	1 3	50				25	147	90.2	1474
26825	ŝ	0.015	0.002		21.01	5,42	0.020	0.25	0,13	0.10	-					88	27	27	က္	9	5 -2	: 160	0 10		-	47	167	91.2	1407
26826	9	0.031	0.002		22.58	5,95	0.009	0.33	0.15	0.09	-	·		44 15				29	4	4	5 -1					3	180	90.7	1778
26831	ŧ	0.045	0,002	69.63	18.46	1,39	0.007	0,81	0.14	0.18	-	-		188 37				23	22	2	12 13				-	26	138	92.2	2107
26832	12	0,047	0.004	57,88	21.46	4.08	0.015	1.78	1,56	0.19	-	-			_			27	18	m	11 16					66	161	68.4	3149
26833	13	0.021	0.004	53.97	20,80	5.17	0.018	1,84	3,19	0.25	-	-	•	_				23	50	T	11 47					79	147	87.0	3812
26834	14	0.042	0.008	46,14	21.05	10.88	0.018	2.59	1.46	1.12	-							25	56	o	16 2£					144	140	85.4	4798
26835	15	0.045	0.009	47.38	19.06	10.17	0,020	3.29	1.81	1.29	_	-		696 47	-	1565		20	23	4	15 27	195			•	178	131	84.7	4409
26836	1 6	0.046	0.009	47.33	18.99	11,43	0.028	3.74	0.66	0.68		-							2	3	12 5(-	200	127	84.8	3736
26840	19	0.018	0,004	65.12	16.79	5.71	0.031	1.38	0.79	2.62				-			80		41	2	3 47		-		14	96	146	94,2	1421
26841	20	0.02	0,004	62.39	16,12	7.80	0.039	1.25	0,49	0.56									51	4	18 65					87	127	92.1	1801
26844	23	0.024	0.004	61,62	15.85	9.94	0.057	1.21	0.72	0.83		0.59 0.	0,105 17					20	71	ø	13 54					11	124	92.2	1685
26846	25	0.057	0.008	49,98	15.69	14.57	0.078	2.54	0.65	0.22	0.83 1	1.19 0.1							16	s	5 25					138	88	85.8	1884
26847	26	0.018	0.003	38.58	10.14	6.13	0.047	1.29	0.28	0.14		0.43 0.							31	?	2 41				23	69	71	58.2	986
26850	29	0.014	0.005	62,20	15.94	8.16	0.090	2.36	0.31	0,13	-	0.60 0.0	0.059 25					- •	33	en en					19	195	112	92.9	1506
26853	32	0.016	0.003	62,13	15.38	8.25	0.070	2.49	0.44	0.10	2.05 0	0.49 0.1	3.050 16	187 73				- •	17	N	5 65				4	269	119	91.4	1223
26854	33	0.011	0.005	63.37	15,79	6.43	0.117	2.67	0,44	0.11		0.49 0.1	0.024 25	292 52				21	22	÷	4 54				16	160	129	91.3	1090
26857	36	0.016	0,005	64.62	15.79	6.04	0.182	1.62	1.71	1.68	2.35 0	-							21	÷	7 51				15	140	116	94.7	1343
CBRC0727	•	2 7 7 0	200.0	60 60	93 60	0 + C 6	610.0	22 C	16.0	0.06	0.07	0.76 0.1	1012 AC	CC. 009	0 1 0		8 8	80	20	Ę	r a	781	- E	338	2. T	54	164	80 S	18340
26946	- 1	0.179	100,0	20177	40°07	20.10				555			•	•		071 CI		3 7	; r	<u>}</u> 4	2 -	14		641	2	5 8	2	0,00	13664
26950	s.	0.339	0.015	14.48	16.28	52.84	0.072	0.64	0.12	0'03								= {	N S	о r	, .				- 8	B Ş		0.00	#0001
26954	æ	0.323	0.016	16,74	14.55	51.66	0.133	0.86	0.16	0.09	-	-		-		•		2	8	~ :	ימ				77		8	84./	24228
26955	6	0.276	0.019	13,85	11.43	60.20	0.230	0.64	0.17	0.07		-						S	Ņ	-	ц С				-	103	34	87.1	13388
26958	12	0.228	0,027	16.43	11.25	59.58	0.262	0,81	0.61	0.04							3	4	T	ŝ					12	8	16	89.3	7924
26959	13	0.382	0.028	13.10	8.72	61.36	0.113	1.35	1.45	0,04									8	8	~				2	205	26	86.5	13538
26961	15	0.587	0.038	17.15		54.39	0.097	5.47	2.02	0.05	0.02 0			18 38	3 100			~	13	4		6	32	307	4	243	17	84.7	15995
26962	16	0.66	0.098	30.48	4.60	37.41	0.343	7.79	2.71	0.07								4	0		<u>1</u>				13	181	13	83.6	14543
26963	17	0.709	0.093	32.90	6.48	36.36	0.234	7.47	0.60	0.06						-		₽	0	თ	-				÷	145	15	84.4	15047
26964	18	0.276	0.022	53.80	2.77	12.80	0.032	23.57	0.08	0.03	0.01 0			2			15	4	T	0	9				9	8	2	93.2	6167
26967	21	0.203	0.011	57.21	1.63	8.79	0,017	26,48	0.03	0.02						-		N	2	-	9				Ċ	42	e	94.3	6751
26968	22	0.206	0.018	56.03	2.36	9.54	0.057	25.84	0.04	0.05	0.01 0	_		17 6	-20			0	ņ	ů	ະຕຸ ທີ	0			ß	57	2	94.0	8662
26970	24	0.36	0.029	52.12	1.87	15.89	0.178	21.61	0,10	0.05		0.07 0.0	0.009 15	150 -5		5922		Ċ	ŝ	0	9 1				₽	46	9	91,9	10141
CERCI384																													
60792	+-	0.053	0.003	64,81	12.69	7.93	0.032	1.25	1.00	0.49	0.55 0		0.041 10	1037 49		Ċ		15	37	4	11 22		0 199		10	92	97	89.3	4663
60795	4	0.085	0.007	57.88	15.79	8.85	0.045	2,18	1.14	1.81		0.58 0.4				1231		17	27	-	10 17	•			*	78	102	88.8	4212
60796	N)	0.047	0.003	52.20	15.78	8.53	0.022	2.07	3.26	0.86			0.013 58			•		20	26	٣	9 14				2	167	117	83.9	4257
60798	7	0.012	7E-04	52.80	18.39	14.30	0.057	0.72	1.31	2,61								20	ų						Ģ	26	74	91,9	1480
60799	Ø	0,01	0,002	52.65	17.10	14.50	0.109	2,88	3.94	3.05		1.33 0.0	0.014 23					24	N						22	45	11	96.0	1676
60801	10	0.014	0.003	51.24	15.28	14.00	0.156	5.04	6.25	3,18	•			112 34	110	1 263	41	18	ß	ç;	9 20	20	270	0 356	35	66	86	96.8	1591
60803	12	0.027	0.005	50.97	14.27	10,34	0.127	7.35	5,44	3.07	1.38 0	0.71 0.	0.111 65					16	39				-	1	39	98	123	93.8	3197

(i) %	Hole ID	Depth	%Ni	%Co	SI02 /	AI203 Fe203	Fe203	MnO	MgO	CaO	Na2O	K2O T	TiO2 P2	P205 B	Ba Ce	ច	ັວ	ទី	Ga	۲a	d qN	Pb Rb	S	ັດ	>	≻	Zu	Zr	•	FotalTr
1 0.114 0.005 4.899 1.15 2.43 0.10 0.53 2.43 0.10 0.53 2.49 1.16 0.11 <th< th=""><th></th><th>Ē</th><th></th><th></th><th>%</th><th>%</th><th>%</th><th></th><th>8</th><th>%</th><th>%</th><th>%</th><th></th><th></th><th>- 1</th><th></th><th>ngq</th><th>udd</th><th>bbu</th><th>- 1</th><th></th><th>- 1</th><th></th><th></th><th>- 1</th><th>udd</th><th></th><th>- 1</th><th>6</th><th>mqq</th></th<>		Ē			%	%	%		8	%	%	%			- 1		ngq	udd	bbu	- 1		- 1			- 1	udd		- 1	6	mqq
1 0.031 6.003 6.13 0.03 6.13 0.033 6.14 0.03 0.033 5.14 0.13 <t< td=""><td>CBRC1395</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	CBRC1395																													
2 00003 Elected T2 100	66041	*		-	. 68.61	11.65	28.95	0.102	0.50	0.32	0.13	-					4025	57	6	25	~~ ~~	24			259	3	55		80	7022
3 0000 See4 67.0 67	66042	N		• -	72,87	12,82	5.29	0.020	0.42	0.43	0,16						224	22	16	18		5			98	20	16		12	1846
5 0.000 8E-04 7.10 7.0 0.001 8E-04 7.80 7.80 7	66043	e 9	0.009	_	31,86	14.20	4.13	0.010	0.64	6.67	0.07						76	19	15	24	0	3		161	100	F	8		17	1132
7 0000 85:04 5:53 0:01 5:00 0:00 85:04 1:13 5:3 0:01 5:0 1:14 1:0 1:13 1:14 1:14 1:14 1:14 1:14 1:14 1:14 1:14 1:14 1:14 1:14 1:14 1:15 1:14 1:1	66045	ŝ	0.003	_	37.80	6.02	4.40	0.010	0.72	1.58	0.04	-			_		32	ŝ	17	25	° en	5		50	95	15	ŝ		ĸ	634
10 0000 665 617 510 51 51 52 41 1 22 61 5 52 72 91	66047	~	0.004	_	53.63	17.18	7.26	0.013	0.90	1.22	0.15						28	2	20	14	8	41		9	113	15	12		6	1007
11 0.0003 0.0005 0.667 1.57 0.52 0.017 1.109 0.017 1.109 0.015 1.57 0.52 0.017 1.109 0.015 0.157 1.57 0.017 1.109 0.015 0.157 1.57 0.017 1.109 0.010 0.55 1.57 0.54 1.57 0.54 1.57 0.54 1.57 0.54 1.57 0.55 1.51 0.57 1.59 1.57 1.	66050	10	0.004		36.85	6.62	5.49	0.008	1.04	0.68	0.10						32	ŝ	22	41	÷	0 24		32	106	† 5	15		5.6	898
12 0000 0000 646 154 174 0017 148 015 147 056 0016 112 001 100 116 12 2 14 11 2 2 14 11 2 141 11 2 2 14 11 2 14 11 2 14 11 2 14 11 2 14 11 2 14 11 2 14 11 2 14 11 2 14 11 2 14 11 2 14 10 2 14 1 2 14 11 2 14 11 2 14 11 2 14 11 2 14 11 2 14 11 2 14 11 2 14 11 2 14 11 2 14 11 2 14 11 2 14 11 2 2	66051	ŧ	0.004		36,69	17.53	4.55	0.012	1.37	0.32	0.03						34	7	18	38	-	7 23		45	69	15	22		8	755
15 0.000 0.001 5.45 0.01 2.5 -40 4 2 1 2 1 1 2 1 1 2 1 1 1 2 1 0 0 0 1 1 2 1 0 0 0 0 1 1 0 1 1 1 0 0 0 1 1 0 0 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1	66052	12	0.003		54.67	15.49	7.24	0.017	1.89	0.44	0.13				•		26	0	21	20	-	43		35	144	÷	24		2	801
16 0.006 0.002 57.26 14.06 0.016 0.017 0.005 0.002 57.75 14.0 0.01 0.055 0.55 15.4 11 26 106 081 18 0.010 0.002 55.7 15.8 61.7 0.02 0.55 15.5 11.1 139 18 11 139 18 11 139 18 135 18 11 139 18 135 18 11 139 189 100 200 25 25 26 26 13 14 17 0 27 13 14 130 20 25 26 25 26 25 27 26 27 14 14 17 26 14 130 26 25 26 26 26 27 26 27 14 27 27 27 27 26 27 14 120 27 14 120 27	66056	15	0.004			15.77	5.42	0.014	2,46	0.85	0,15				36 55	01 10	40	4	21	21		9		37	118	ŝ	22		2	790
16 0.006 0.007 0.008 0.017 0.008 0.017 0.008 0.017 0.016 0.017 0.	66057	16	0.005			14.06	6.04	0.019	4.35	4.12	0.22				11 36	-60	47	ອ	22	13	, 1	4 36		85	124	Ħ	26		1	1169
19 0.01 0.003 56.57 16.82 9.07 0.055 5.64 0.090 6.1 1.1 22 0.5 0.1 0.03 5.64 1.9 0.01 0.003 5.64 1.9 0.05 5.64 1.9 0.00 5.64 1.9 0.00 5.64 1.9 0.00 5.64 1.9 1.9 1.1 1.9 1.9 1.1 1.9 1.1 1.9 1.0 2.7 1.6 1.4 1.4 1.7 1.6 1.4 1.4 1.7 1.6 1.4 1.4 1.7 1.6 1.4 1.4 1.7 1.6 1.6 1.7 1.1 1.1 1.1 1.1 1.4 1.7 1.6 1.4 1.4 1.7 1.6 1.4 1.9 1.7 1.6 1.7 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1	66059	18	0.005		32.79	15,95	6,77	0.024	3.24	0.82	0.16						33	හ	20	8	4	33		27	139	16	27		8	836
23 0.007 0.003 6.16 1.6 0.03 1.7 0.7 0.05 0.005	66060	19	0.01		56.57	16.82	9.07	0.035	3,83	1.09	0.07		_			-30	52	2	24	27	ŝ	22		9	163	18	41		8,8	703
Z1 0.005 0.001 0.002 5.30 0.047 0.052 5.463 0.147 141 -70 35 0 6 18 10 15 33 111 912 22 0.01 0.002 5463 0.55 0.063 516 0.164 0.55 0.013 116 103 112 113 121 29 95.1 31 0.002 0.001 5.11 6.20 316 0.15 17 16 13 103 128 139 131 1	66064	23	0.007		58.64	16.49	7.69	0.032	3.97	0,65	0.11		_			-30	41	9	25	5	ۍ ۳	3 16		33	125	13	4		0.0	679
29 0.01 0.002 54.63 2.06 5.0 5.0 7 8 2 45 0 7 10 181 106 20 11 22 30 0.005 0.001 69.3 15 0.05 0.065 0.05 56 5 5 7 16 17 7 10 181 16 17 29 95.1 31 0.002 0.001 69.3 15 147 186 146 16 46 17 7 16 19 7 7 10 191 10 95 14 180 44 1 19 1 10 11 10 147 180 10 11 11 10 867 13 16 11 16 11 16 11 10 16 11 16 11 16 11 11 16 11 16 11 16 11 16	66068	27	0,005		31.16	15.47	6.97	0.052	3.38	1,63	1.22	_	_		11 41	-70	36	Ø	23	20	0	\$ 18		83	104	15	33		2	627
30 0.006 0.002 6.3.11 16.20 3.5.2 1.04 0.55 5.5 1.0 1.1 2.8 2.39 3.29 3.29 3.29 3.29 3.29 3.29 3.29 3.29 3.29 3.29 3.24 1.00 1.01 1.26 1.41 1.86 0.44 0.15 1.41 2.0 5.1 1.01 1.28 1.29 95.1 37 0.006 0.007 7.40 3.74 0.10 3.11 0.26 3.24 0.11 2.65 1.44 1.1 1.01 3.6 1.1 0.16 3.1 1.01 1.1 0.26 0.30 0.16 1.1 0.26 0.30 0.16 1.1 0.26 0.10 1.1 0.26 0.10 1.1 0.11 0.11 0.11 0.26 0.10 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11	66070	29	0.01		54.63	20.68	5.93	0.042	3.10	3.38	3.20	-	_		74 95	-20	72	8	27	45		17	1	181	106	20	31		4	1015
31 0.002 0.001 69.23 14.35 3.23 0.016 2.18 1.56 1.47 1.86 0.44 0.163 463 49 25 2 7 18 15 4 12 95.1 33 0.006 0.002 72.40 12.92 3.16 1.01 0.11 0.28 0.43 0.13 4.9 11 100 8657 63 13 11 91 67 14 82 46 88.6 2 0.114 0.039 4.36 10.77 33.28 0.104 3.16 10.17 0.33 0.39 0.105 19 15 386.7 14 13 11 18 89 9 76 81.3 81.3 2 0.314 0.039 3.12 0.17 0.32 0.28 0.001 2.3 12 80.1 10.7 10.7 10.7 10.7 10.7 10.7 10.7 11 10.8 10.7 10.7 <td>66071</td> <td>30</td> <td>0,006</td> <td></td> <td>33,11</td> <td>6.20</td> <td>5.15</td> <td>0.023</td> <td>3,52</td> <td>1.04</td> <td>0.65</td> <td>-</td> <td>_</td> <td></td> <td>5 5</td> <td>-50</td> <td>35</td> <td>ŝ</td> <td>26</td> <td>25</td> <td>ີ ຍາ</td> <td>1 47</td> <td>-20</td> <td>ŝ</td> <td>103</td> <td>÷</td> <td>28</td> <td></td> <td>6</td> <td>1155</td>	66071	30	0,006		33,11	6.20	5.15	0.023	3,52	1.04	0.65	-	_		5 5	-50	35	ŝ	26	25	ີ ຍາ	1 47	-20	ŝ	103	÷	28		6	1155
33 0.006 0.007 7.40 1.5 1.6 1.0 36 7 16 19 4 7 7 10 135 61 15 19 112 97.1 1 0.194 0.01 37.49 10.77 33.25 0.104 3.16 1.01 0.37 0.28 0.07 203 19 15 383 45 9 7 4 13 11 165 18 8 7 4 13 11 165 8 13 12 20.0 2 0.314 0.035 1.77 0.24 0.001 502 19 15 383 45 9 7 4 112 732 3 0.743 0.014 3.16 0.17 0.37 0.37 0.39 0.19 52 0.001 274 4 5 4 5 4 5 4 5 4 5 4 5 6	66072	31	0.002	-	59.23	14.95	3.23	0.018	2,18	1.56	1.47	-	_	_	39 45	1 -25	22	~	18	15	4	34	-10	92	92	14	18		5	927
07132 1 0.1194 0.01 37.49 10.77 33.26 0.104 3.16 1.01 0.11 0.26 6.3 0.01 5.65 157 14 82 46 86.6 2 0.314 0.01 37.27 0.214 8.31 4.24 0.17 0.37 0.28 0.001 50.2 19 15 386.3 45 9 7 4 13 11 165 88 9 76 56 811.3 3 0.743 0.039 43.21 0.71 0.37 0.220 0.20 50.0 325 545 45 5 4 13 11 16 173 0.31 0.37 0.32 0.20 0.001 20.2 0.001 20.2 0.001 20.2 0.001 20.2 0.001 20.2 0.001 20.2 0.001 20.2 0.001 20.2 0.001 20.2 20.0 20.0 20.0 20.0 20.0 <t< td=""><td>66074</td><td>33</td><td>0.006</td><td></td><td>. 05.27</td><td>12.92</td><td>3.69</td><td>0.036</td><td>2.16</td><td>2.31</td><td>2.74</td><td>-</td><td>_</td><td></td><td>27 46</td><td>9-</td><td>36</td><td>2</td><td>16</td><td>19</td><td>4</td><td>-</td><td>-1 0</td><td>136</td><td>61</td><td>15</td><td>19</td><td></td><td><u>.</u></td><td>632</td></t<>	66074	33	0.006		. 05.27	12.92	3.69	0.036	2.16	2.31	2.74	-	_		27 46	9-	36	2	16	19	4	-	-1 0	136	61	15	19		<u>.</u>	632
1 0.194 0.01 37.49 1.077 33.26 0.104 3.16 1.01 0.11 0.26 0.43 0.013 439 11 9 10 8 190 57 157 14 82 46 86.6 2 0.314 0.017 33.26 0.104 3.16 1.01 0.317 0.320 100 155 13 11 9 10 8 190 57 157 14 82 46 86.6 3 0.743 0.039 43.27 0.32 0.22 0.001 502 392 286.5 574.5 44 5 4 3 6 13 343 16 70.0 5 1.134 0.046 0.16 0.25 0.001 523 6001 27 1 15 1 1 15 5 2 2 2 2 2 2 2 2 2 2 2 2																														
1 0.194 0.01 37.49 0.077 33.26 0.104 3.16 1.01 0.11 0.26 0.43 0.013 439 11 9 10 8 190 57 157 14 82 46 86.6 2 0.314 0.039 43.92 6.53 17.27 0.214 8.31 4.24 0.17 0.37 0.28 0.001 502 39 286.5 574.5 4 5 4 3 6 -1 344.30 16 7 17 16 7 13 10 17 19 16 0.25 0.001 502 3575 6709 7 7 7 7 7 14 81.0 7 17 16 7 17 15 17 16 17 15 549 17 7 7 7 7 7 7 7 7 16 17 17 16 17 16 1	CBRC0732																					•			ļ	:	1			
Z 0.314 0.039 4.382 6.53 17.27 0.214 0.37 0.28 0.007 203 19 15 3863 45 9 7 4 13 11 165 88 89 7 6 81.3 3 0.743 0.039 3.022 4.62 10.17 0.37 0.28 0.001 502 39 2865 5745 4 5 4 3 6 -1 34430 122 60 6 132 20 70 8 1.187 0.044 38.47 5.03 0.010 523 0.001 517 1 2 9 3 8 7 13 16 7 17 16 7 17 14 81.0 10 0.776 0.018 2.016 0.25 0.001 51 1 121 15 8 7 17 18 17 75 8 123 14	27067		0.194		37,49	10.77	33.26	0.104	3,16	1.01	0.11		_		39	8	8657	63	13	F	6 1	8	190		157	4	82	_		1890
3 0.743 0.073 30.22 4.62 18.02 0.172 8.34 7.77 0.42 0.20 0.001 502 395 5745 44 5 4 3 6 -1 3430 122 60 6 132 20 70.0 5 1.134 0.044 38.47 5.98 21.47 0.550 0.19 0.25 0.001 828 6 3575 6709 79 7 0 2 9 2 2000 42 74 16 733 14 81.0 10 0.776 0.018 3.14 12.15 0.56 0.56 0.56 0.51 0.30 501 577 59 7 5 3 56 7 14 8 1 167 733 17 789 8 7 17 789 8 7 177 789 8 7 177 789 117 783 16 733 </td <td>27068</td> <td>~</td> <td>0.314</td> <td>_</td> <td>13.92</td> <td>6.53</td> <td>17.27</td> <td>0.214</td> <td>8.31</td> <td>4.24</td> <td>0,17</td> <td></td> <td>_</td> <td></td> <td>33</td> <td>- 5</td> <td>3863</td> <td>45</td> <td>Ċ,</td> <td>5-n-</td> <td>4</td> <td>5 5</td> <td>165</td> <td></td> <td>89</td> <td>Ø</td> <td>76</td> <td></td> <td></td> <td>8175</td>	27068	~	0.314	_	13.92	6.53	17.27	0.214	8.31	4.24	0,17		_		33	- 5	3863	45	Ċ,	5-n-	4	5 5	165		89	Ø	76			8175
5 1,134 0.044 38,47 5.98 21,11 0.55 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 5001 828 6 3575 6709 7 0 2 9 2 2800 42 78 8 118 16 73.3 10 0.776 0.018 43,48 5.62 21.69 0.300 901 0.25 0.001 51 1 1980 577 59 7 5 4 10 -2 7 15 81.2 14 81.0 11 0.715 0.018 7.55 0.21 0.46 0.16 0.23 0.001 51 1 1990 577 59 7 8 1 7 15 81.2 18 70.3 15 0.555 0.005 7.71 0.30 0.001 11 114965 5448	27069	n	0.743		30.22	4.62	18.02	0.172	B.34	77.77	0,42	_	_		35 36	1 2865	5745	44	ŝ	4	ň	7	3443	_	60	9	132	20 70		31748
8 1.187 0.0.45 39.21 6.06 21.1 13.06 0.23 0.01 27.4 1 2115 5.492 83 7 1 5 9 3 855 42 78 6 123 14 81.0 10 0.776 0.018 43.48 5.62 21.69 0.300 9.01 0.20 0.01 51 1 1980 5777 59 7 5 4 10 -2 705 43 86 7 17 15 81.2 11 0.715 0.011 40.83 6.016 0.25 0.001 51 1 1980 5777 59 7 8 7 17 799 77 799 77 799 756 7017 706 717 10 713 159 713 713 713 713 713 717 799 7017 716 713 716 717 719 716	27071	ŝ	1,134		38.47	5.98	21.47	0.620	11,12	0.56	0.58	-			88	3575	6709	61	•	0	2	5	2800	42	79	¢	118			26043
10 0.776 0.018 4.3,48 5,62 21,69 0.300 9.01 0.25 0.001 51 1 1980 5777 59 7 5 4 10 -2 705 43 86 7 15 81.2 11 0.715 0.011 6.76 2.3163 0.106 7.55 0.21 0.45 0.11 0.30 0.001 51 1 1985 5609 77 8 1 1 745 46 89 7 135 17 79.9 15 0.553 0.005 40.77 6.76 2.318 0.067 0.31 0.301 0 -1 18 12 1 735 17 79.9 16 0.539 0.017 36,12 6.76 0.301 0.4 0.24 0.001 83 -1 16 17 76 11 165 166 1660 167 0.29 0.001 83 -1 15 17 79 17 79 17 79 71 74 95	27074	æ	1.187		39.21	6.06	21.16	0.371	13.06	0.20	0.54	-			74 1	2115	5492	83	7		5	9	858	42	78	9	123	14 81		21403
11 0.715 0.011 40.83 6.67 23.63 0.106 7.55 0.21 0.46 0.11 0.30 50.77 8 1 3 11 1 745 46 89 7 135 17 79.9 15 0.555 0.005 40.77 6.76 23.18 0.063 7.25 0.71 0.46 0.16 0.30 0.001 0 -13 16.55 7786 49 -1 8 12 -1 590 51 95 8 122 18 79.7 16 0.539 0.017 38,12 6.26 23.14 0.29 0.001 83 -11 1855 64.48 33 7 7 6 -1 595 74 95 10 105 23 78.2 18 0.602 0.034 17.03 0.120 17.03 0.22 0.001 98 3 1350 5477 22 5 5 1 70 31 73 32 70 10 105 123 10	27076	10	0.776		13,48	5.62	21.69	0.300	9,01	0.20	0.46	-			39 7	1980	5777	59	~	ŝ	*	0	705	1	86	~	117			17083
15 0.555 0.005 40.77 6.77 0.71 6.76 0.46	27077	11	0.715		10.83	6.67	23.63	0.106	7.55	0.21	0.45				+	1985	5809	17	œ		т Т	+	745		88	~	135	32 21		6215
16 0.539 0.017 38.12 0.160 7.24 0.45 0.16 0.23 7.83 1 1855 6448 33 7 7 6 -1 595 74 95 10 105 23 78.2 18 0.602 0.034 37.87 5.46 19.06 0.331 13.32 3.05 0.46 0.14 0.24 0.001 98 3 1330 5477 22 5 5 1 27 15 13 13 73 18 79.9 19 0.453 0.014 4.637 17.03 0.120 11.75 1.30 0.22 0.001 30 -6 1117 4854 18 6 4 7 8 0 343 57 71 7 78 9.9 24 0.306 0.007 64.26 5.31 0.52 0.019 39 26 220 1764 31 8 9 37 <td>27081</td> <td>15</td> <td></td> <td></td> <td>10.77</td> <td>6.76</td> <td>23.18</td> <td>0,063</td> <td>7.25</td> <td>0.71</td> <td>0.46</td> <td></td> <td></td> <td></td> <td>ť</td> <td></td> <td>7786</td> <td>49</td> <td>ð</td> <td>7</td> <td>8</td> <td>2</td> <td>590</td> <td></td> <td>95</td> <td>හ</td> <td>122</td> <td></td> <td></td> <td>15941</td>	27081	15			10.77	6.76	23.18	0,063	7.25	0.71	0.46				ť		7786	49	ð	7	8	2	590		95	හ	122			15941
18 0.602 0.034 37.87 5.46 19.06 0.331 13.32 3.05 0.45 0.14 0.24 0.001 98 3 1390 5477 22 5 5 1 20 -2 455 75 74 15 103 18 79.9 19 0.453 0.014 46.87 4.97 17.03 0.120 11.75 1.39 0.40 0.13 0.22 0.001 30 -6 1117 4854 18 6 4 7 8 0 343 57 71 7 78 14 82.9 24 0.306 0.007 64.26 5.31 7.76 0.113 11.50 1.01 0.19 0.11 0.24 0.019 39 26 220 1764 31 8 9 3 8 0 70 37 56 8 50 32 90.5	27082	16 81			38,12	6.26	22.32	0.160	7.97	2.48	0.42	-		_	,	.	6448	33	⊷	7	~	Ţ	595	74	95	9	105	23 76		14880
19 0.453 0.014 46.87 4.97 17.03 0.120 11.75 1.39 0.40 0.13 0.22 0.001 30 -6 1117 4854 18 6 4 7 8 0 343 57 71 7 78 14 82.9 24 0.306 0.007 64.26 5.31 7.76 0.113 11.50 1.01 0.19 0.11 0.24 0.019 39 26 220 1764 31 8 9 3 8 0 70 37 56 8 50 32 90.5	27084	18	0.602		37.87	5.46			13,32	3.05	0.45	-	-	_		4	5477	22	ŝ	ŝ	4 7 7	5 0	455	75	74	1 5	103	18 79		1102
24 0.306 0.007 64.26 5.31 7.76 0.113 11.50 1.01 0.19 0.11 0.24 0.019 39 26 220 1764 31 8 9 3 8 0 70 37 56 8 50 32 90.5 1	27085	19	0.453		16.87	4.97			11.75	1,39	0,40	Ŷ	_				4854	18	9	4	7		343	57	11	7	78			1262
	27091	24	0,306		34.26	5,31			11.50	1.01	0.19		_				1764	31	8	ø	3		70	37	56	8	50		5	5468

Depin				000	C C C - E	0.11	0	C i C	00714	022		5000	-0	ĩ	, ,	Ċ	ć	4	AIA	40	ł	2 0	> 20	>	ŗ	7,	010220	Tabl
Ē	NI%	2008	705 %	807W			обы %			8			_	6		-	-	11	_	_	_	E	а с	Ω.		<u>م</u>	%	mqq
					00 I.		C L	ţ		000							e T	4	ç	4		-				5		1691
	0.231	0.022	20.85	00.41	08,04	101.0	00.1 at 1	17.0		0.00	- 44	1000	047	2 a	00211 00 BD 4540		2 4	а Г,	2 0	د د	- 4	201	410 00 00	* *	14	3 \$	81.7 81.7	14759
r ⊄	1.379	0.046		10,4	21,54	0.093		-	0,18	0.15			·	11 22	_			. 0	. 0	• ~	• •				198	4	81.0	21101
*	0.996	0.028		5,37	16.76	0.075	-		0.18	0,12					-			3	ę	4	-			6	131	••	78.3	15352
. 89	0.821	0.033		4,80	12,31	0.112			0.13	0.07		0.002	15				9	15	0	ų	, 0	-		9 19			85.4	12288
10	0.799	0.031	49.32	3.07	15.09	0.162	16.71		0,19	0,08		0.001	40	-6 21			ŝ	0	ю	3	-			9 0	91	=	85.3	12683
13	1.15	0.023	43.71	4,04	20,86	0.141				0.14	0,17 (-1 26			<u>ي</u>	96	0	9	0			7 8	125	•	81.0	17952
17	0.802	0.062	49.31	2.94	15.19	0,434				0.09		-			230 4235		7	12	Ņ	8				3	84		85.5	13683
18	0.257	0.015	70.77	1.81	9.92	0.123	•		0.08	0.05		-				51 44	6	7	4	15	, ,			-			93.2	6349
19	1.121	0.046		5,13	25.93	0.388			0.36	0.14			, m	~			4	n	9	10	-1				129		80.5	19968
22	1.21	0.031		4,40	21.83	0.364		-	0.29	0,11		0.001		2 32			ŝ	4	ņ	2	0	_		4	124		79.9	20368
24	0.79	0.024	39,60	3,53	17.12	0.270			0.20	0.08		0.001					2	2	ņ	3		·		5 5	96		82.6	14624
25	0.915	0.025	40.76	3.81	19.22	0,341			0,27	0.10		0.001	44		•		63	0	3	4	້	_	62 79	5 13	112	10	80.4	14759
27	0.752	0.023	41.16	3.68	18.03	0.295			0.23	0,10	0.18	0.001		3 17	-		4	10	ņ	8	0			6	106		80.8	12997
30	0.427	0.017	57.33	2.78	12,42	0.236	15.34	0.24	0.15	0.08	0.11	0.001	с Ф		120 3844	44 45	~	4	ъ S	8	en .		31 46	e e	72	14	88.7	8655
÷	0.048	0.003	57.63	15.71	10.01	0.033		0.53	0.23	0.61	0.44 C		475 4	43 14		0 36	19	33	0	18	33 1	100	35 101	19	44	83	86.6	2423
ŝ	0.316	0.022		5.11	13,13	0.021		0.43	0.16	0.18	-		202				ø	~	D	9	10	30 4	30 65	ຕ ຄ	62	19	86.3	6017
9	0.56	0.023	-	2.96	15,44	0.028		0,42	0,16	0.13	-						2	Ņ	0	¢,	•			8	67	6	84.9	9123
~	0.683	0.024	55.85	3,32	17.29	0.045		0.32	0,10	0,08	-						4	25	-	4	-			~	104	=	86.3	15951
5	0.982	0.032	37,31	4.83	24,08	0.093			0.20	0,11		• -	ć	24 22	-		~	÷	7	4	6			80 07	171	Ξ	77.9	27520
Ħ	0,889	0.027		4,94	21.51	0.086			0.15	0.10			•				Ð	2	ကို	4	6		-	12	161	16	76.6	25822
13	1.161	0.053		5.23	26.49	0.356			0,18	0.09		•	Ċ			•	4	19	~	:-	0	-		= =	159	•	79.9	30819
16	0.994	0.024		4,36	20,06	0.271			0.14	0.08							9	4	ŝ	16	Ņ			9 9	129	15	81.5	29134
17	0.72	0.019	41,36	3.41	18.07	0.186			0.08	0.07			•	_	-		8	4	2	o	7			~	106	ß	83.0	23626
20	0.425	0.014		2.05	10.63	0.137			0.08	0.05		0.001	99	-11 21			~	4	e	ŝ	÷-		20 48	N	68	12	89.1	12770
21	0.417	0.014		1.87	11.97	0.149			0.10	0.05		0.001	27	7 9			~	ġ	ů	ş	. .		•		69	10	89.8	10384
22	0,401	0.016		1.99	12,18	0,172	·		0,11	0.05		0.001	24	13 10		••	n	ņ	ų	ø	ņ			ຕ ຕ	20	ŝ	89.6	10326
23	0.506	0.02	53.28	2.60	16.38	0.221			0.14	0.07		0.001	19	⊊ 0			£	ų	0	2	ņ			9	91		86.9	10457
24	0.571	0.03		3.12	19.19	0.346			0.17	0.07		0.004	4	é N			2	ŝ	Ţ.	4	2			~ 1	8	•	86.0	11976
25	0.402	0.013		2.21	13.01	0,146			60'0	0.06		0,003	4				•	φ,	4 1	N ⁽				9 ' 	5	ю ;	64,65 2, 17 2, 17	9176
56	0.336	0.016		1.87	11.32	0.1/6	15.08	3.03	80'0	6 0 0	10.0	100.0	= \$	14 80	90 3808	90 29 29 29 29	n •	N *	ņ c	ņ c		200	20 07	4 4 4 4	2 2	~ \$	80.0 70 0	2801
17	0.200	10.0		5,7	30.0							10000	, ų				•	, .	• •	α								2000
5 F	0.283	0.014	70.05	163	10.01	0.134			20.0	900		0.003	<u>n</u> 5	14 40			f C	? ?	7 7	, ¢	4 -			4 00	3 2		0.09	6350
5 8	0.367			0.1	6 22	0.092			200	004		0.001	14					[4	9	• ••	5	21 25	4	35		67.9	4939
37	0.000	2000		0.87	5.42	0.079			0.06	100		0.002	6	5 30			1.04		0	5	- 4			4	3ª	-	65.0	4319
5 69	0.219	0.009		1.02	6.33	0.103			0.08	0.04		0.001	6,				-	မု	3	29	Ņ				42	~	66.3	4921
4	0.25	0.01		1.24	7.57	0.116		·	0.09	0.05		0.001		9-1-	_	33 12	2	Ņ	လု	4	.			3	30	ភ	67.5	5923
44	0.319	0.013		1,89	11.33	0.150			0.11	0.06		0.002	0	12 30		•	~	4	Ţ	7	*		31 38	3 7	7	10	74,4	7159
47	0,208	0.009		1.06	6.35	0.100			0.05	0.04		0.001	, 15	5. 5.			С	ů	0	5	0		29 30	4	40	ម	70.3	3737
5	0.185	0.008		1.04	5.65	0.075		_	0.04	0.02		0.001	-28 1	10 -1	10 1339		,	ę	9	34	4	-15 1	14 27	4	3	4	68,9	3340
C M				1																	•							
N	0.256	50	00,00	.65	8,08	0.126	33.96	0.92	0.05	0.02	0.07	0.003	G	1 210	0 1933	33 14	C4	5	Ņ	4	~	210	20 34	9 -	52	~	78.4	0100

~

ė

Hole ID	Deplh	ĨN%	%Co	SI02	AI203	SiO2 Al2O3 Fe2O3	ouw	МвО	CaO	Na20	K20 TI	TiO2 P2	P205 B	Ba Ce	e G	ບັ	S	89 09	La L	qN	Pb Rb		S S	> -	۶	Zu	2	OXIDES	TotalTr
	. (j			%	%	\$	%	%	%	%	%	%	dd %	mqq mqq	udd u	mdd r	bpm	udd I	mdd	mdd	nqq mqq		ppm ppm	m ppm	n ppm	udd u	mdd r	%	шdd
CBRC1505																													
58171	-	0.378	0.037	44.26	5,65	8.76	0.193	10.86	9.67	0.14	0.13 0.	-						S	9	en	ģ	5 5		-				80,1	7300
58172	N	0.988	0.037	39.25	10,16	11,36	0.129	11.64	5,02	0.51								12	67	ŝ	5	9						79.0	15490
58174	4	0.241	0.021	63,11	4.71	6.98	0.103		0.32	0.28								4	16	7	5	1 5						91,1	7043
58175	ъ	0.159	0.008	55.41	6.36	7.83	0.029	18,51	0.27	0.29	0.07 0.	0.28 0.0	0.005	7 13	3 2000	0 3395	44	7	~	-	ີ ຕ	ē,	360 2	26 85	9	82	17	89.1	7676
58179	6	0,107	0.003	72.80	4.65	6.84	0.038		0.15	0.45	-		0.003 3		-			7	17	-	2	÷						91.2	3465
58182	12	0,334	0.006	61.57	5.31	8.74	0.080		0,38	0.37	0.07 0.	0.32 0.0	0.004 1		5 1280			1-	~	÷	8	# -						0'06	6821
58183	13	0.257	0.009	55.70	4,91	10.18	0.166	18.16	0.15	0.34	0.05 0.		0.005 3	30 10	0 1330	0 2733		Q	-	ę	13 0	÷		•				8.99	7136
58186	16	0.221	0,011	52.58	5,32	10.12	0.224	19.76	65'0	0.30	0.05 0.	0.24 0.0	0.003 4	46 -1	1 620	3033		ষ	¥	ş	4	5	60 23	3 127		55	15	89.68	6306
LECTOR AN																													
27467	***	0.162	0.007	67.15	7,39	15,33	0:050	2,38	0.13	0.04	0.08 0.	0.17 0.0	017 1	152 21	1 20	2174	57	9	4	4	10 4	÷	150 23	3 71	÷.	37	21	92.7	4422
27.471	· 40	0.171	0.016	26.56	11.77	48.53	0.153	2.74	0.05	0,04	0.05 0.	0.39 0.0	.005 -1	10 66	6 120		42	12	4	0	1	Ň		9 146	6 17	5	Ř	90.3	5342
27474	8	0.226	0.012	32.23	9.07	41,32	0.139	6,68	0.08	0.07	0.08 0.	0	0.008 3	30 2	150			42 57	٣	7	т 1	~		1 144	4	59	32	90.1	6318
27475	Ø	0,514	0.085	33,42	8.55	38,10	0,432	3,78	0.18	0.17	0.09 0.	0.33 0.0	0.002 1(162 12	17 250	3980	_	9	13	ŝ	ۍ ډ	4	0 36	6 112	2 12	121	23	.85.0	10905
27476	₽	0.582	0.206	33,12	7.75	37.25	1.208	4.88	0.17	0.18	0.09 0.	0.30 0.0	0.002 81	816 53	3 220	_		8	8	~	t đ	4	·		6 12	121	24	84.9	13358
27478	12	0,255	0,103	25.49	11.15	49.26	0.544	2.02	0.08	0,11	0,07 0.	0.52 0.0	0.005 1(161 33	3 100	3983		9	₽.	ŝ	-22 6				7 11	69		89.2	8209
27480	13	0.32	0.169	25.49	9.98	50.19	0.729	2.25	0.06	0.11	0.06 0.		0.012 1:	128 11	1 100	5403		13	4	s ت	-25 5	5		31 197		118	42	89,4	10998
27481	14	0.285	0.117	26.73	11.42	44,29	0.721	3.80	0.08	0.07	0.06 0.	0.56 0.0	0.003 1:	133 - 11	8 60	11352		13	4	4	19 -1	-	е О		6 6	188		87.7	16071
27482	1 5	0.561	0,118	33.69	7.55	26.78	0.665	12.58	0.18	0.23	0,09 0,		0.001 10	100	7 60	15970	0 59	eo	106	Ņ	7	5			6 1	325	52	82.1	23614
27484	17	0.667	0.022	33.68	6.45	27.52	0.161	13.07	0.17	0.22	0.09 0.		0.001 2		60	16915	5 62	æ	٦	÷	13 0	-			2 13	321	18	81.6	24473
27486	19	0.74	0.062	33.90	6.61	26.64	0.385	13,17	0.18	0.21	0.09 0.	0.30 0.0	0.001 4	49 - 1	0 60	14660		ŝ	4	φ	2		·	40 115	8 9	249	19	81.5	23259
27489	22	0.669	0.031	36.55	5.41	23.22	0.335	15.76	0.27	0.16	0.08 0.	0.26 0.0		29 1	4 75	14391		a	e	7	i m	-			~	191	5	82.1	21866
27490	23	0.722	0.032	39.17	5.05	22.60	0.380	15.17	0.22	0.18	0.09 0.				1 60	13264	4 49	2	27	5	ŝ	~	ŗ		~	198	17	83.1	21294
27492	24	0.77	0.032	39,94	5.38	22.42	0.401	13.04	0.18	0,21	0.10 0.	0.24 0.0	0.001 5	51 -2	1 60	12877	7 42	ø	ŝ	6	2	~				206	15	81,9	21378
27493	25	0.533	0.022	46.78	3.56	15.22	0.230	20.90	0.12	0.15	0.06 0.	0.15 0.0	0.001 4	46 -2	2 10	8850	39	*	ф,	ņ	-2	~	0 32	2 59	9	134	- 1	87.2	14691
27496	28	0.599	0.026	39.47	4.24	19.37	0.351	19.27	0.38	0.15	0.06 0.	0,18 0,0	0.003 4		5 10	13570	33	ო	ස	0	ņ	~				128	5	83.5	20152
27499	31	0.71	0.031	36.86	4.84	21,55	0.330	18,16	0.59	0.14	0.07 0.	0.20 0.0	0.002 6	62 -2	5 30	17297	7 38	~	o	o	9 9	-		39 107		-	•	82.8	25128
27500	32	0.823	0.035	35.71	5.76	25.46	0.392	13.58	0.33	0.14	-	-	0.008 7		2 30	16624		ę	~	C	ר קי			.	9 15		15	81.7	25712
27501	33	0.508	0.018	38.63	3.75	15.89	0.227	26.33	0.25	0.09	0,05 0,	0.19 0.0	0.001 5	56 -13		10606	3 27	n)	æ	0	N	-	10 2	26 63		105	9	85.4	16146
27503	35	0.369	0.015	47,63	2.47	12.38	0.172	16.96	4.81	0.04	0.03 0.	0.09 0.0	0.004 2		09-00	8435	51	4	-	-	7			2 66	23	74	2	84,6	12435

	Hole (D	Depth	ĨN%	လိုင်	SIOZ		AIZUS PEZUS	DUM I	0 BW	CaC	Dazo	D KSO		222	8	ŝ	5	5	3	5	2		02 01	<i>.</i>	ל	>	~	ZD	2	OXIDES	1 01311 I
0747 1 0.163 0.066 0.00		(%	%	*	%	8	*	%	%	%	%	mqq	mqq	mqq	mqq			-					-				%	mqq
1 0.103 0.006 3.000 12.15 4.36 0.013 0.16 10 17.10 10.16 10 27 4 46 0 27 4 46 0 27 4 10 27 4 10 21 11 11 11 10 1057 1002 37.4 10.03 10.03 10.03 10 0.05 0.05 0.05 11 10 0.05 11 10 10 11	CBRC0747																														
6 01176 0018 32.26 15.83 7.44 0001 0.76 0.05 0.46 0017 5 5 4 7 10 9 19 8 7 1 0.557 0.018 36.46 0.017 0.056 0.66 0.018 5.41 0.56 0.76 0.66 0.018 5.41 0.56 0.76 0.66 0.76 0.66 0.76 0.66 0.76 0.66 0.76 0.66 0.76 0.66 0.76 0.66 0.76 0.66 0.76 0.66 0.76 0.66 0.76 0.06 0.76 0.66 0.76 0.66 0.76 0.66 0.76 0.66 0.76 0.66 0.76 0.66 0.76 0.66 0.76 0.66 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 <	27549	-	0.163	0,006	30.00	12.15	43,94	0.036	0.45	_	-	0.10	0.31	0.039	651	÷	120	6055	97	ø	* 0	ب	7 4	48	3	3 162	12	64	54	87.2	9419
9 0275 0018 30.55 1.30 1.30 0.05 0.46 0.01 1.3	27554	ග	0.176	0.018	32.29	15.93	37.44	0.081	0.79	Ĩ	0.03	0.05	0.45	0.015	0	16	10	7676	139	14	-4	9	4	24	1 1 1	3 210	8	81	42	87.1	10342
10 0.557 0.023 35.65 0.17 4.15 0.27 0.34 0.15 1.1 1.20 3 1 1 1.75 11 0.728 0.023 36.55 0.13 5.43 0.010 0.66 0.25 0.003 36 15 1.1 1.2 2.2 2 2 1.1 1.2 2 3 1 1.1 2 3 1 1.1 2 3 1 1 2 3 1 1 3 1 1 1 2 3 1	27558	c,	0.275	0.018	36.25	13.22	39,14	0.193	1.30	÷	0.04	0.05	0,46	0.013	-13	ţ0	40	3617	75	13	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3	5	70		•	8	72	9	90.7	6930
11 0.726 0.028 3.8.6 7.18 3.2.8 0.13 4.7 0.34 0.10 0.06 0.25 0.003 28 1 -1 -2 4 20 49 7 7 15 12 0.327 0.019 55.81 5.34 2.490 0.081 5.43 0.07 0.046 0.05 0.010 5.5 0.11 0.01 0.056 0.010 364 0.0 13 1 1 2 4 20 15 15 15 15 16 17 16 17 16 17 19 2 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 <	27559	10	0.557	0.022	35,95	8.41	36.85	0.176	4.19	, ,	0.10	0.06	0.34	0.005	*	1 6	-30	5221	49	÷	10 é	~		20	ਲ	3 97	÷	154		86,3	11385
	27560	÷	0.726	0.028	38.66	7.18	32.68	0.131	4.27	0.34	-	0.06	0.25	0.003	28	t	06-	4916	64	4	• •		4	20	ب ب	9 94	~	212	·	83.7	12813
14 0.356 0.059 26.55 9.94 46.51 0.475 4.61 0.02 0.02 0.03 0.43 15 15 17 17 9 7 14 0.356 0.035 26.55 0.11 0.07 0.03 0.46 0.035 203 126 15 11 1 9 14 12 2 5 21 166 13 17 0.481 0.138 0.017 0.30 2.017 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.01 0.1 11 1	27561	12	0.327	0,019	55.81	5,34	24,90	0.081		0.07	-	0.06	0.20	0.004	36	4	-60	4790	64	9	8	Ť	5 2	0 6		·	~	96		91,9	8614
15 0.535 0.071 32.34 9.90 37.20 0.555 0.11 0.07 0.05 0.36 0.05 135 15 15 15 15 15 15 15 15 15 16 13 201 17 0.481 0.139 34.13 13.30 32.12 1.052 4.27 0.07 0.066 0.03 0.52 0.008 319 38 11 19 14 -2 -5 2 168 13 20 21 0.138 0.007 70.90 2.00 8.21 0.002 0.01 0.002 0.01 0.01 11 11 9 4 10 11 8 4 1 1 1 4 3 3 3 3 3 3 3 3 3 4 11 14 2 3 4 11 7 43 3 3 3 3 3 3 4	27563	Ť	0.356	0,059	26,55	9,94	48.51	0,475		0.02	-	0.04	0.56	0.010	94	80	₽-	8350	64	0	3	1 7	7 9	20		·	~ ~	151	28	90.7	13067
	27564	15	0.535	0.071	32.34	9.90	37.20	0.630				0.05	0.46	0.005	283	126	-15	15481	32	11	11 8	4	4	ŵ			5	207		86.3	22411
20 0.631 0.064 39.67 8.1 2.0 0.01 10 18 2.0 10 10 10 12 30.0 21 0.138 0.007 70.90 2.01 0.007 14.66 0.02 0.07 0.000 14 11 80 2660 32 5 4 10 18 7 43 21 0.138 0.007 7.09 2.00 0.01 0.007 14.66 0.02 0.07 0.009 14 11 80 2660 32 5 6 0 3 2 5 4 10 18 7 83 23 0.485 0.015 0.19 0.17 0.34 0.65 0.017 187 5 30 4 4 4 6 7 183 7 83 24 0.016 0.15 0.13 0.14 0.03 165 0.11 187 5 30 10	27566	17	0.491	0.139	34.13	13.30	32.12	1.052	4.27	0.07			0.52	0.008	319	-38	50	27713	27	14	10 1	+ +	5 -7	-10			12	240		85,6	34776
21 0.138 0.007 70:90 200 81 -11 -80 2680 32 5 6 0 1 41 7 43 23 0.482 0.007 70:90 2014 0.65 0.02 0.01 63 13.3 0.06 0.04 0.05 0.17 0.34 0.55 0.012 4 6 -90 2192 39 6 -1 2 5 4 -10 11 84 7 83 24 0.968 0.053 7.44 12.39 0.397 7.59 0.19 0.17 0.34 0.65 0.05 317 9 6 1 2 5 4 -10 11 84 7 83 24 0.016 0.357 0.45 0.19 0.17 0.34 0.65 0.015 0.11 187 5 -3 2 14 4 6 -1 14 2 2 16 <t< td=""><td>27569</td><td>20</td><td>0,631</td><td>0.064</td><td>39.67</td><td>8.18</td><td>29.51</td><td>0.339</td><td></td><td></td><td></td><td></td><td>0.40</td><td>0,027</td><td>67</td><td>-20</td><td>40</td><td>31018</td><td>08</td><td>Ę</td><td>1 2</td><td>6</td><td>4</td><td>÷</td><td></td><td></td><td>12</td><td>309</td><td></td><td>83.4</td><td>38620</td></t<>	27569	20	0,631	0.064	39.67	8.18	29.51	0.339					0.40	0,027	67	-20	40	31018	08	Ę	1 2	6	4	÷			12	309		83.4	38620
23 0.482 0.011 6.34 0.45 1.4.3 0.06 0.04 0.06 0.25 0.012 4 6 -80 2192 39 6 -1 2 5 4 -10 11 84 7 83 24 0.968 0.053 47.44 12.38 12.09 0.397 7.59 0.19 0.17 0.34 0.65 0.05 387 79 -80 5670 73 10 5 -1 21 20 13 10 11 7 13 10 11 2 -3 20 13 10 11 17 17 17 17 17 17 17 17 18 3 -70 4734 41 6 7 14 17 11 7 11 7 11 7 11 7 11 7 11 7 11 7 15 16 17 16 17 <td< td=""><td>27570</td><td>21</td><td>0.138</td><td>0.007</td><td>70.90</td><td>2.00</td><td>8.21</td><td>0.031</td><td></td><td></td><td></td><td></td><td>0.07</td><td>0.009</td><td>ţ.</td><td>Ę</td><td>-80</td><td>2680</td><td>32</td><td>ŝ</td><td>9</td><td>3</td><td>ç,</td><td></td><td>4</td><td>61</td><td>7</td><td>43</td><td></td><td>0.96</td><td>4175</td></td<>	27570	21	0.138	0.007	70.90	2.00	8.21	0.031					0.07	0.009	ţ.	Ę	-80	2680	32	ŝ	9	3	ç,		4	61	7	43		0.96	4175
24 0.968 0.063 47.44 12.38 7.59 0.17 0.34 0.65 0.05 387 79 -80 5670 73 10 5 -1 21 20 10 56 125 17 17 17 17 17 15 15 16 11 17 15 15 16 11 17 17 15 15 16 17 16 17 17 17 16 17 <	27573	23	0.482	0.011	63.42	4,73	9.44	0.045					0.25	0.012	¥	ç	-90	2192	39	9	**	5	*	-1(1	1 84	~	83		92.4	7275
26 0.485 0.021 56.71 3.14 16.90 0.205 12.34 0.07 0.08 0.05 0.15 0.011 187 5 -30 3924 44 4 6 -1 14 2 -20 18 108 11 79 28 0.563 0.028 51.10 4.52 20.30 0.429 907 0.21 0.014 438 13 -70 4734 41 6 7 5 -3 -3 0 42 99 12 79 33 0.417 0.016 4.50 2.31 0.017 2.78 0.35 0.012 278 53 -011 21 21 10 34 50 11 64 7 5 -3 -3 0 45 76 25 71 66 25 71 21 21 21 16 17 64 75 5 -3 5 14 41	27574	24	0.968	0.063	47.44	12,38	12.09	0.397					0.65	0.005	387	79	80	5670	73	10	ې ۵	5		10			5	156		81.3	16904
29 0.563 0.028 51.10 4.52 20.30 0.429 10.01 0.17 0.12 0.014 438 13 -70 4734 41 6 7 5 -3 -3 0 42 99 12 79 32 0.426 0.008 48.80 13.17 9.28 0.07 2.78 0.012 278 63 -90 1699 112 21 32 0 42 99 12 79 33 0.417 0.015 45.00 2.81 1.97 0.17 27.9 0.11 0.002 51 8 40 2181 18 5 1 -2 3 -1 -1 0 345 5 11 64 35 5 5 2240 2 46 25 71 64 35 5 5 5 5 5 2 46 25 71 64 76 35 36 1	27576	26	0.485	0.021	56.71	3.14	16,90	0.205					0.15	0.011	187	ŝ	-30	3924	Å	4	9	-	4 2	2			=	79	11	89.7	9399
32 0.428 0.008 48.80 13.17 9.28 0.27 0.27 0.255 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.51 0.25 7 1 10 34 50 11 64 33 0.417 0.015 450 2.81 11.97 0.177 27.91 0.15 0.005 0.011 0.002 91 8 -40 2181 18 5 1 -2 3 -1 -10 34 50 11 64 35 0.357 0.05 0.09 0.007 0.11 0.002 91 8 -40 2181 18 5 1 -2 3 -1 10 34 50 11 64 35 36 11 64 7 48 7 48 6 11 64 7 48 7 48 7 48 7 48 7 48 7 48 7 48 7 48	27579	29	0.563	0.028	51,10	4.52	20.30	0.429	•		-	0.07	0.21	0.014	438	ç	-70	4734	41	භ	7 6		e,	0			12	79	17	86.9	11303
33 0.417 0.015 45.00 2.81 11.97 0.177 27.91 0.15 0.002 91 8 -40 2181 18 5 -1 -10 34 50 11 64 35 0.359 0.02 63.27 2.32 10.44 0.325 15.63 0.05 0.09 0.06 0.09 2007 285 5 -50 2240 2 4 -1 3 -1 0 29 49 7 46 36 0.47 0.034 56.15 3.28 19.65 0.07 0.11 0.08 0.15 0.014 634 4 -30 4985 51 5 4 2 3 2 0 45 66 53 37 0.137 0.006 52.49 12.56 9.15 0.17 0.08 0.15 0.366 20.70 0.366 20.70 0.366 20.70 0.366 20.70 20.8 67 0.1 17 60 3 3 3 2 2 2 4	27582	32	0.428	0,008	48.80	13.17	9.28	0.274	9,07		-	0.35	0.55	0.012	278	63	-90	1699	112	21	32	80	8	0			25	7	80	84.5	7046
35 0.359 0.02 63.27 2.32 10.44 0.325 15.63 0.05 0.09 0.06 0.09 0.007 285 5 -50 2240 22 4 14 -1 3 -1 0 29 49 7 48 36 0.47 0.034 56.15 3.28 19.85 0.607 8.52 0.07 0.11 0.08 0.15 0.014 634 4 -30 4985 51 5 4 2 3 2 0 45 94 6 63 37 0.137 0.006 52.49 12.58 9.23 0.157 9.07 11.06 0.35 0.42 0.5 0.366 208 66 -50 821 13 15 23 4 6 9 -10 712 161 17 60 38 0.254 0.006 50.63 12.99 9.16 0.157 8.92 8.78 0.28 0.56 0.71 0.366 208 66 -50 821 13 15 23 4 6 9 -10 712 161 17 60 38 0.254 0.005 50.63 12.99 9.16 0.157 8.92 8.78 0.28 0.56 0.71 0.366 208 66 -50 821 13 15 23 4 6 9 -10 712 161 17 60 38 0.254 0.006 50.63 12.99 9.16 0.157 8.92 8.78 0.28 0.56 0.71 0.366 208 66 -50 821 13 15 23 4 6 9 -10 712 161 17 60 38 0.254 0.005 50.63 12.99 9.16 0.157 8.92 8.78 0.28 0.56 0.71 0.366 209 86 -50 821 13 15 23 4 6 9 -10 712 161 17 80 38 22 0.304 0.013 43.46 1.57 8.86 0.115 34.91 0.06 0.01 0.02 0.06 0.001 26 6 -40 1930 8 0 -3 3 5 -1 10 10 38 4 51	27583	33	0.417	_	45.00	2.81	11.97	0.177			_	0.07	0.11	0,002	91	8	무	2181	18	ц.	۲ ۳	3	Т -	÷,			Ħ	64	13	88.3	6705
36 0.47 0.034 56.15 3.28 19.85 0.607 8.52 0.07 0.11 0.08 0.15 0.014 634 4 -30 4985 51 5 4 2 3 2 0 45 94 6 63 37 0.137 0.006 52.49 12.58 9.23 0.157 9.07 11.06 0.35 0.42 0.67 0.366 208 66 -50 821 13 15 23 4 6 9 -10 712 161 17 60 38 0.254 0.006 50.63 12.98 9.16 0.157 8.92 8.78 0.28 0.56 0.71 0.366 223 73 10 768 11 18 35 3 9 23 20 549 131 16 73 42 0.306 0.013 43.46 1.57 8.86 0.115 34.91 0.06 0.01 0.02 0.06 0.01 0.26 6 0.01 0.02 0.06 0.01 0.26 73 0.50 0.01 2 8 6 5 -40 1930 8 0 -3 3 5 -1 10 10 38 4 51	27585	35	0.359		63,27	2.32	10.44	0.325			0,09	0,06	0.09	0.007	285	ŝ	50	2240	22	े च	ः •	1 3	7	0			~	46	ŧ	92,3	6413
37 0.137 0.006 52.49 12.58 9.23 0.157 9.07 11.06 0.35 0.42 0.67 0.366 208 66 -50 821 13 15 23 4 6 9 -10 712 161 17 60 3 38 0.254 0.006 50.63 12.98 9.16 0.157 8.92 8.78 0.28 0.56 0.71 0.366 223 73 10 768 11 18 35 3 9 23 20 549 131 16 73 4 42 0.304 0.013 43.46 1.57 8.86 0.115 34.91 0.06 0.01 0.02 0.06 0.001 26 6 -40 1930 8 0 -3 3 5 -1 10 10 38 4 51	27586	36	0.47	0.034	56.15	3.28	19.85	0.607	8,52	0.07	0.11	0.08	0.15	0.014	634	4	-30	4985	5	ŝ	4	5	2	0			9	63	12	88.8	10886
38 0.254 0.006 50.63 12.98 9.16 0.157 8.92 8.78 0.28 0.56 0.71 0.366 223 73 10 768 11 18 35 3 9 23 20 549 131 16 73 1 42 0.304 0.013 43.46 1.57 8.86 0.115 34.91 0.06 0.01 0.02 0.06 0.001 28 6 ~40 1920 8 0 ~3 3 5 ~1 10 10 38 4 51	27588	37	0.137	0.006	52,49	12.58	9.23	0,157	9.07	11,06		0,42	0.67	0.366	208	99	-50	621	13	15	23 4	9	6	-10		-	17	60	120	96.4	3567
1 42 0.304 0.013 43.46 1.57 8.86 0.115 34.91 0.06 0.01 0.02 0.06 0.001 26 6 -40 1930 8 0 -3 3 5 -1 10 10 38 4 51	27589	38	0.254	0.006	50.63	12.98	9.16	0.157	8,92	8.78	0.28	0.56	0.71	0.366	223	73	10	768	F	18	35 35	6	1 23	20	~	-	16	73	114	92.5	4651
	27593	42	0.304	0.013	43,46	1.57	8.86	0.115		0.06	0.01	0.02	0.06	0.001	26	9	-40	1930	8	·	3 3	5	7	10			4	51	B	89.1	5200

	Depth %NI		%C0 SIU2	2 AI2O3	03 Fe203		MnO M	MgO CaO		Na20 K20	0 1102	P205	i Ba	õ	ö	ö	- Z	Ga	La Nb	8	å	S	ი	>	~	ZD	Z.	ŝ	TolalTr
	Ē		%	%	%		%	%%	å %	ę 8	%	*	шdd	mdd	bpm	mdd	d udd	dd mdd	udd udd	mqq n	Edd	ndd	mdd	Endd	udd	mdd	bpm	%	bpm
0743		i i	ł											!	i	1	;	:				1	1	1	!				
27414	- - -		0.06 26.89		4 52.77	_			0.15 0.0	-		0,020		2	2	67.95	41	40	2		4	020	22	195	9	X			/201
27416	3 01					_				0.06 0.03		0.028		24	355	10563	0	36	-8	 	ø	1145	29	449	¢			82.8	3386
27417	4 0.0		0.005 9.14	4 17.32	32 56.24		0.058 0.	0.60 0.2	0.28 0.1	0.56 0.05	5 0.94	0.025	32	13	1020	11732	54	26 1	÷	Ņ	-	1330	40	367	~		_	85.2	5502
27422	9 0.194		0.015 15.93	•	30 49.90		0.073 0.	0.71 0.0		0.10 0.04	4 0.49	0,060	11	;	. 021	14462	74	11 ¢	69 3	-23	9	350	27	252	9		3 96		7677
27425	12 0.24		•			_	_	0.51 0.0	_	0,10 0.04	4 0.57	0.024	-12	44	150	9806	97	12	1 7	4	ŝ	180	26	385	o	86			13335
27426	13 0.273		_	-					Ī	0.07 0.04		0.027	-37	284	140	11107	84	1 5	12 11	4	~	110	30	412	12	84	43 6		5125
27432	18 0.3			33 15.11	11 52.14	_		0.57 0.0	-	0.08 0.05	5 0.57	0.005	53	₽	Q.	13023	32	15	6 18	10-10	~	5	53	294	14	107		. 0.68	7749
27433	19 0.8	0.861 0.1	••						-	0.17 0.10	_	0.003	55	-22		22150	37	8	12 8		7	25	51	159	7	310	18 8		12736
27436	22 1.0		0.136 28.85				0.762 4.	4.44 0.3		0.18 0.11		0.004	8	-41	ŝ	28451	40	6	4 15	11	۳ ۳	0	58	147	2	413	20 7	-	1122
27437	23 0.5			11 10.44			0.629 1.	1.15 0.1		0.16 0.05		0.005	83	-57	235	33403	77	12	9 6	2.	9	35	39	282	20	523			0669
27439			÷.,				_	1.65 0.1		0.11 0.06		0.006	73	÷54	55	24152	61	1	4 15	-13	~	25	38	263	28	377		84.2 、	1970
27440										21 0.11		0.001	115	-30		13513	33	ø	8 6	13	7	20	56	112	5	286	21 2		9144
27442	•	~								24 0.12		0.001	28	ကု	35	8597	29	4	7	9	7	45	53	72	1	199			2917
27443				18 5,41			0.446 8.	8.02 0.3		21 0.12	2 0.24	0,001	46	ņ	10	8956	29	80	4	••••	4	40	55	65	10	214	17 7		4216
27444	30 1.3	1.392 0.032	132 35,91		15 30.74				31 0.23	23 0.12		0.001	29	φ	¢	8973	35	~	5 6	20	¢4	40	60	70	10	182	19 7		3643
27445	•									-		0.001	28	¢	-30	9919	3	~	10 1	4	~	50	58	71	~	197	17 5		4336
27448	.							7.03 0.27		-		0.001	121	•	-40	8900	21	5 5	21 2	ų	¢	40	61	78	19	178		82.1	23107
27450					- •					21 0.11		0.001	5	မှ	50	9468	22	3	2 2	1	Ţ	10	52	11	នុះ	226	14 8		3930
27453	38 1.2			19 4.81	- •				-	-		-	81	5	0	11666	37	6	15 0	3	0	8	66	119	17	278			5194
27454	39 0.7						0.213 16			-	-	0.001	12	o.	-50	6008	22	5	15 -2	9	4	0	33	71	25	150	_		4176
27458	43 0.591		0.019 51.75	15 2.70	0 14.27		0.204 18	18.99 0.2	-	0.09 0.04	4 0.11	0.001	ະກ	12	30	6648	14	ē,	4	ę	ო	0	17	61	₽	100	36		2922
27463	48 0.4		0.019 55.06	06 2,85	-		0.208 16		-	0.07 0.05	5 0,11	0,001	20	-	-30	3421	21	٤Û)	3	10	-	20	20	43	œ	73	7		8149
27464	49 0.23	_	112 74.27	27 1.73	3 9,58	-	_	9.11 0.0	-	0.04 0.03	3 0.06	0.007	5	13	-20	2653	18	2	ب س	2	4	20	6	38	ഹ	47	6		5142
27465			0.015 66.46		11.90	-		12.16 0.11	-	0.05 0.03	3 0,09	0.011	÷	Ģ	40	3688	22		ы Ч	~	7	0	5	56	4	59	8		7111
27466	51 0.42	-		37 2.93	`	-	0.210 17	_	0.11 0.(0.09 0.04	4 0.13	0.005	-	9	ę	4231	13	9	с С	7	7	8	14	64	w	69	6) 6)	90.2	8772
CDDC0794																													
26872	1 0.1		0.003 22.5	53 14.65			0.039 0.	53 0.1		0.02 0.04	4 0.43	0.021	49	4	140	11830	82	13 1	7 2	9	3	430	17	285	15	76		34.3	15197
26875	4 0.1			*						0.07 0.03		0.012	27	ę	120	5398	75	10	5	e	ŝ	520	28	200	8	53		6.99	8476
26879	8 0.1									0.06 0.03	3 0.56	_		18	260	5683	11	1	2 11	Ê	\$	200	27	228	5	48			9016
26882	11 0,				03 51.74									95	280	10185	160	8	5 4	-24	~	160	25	237	12	102			6534
26885	14 0.4	0.487 0.0	0.054 19.98	38 9.48				1.24 0.16				0,003	34	-21		17799	142	, ല	•		-	120	22	213	0	112	27 8		24004
26887	16 0.6				10.47.01							0.004		3		11062	74	1		,		140	31	317	15	189			19032
26890	18 1.0	1.03 0.1	0.103 34.23							-		-		ę	250	7991	56		4 2		Ņ	180	44	157	4	175			20430
26893				11 4.62	23.08		0.404 14	14.26 0.50	-				17	ဂု	190	5906	38	9	14 4	ņ	¢	120	35	93	¥	138	15 8		17033
26896		95 0.023	23 42.90	- 1				20.11 0.3	-1	0.12 0.04	4 0.14	0.002		9	130	5133	50		с. С.		7	8	25	63	13	107		84.0	2796

(m) CBRC0725 26897 26900 4 26000 6								5							5	5	;	1		2	2	>	5	-	7	ş		
CBRC0725 26897 1 26900 4 26002 6	and the second s		%	%	%	%	%	%	%	\$	*	id %	udd udd	mqq m	udd u	udd t	mdd f	mqq	bpm p	dd udd	dd udd	dd udd	udd udd	mqq n	mqq n	ndd f	%	mqq
26897 1 26900 4 26902 6																												
26900 4 26003 6	0.212	0.007	23.65	17.33	39,86	0.080	1.52	0.19	0.05	0.08 0	0.53 0.0	0.025 2	258 1	- 20	10141	1 46	17	4	ņ	,	5		22 14	8	53	116	63.3	13436
36002 6	0.291	0.012	12.70	12.04	59.11	0.088	0.70	0.12	0.02	0.03 0	0.54 0.0	_	34 31	8 -20		4 90	12	14	ŝ	17	е е						85.4	11982
	0.159	0.015	16.25	16.21	51.66	0.181	0.54	0.09	0,08		0.49 0.0	_				96 G	12	9	10	-15 (6 25		16 22	8 25	56		85,5	12355
26905 9	1.076	0.101	35.50	7.28	31.02	0.299	4.37	0.51	0.06	0.04 0	0.27 0.0		42 27	7 -60	12597	17 47	8	4	ŝ	17 .	4	70 4	100	0 0	185	54	79.4	24865
26907 11	1.105	0.054	48.26	3,49	18,87	0,140	9.66	0.54	0.09	-	0.14 0.0	0.001 2	29 -5			3 27	ø	2	ņ	٦. ٣	с с		40 53	8	194		81.2	19401
26910 14	1,171	0.042	43.73	4.08	22.68	0.172	8.72	0.65	0.10		0.17 0.0	0.001	5, 5,			5 39	មា	7	ŝ	15	-			~	154	1 17	80.4	18913
26913 17	1.007	0.019	41.82	3.66	19.52	0.068	13.99	0.55	0,09	0.05 0	0.16 0.0	0.001		-30		2 44	Ċ	0	,	ŝ	3			9	103	ŧ	79.9	16984
26916 19	0.77	0.018	46.59	2.80	15,75	0,123	18.64	0.50	0.08	0.04 0	0.12 0.0	0.001 1	14 6			4 39	ß	~	e.	9	3			~	82		84.6	12322
26919 22	0.711	0.022	45,55	3.14	16.47	0.236	18,56	0.52	0.10	0,04 0	0.13 0.0	0.001 3	30 11	7 -60		4 38	2	4	~		-	10 3	33 76	7	98	13	84.7	11669
CBRC0712																												
26613 1	0.186	0.007	20.45	14.64	45.70	0.040	0.47	0,16	0.01		0.51 0.(129 -2	-		2 52	18	14	8	21	₹		16 265	5 10	- 22	•	82.0	16965
26615 3	0.117	0.017	24.61	12.73	45.72	0,037	0.46	0.23	0.06	0,05 0	0.30 0.0	_	33 -12	2 0		3 49	13	ŝ	đ	، ج	а 8	330 2	3 17	13	58	53	84.2	12016
26617 5	0.068	0,004	18.05	11.63	57.00	0.043	0.30	0.09	0.05		0.33 0.0	0.009 3	33 7	•	6588	3 43	12	ő,	12	4	ی ج		20 20	90	29	4	87.5	6265
26620 8	0.244	0.032	17.65	9.26	56.77	0.117	0.57	0.09	0,05	-	0.38 0.0		15 15	+ -20	-	0 104	÷	24	4	÷	÷			5	118		84.9	17462
26622 10	0.431	0.034	23.87	9.67	47,50	0.078	0.91	0.18	0.07	0.04 0	0,38 0,(2	5	-	-	Ţ	9	13	-1	5		21 19	6 6	123		82.7	18095
26623 11	0.842	0.061	31.99	3.72	45.40	0.176	1.44	0.27	0.08		0.14 0.0		45 -3		9328		0	20	Ą	Ţ	1			0 20		9	83.3	19361
26624 12	1.356	0.145	37.24	4.80	32.75	0.760	4.16	0.50	0.15		0.21 0.0		257 1	ς,		0 39	7	32	ŝ	21	2			1 19		2	80.7	27608
26625 13	1.05	0.05	58.97	2.42	16,94	0.227	5.75	0.43	0.13		0.10 0.0	0.003 4	46 4	05-	0 5843	3.38	N	18	õ	2	~			16		ŝ	85.0	17106
26628 15	0.66	0.024	59.49	2.11	14.61	0.187	9.89	0.31	0.12	0.05 0	0.08 0.0	0.003 3	38 -4	4 140	5494	4 24	4	4	-		-3 -	0 2	28 73	-	11	4	86.9	12706
26631 18	0.613	0,021	57.38	2.13	14.66	0.195	11,41	0.32	0.15	0.04 0	0.08 0.0	0.003 6	60 -2	2-50	6555		4	12	0	9				13		8	86.6	13116

Appendix 4: Table A4.1

Hote ID	Depth	iN%	%Co	0	2	Fe203	2	MgO	CaO	Na2O	1×	2	2	1		1		F F		1	ŧ	£	s	S.	1	1	yz.		OXIDES .	TotalTr	
	Ê			%	%	%	%	*	8	%	%	%	s.	bbm	b mdd	bpm pg	dd udd	mqq mqq	mdd m	udd r	Edd	- F	Ed	Edd	Hdd	Ludd		ыш	e	udd	
CBRC0714				:	4 1 1		1	4	4 - 1		44 F									Ş	2	6	000	ĉ	020	ŗ	-			02014	
26645		0.076	0.014	6.16	6,68	76.34	0.071	0.28	0,13	0.01	20'0	_	0:030	951	τġ.		11/3/ 43	54	5 ·	3	7		192	7		2 (2776	00041	
26649	មា	0.139	0.006	16.99	16.55	48,88	0,026	0.34	0,11	0.04	0.04	-	0.022	æ		75 121			4	12	2	0	395	<u>n</u>	266	æ			3.7	14508	
26650	ß	0.188	0.011	14,39	12.59	56.69	0.046	0.38	0.11	0.02	0,04		0.025	5						ŝ	12	4	450	21	176	8			84.8	12781	
26651	~	0.168	0.012	19.45	12.15	51.90	0.030	0.49	0.15	0.06	0.06	0.67	0.018	31	τ φ	•	-	47 15	Ċ	14	5	ħ	340	25	302	æ	70		85.0	15933	
26652	8	0,202	0.016	16,03	11.62	55.54	0.059	0.37	0,12	0.02	0.04	0.45	0.034	27	-16	-	11323 5	53 14	9 7	10	Ę	4	400	18	274				4.3	14507	
26654	, ₽	0.209	0.02	9.56	11.32	63,43	0,122	0.29	0.05	0.03	0.02		0.051	15				60 9	96	8	ŵ	4	590	16	156		164 3	31 8	85,2	13430	
26657	ç Ç	0 535	0.096	11 47	7.85	60.19	0.320	0.43	0.08	0.05	0.02		0.069	130				44 8	0	15	31-	2	205	11	585	0			0.7	31843	
10000	2 3		0.068		7 2 2	67 QB	0 183	0.75	0 17	0.08	0.03		0.038	99	24		-	0	ų	3	-16	N	150	24	346				2.4	24500	
90007	<u> </u>	010.0	000.0	11.41	200	No Co							0.001	, .				. c	ц К	e.	· •	5	ç	5	1	¢.	137		85 G	12586	
26661	2	0.749	620,0	20,00	10.3	÷.22	121.0	+ 10 - 1		2.0	00.0		100.0	- 2) e 4 c	2 5		0		e c	53						11070	
26663	2	0,606	0.025	41,44	3.28	34.74	0.139	3.5	16.0	0.13	00.0	_	0.004	g :		-		2 e	1	4	•	× 6	3 9	; ;	5					0.011	
26665	20	0.664	0,141	51.00	2.28	23.44	0,846	4.28	0.58	0.20	0.08	-	0,002	442				97 	n (; 1	ę,	,	6	201	20	D 1			9.70	alare,	
26668	21	0.894	0,18	43.35	3,30	25.83	1.099	5,15	0.63	0,24	0.08	-	0.001	321	4	80 68		5 5	18	n (ю. '	•	2	5	82	۵	_	212	8.8	164/3	
26669	2	0,444	0.027	60,03	2.04	11.43	0.147	12.97	0.26	0.13	0.04	0.08	0.003	37		-	8589 41	5	Ð	5	4	7	2	2	8	מל	2	р С	67.1	13394	
CBRC0783																															
29819	-	0.206	0.015	36.49	11.44	37.62	0.138	0.77	0.24	0.04	0.09	0.28	0.014	511	31 1	170 50	005 6	7 6	13	7	26	ŝ	420	21	114	18	67	27 8	87.1	8688	
29821		0.3	0.035	28.82	7.31	47.66	0.184	1.56	0.16	0.08	0,09	0.33	0.006	42	81	20 60	6060 51	8	10	4	37	ŝ	100	27	119	4	63	26 8	86,2	8843	
20822		0.468	0.171	39.29	5.10	36.17	0.592	2.30	0.17	0.06	0.09	0.26	0.002	118 /	457 6	55 12	2436 4	7 9	30	80	25	Ţ	65	25	112	4	169	17 8	84.0	19965	
20022	r er	0.841	0.097	56.43	2.40	20.92	0.360	4 25	0.34	0.14	0,10	0.08	0.001			100 35	3504 41	4	16	3	2	2	20	41	39	12	121	8	85.0	13776	
17007	• •	2020	0.000	47.63	2 67	24 58	0 118	12 47	030	012	0.07	014	0 003				9737 4	7 4	~	0	2	ę	60	5	70	ø	135 .	12 8	83.9	17699	
2063	- 0	0.001	770 U	38.90	4.37	19.62	1.140	17.84	0.31	0.17	0.06		0.001					57 4	36	чî	6	Ϋ	40	37	52	1	•	12 8	82.7	24503	
12002	, ĉ	0.000	10.01	44.78	3 57	14.05	0 233	10 10		017	0.05		0 002	176				30 3	25	•	0	0	-10	26	47	10	`		83.4	17166	
00022	π t	670'D	0.018	43.54	3.67	13.57	0.126	22.41		0.12	0.05	-	0.001	09	.	ì	_	27 5	2	-	4	0	50	24	60	r	86	8 9	83.8	23573	
70833	2	0.67	0.021	43.65	3.41	12.86	0.194	23.59		0.11	0,04	_	0.001	81		•		9 4	14	7	Ŷ	4	10	19	67	ç	16	8 01	84.2	24530	
20834	t t	0.846	0.019	43.76	3.20	12.75	0.147	22.30		0.11	0.04	_	0.001	42		**	24438 1-	4	ų	0	3	-	20	21	60	2	96	а е	82.6	31447	
70838	2 #	0.566	0.018	51.38	2.25	11.49	0.210	18.75		0.15	0.04	0.07	0,001	72	-			24 3	6	-	<u>5</u>	o	100	Ť	42	ŝ	78	7 8	84.4	25032	
29839		0.34	0.014	67.87	1.61	7 53	0.107	11.16		0,10	0,04		0.001	36		-		24 3	0	ů	2	ŵ	20	32	30	9	43	8 8	89.8	11025	
29840	21	0.589	0.017	42.74	2.62	12.00	0,159	19.32		0.12	0.05		0.001	22	c,	0 11	_	8	4	ů	9	?	0	52	58	2	98	6 8	80.8	18104	
29841	22	0.592	0.018	44.70	2.45	11.75	0.187	21.16		0.10	0.04	0.10	0.001	26	ę.			20 3	сч	2	ę	Ţ	30	41	53	9	78	<u>п</u>	83.4	11688	
29842	23	0.574	0.018	57.82	1.64	11.74	0.213	15.95		0.15	0,05	0.06	0.001	22	7 4			22 3	-	0	-	Ņ	25	28	ě	÷	71	8	8.2	8240	
29845	26	0.47	0.017	60.69	1.76	10.58	0.194	11.99		0.13	0.05	0.07	0.003	12	• •		••	<u>ل</u>	ę	σ	7	2	10	30	47	ø	73	9 6	85.8	6531	
29849	30	0.472	0.016	64.64	1.75	11,08	0.220	11.25	0.18	0.10	0.05	0.07	0.001	ŝ	29 1	-		24 0	4	4	2	D	30	28	50	0	82	6 8	89.3	6667	•
29850	31	0.359	0.012	71.24	1.08	96,96	0.175	8.67	0.13	0.12	0.04	0.03	0.001	0	13 1	•		20 2	~	ŝ	9	4	20	24	25	ŝ	57	8	90.5	5053	
29853	34	0,389	0.014	61.90	1.33	11.14	0.222	14.77	0.12	0.08	0.04	0.07	0.001	19	1 0	-		21 -1	4	÷	ĉ	2	0	24	20	n	72	4 8	89.7	5452	
29858	38	0.223	0.009	73.44	0.69	8.90	0.138	10.07	0.11	0.09	0.03	0.01	0.008	8	17 1		•••	25 3	ŝ	0	2	7 7	8	17	52	₽-	42	2	93.5	3632	
29859	39	0.213	0.008	47.55	0.63	7.65	0.108	12.23	10.74	0.09	0.03	0.01	0.007	17	- 7		-	12	80	4	-	•	o	50	44	÷-	41	0	79.0	3178	
29861	41	0.263	0,008	39,86	0.60	8.64	0.128	12.88	12.72	0.05	0.03	0.01	0.006	28	 9	30 81	881 1:	30	r- - 1	0	ო	0	t 0	68	33	4	49	7 7	74.9	3821	
29864	44	0.24	0,007	34,06	0.46	7.76	0.101	26,86	1.72	0.04	0.02	0,00	0,010	-10	16 1		717 1	4	د ا	2	e	ů	5	24	37	ę	38	3	71.0	3461	
29866	45	0.207	0,007	25.90	0.65	7.15	0.130	28.74	4.91	0.04	0.02	0.02	0.005	-14	19		631 8	3	4	Ŷ	80	ů	ę.	57	26	u)	37	9 9	67.6	2873	
29869	48	0.24	0.009	33,75	0.46	6.94	0.108	25.38	3.91	0.07	0.02	0.00	0.005	18	15 L		963 C	0	4D	7	2	Ņ	ę	47	23	9	36	6 7	70.6	3484	
29873	52	0.237	0.012	24.91	0.51	6.31	0.111	31.26	3.23	0.04	0.01	0.00	0.008	6	15	20 9	912 3	3 0	ŝ	÷	ŝ	7	20	53	15	0	33	4 6	66.4	3542	
29876	55	0.21	0.011	27.18	0.89	7.04	0.107	23.24	14.05	0.02	0.02	0.03	0.003	29	• 9	•	1164 1	3	÷	ų	3	n	₽	180	32	~	35	67	72.6	3624	
29878	57	0.204	0,005	14.61	0.55	5.17	0.098	Z0.63	21,47	0.04	0.02	0.01	0.001	÷	19		947 1	1 0	9	0	¢	7	0	297	12	ŝ	24	10 6	62.6	3352	
29891	60	0.217	0.008	35.82	0.60	8.66	0,105	20.65	11.72	0.0	0.01	0.01	0.004	-	-		7	-	7	5	£	2	-10	111	28	2	39		7.6	3169	

Appendix 4: Table A4.1

Appendix 4: Table A4.2, XHF BIRINGES OF SELECTEU FU TIMES IOF MING.	I aDie	44"T VUL -	allergaco	12227 10									The second s	discontrastication and the second second			and the second se	The second se								Junearitan			
		*078 (1178	500	SION AIDOR EADON Man	0000	n n	Call Call	ر د د		N-20 K2	KOO TIOS	° D2∩5	e G e	ĉ	5	č	ĉ	ŝ	مہ ت	- HN	4a Ha	U.	ð.	>	>	70	7		TotalTr
	(m)	140/		2	38	8				, % , 9	~ ~				9	_					_	۵	a	G.	a			%	
ARC1258						ł					•																		
124385	-	0.246 0.015	5 40.83	9.45			09 5.27	7 1,58	68 0.23		0.38 0.48	8 0.045		33	1360	6396	3	14	0	6		680	63	•	5 22	99	115	87,4	11861
124386	2	0.315 0.017	7 52.41	3.92		3 0.065	35 17.86	36 1.80		0.49 0.20	20 0.17	7 0.007		-	3320	3879	33	ന	Ţ	-	~	1610			÷	69	39	86.9	12477
124387	en	0.416 0.019	9 54,78	3.19	10.59	9 0.080		32 0.10		72 0.11	11 0.13	3 0,003	_	0	1480	4958	33	ç	י ד	, ,	5	225			12	72	14	91.6	11221
124389	с С	0.423 0.016	6 55,79	3.17	10.29	9 0,051		94 0.02		11 0,15	15 0.14	4 0.001		24	1040	4875	6	*	ę,	÷	33	160	8			76	٢	92.7	10624
124392	7	0.417 0.016	6 55.66	3.06		4 0.075					0.13 0.13	3 0.001		7	1150	4609	5	3	<u>ب</u>	-	с С	150			15	70	8	93.0	10377
124393	ω	0.396 0.017									0.15 0.13			15	1170	4751	18	ស	ş	~	8 3	170		61	ţ.	72	φ	92.9	10401
124397	12	0.165 0.010				2 0,103				59 0.10	10 0.05		1 24		1090	2523	•	ი	¥	-	3	110	17		*	37	Ś	69,0	5578
124398	13	0.211 0.009	9 30.68	1,86						-	0.10 0.06	6 0.001	۲ ۲	26	640	2892	æ	0	9	e N	<u>ب</u>	80			ເລ 	43	4	74.0	5926
124399	14	0.225 0.011								87 0.13	13 0.08	8 0.001	▼ 	2	750	3050	14	*	•		3	70			ŝ	43	чЭ	75.8	6331
124403	18	0.212 0.010	0 31.82	1.94	7.14			24 3.10	0 0.74	_	0.08 0.07	7 0.001	1 21	ŝ	430	2428	15	e0	0	~	**	50			•	47	2	75.2	5256
ABC1257																													
124360	*	0.147 0.027	7 21.35	9.29	54.31		22 0.72	_	2 0.16	16 0.20	20 0,40	0 0,035	5 321	1 45	350	14766	72	10	10	۰، ص	-13 12	530	44	\$ 202	2 17	124	87	86.8	18291
124362	e e	0,226 0,035		•		1 0,108		9 0.22		70.0 90	01.0.40	0 0.021	1 49		500	23994	62	10	ų	` 0	-17 13	1 350	¥	192	5	138	5	84.8	27922
124364	ŝ	0.256 0.019						-		24 0.12	12 0.30	_	3 38	-30	400	17924	(1	2	. 8	1 8			-	13	147		85,4	21646
124365	9	0.951 0.028		5.33		4 0.059	59 4.54				19 0.16	6 0.001	6,	Ţ	5000	7506	23	ø	ين مە	0	~	790	20	80	26	203	c	82.9	23449
124368	¢	1.795 0.075		4.67	33.18	8 0.096	96 4.83			25 0.18	18 0.20	0 0,001	1 19	•	14570	5876	49	7	.	+	9 0 8	1960				305	12	81,1	41603
124370	9	2.243 0.174	4 38.38	4,49	31,28	8 0.295	35 5.40			14 0.15	15 0.19	9 0.003	0 0	129	13430	5789	64	භ		0	8 7	1780			~	314		B1,4	45790
124373	13	2.222 0.179	9 39,53	4.15	29.69		32 7.70	0 0.04			13 0.17	7 0.003	т. Ю	27	12020	4740	46	*	9	~		1640			1 9		ž	82.8	42881
124375	15	1.674 0.178	8 36.84	3.10	22.94	4 0.727	27 18.94			74 0.10	10 0.12	2 0.006		1	10790	3427	88	4	35 .	~	4	1510					\$	83.5	34796
124376	16	1.306 0.133	3 42.95	2.81	17.97	7 0.748	48 20.30	30 0.03		59 0.08	80.09	9 0.017			6570	2698	69		102	-	т ~	980	-				4	85.8	25404
124378	18	0.908 0.043	3 38.76	2.47	13.00			34 0.02		12 0.05	0.09	9 0.004		-18	6090	2998	29	*-	56	0	•	860	-		60	119	n	85,8	19758
124379	19	0.713 0.022	2 38.22	2.09	12.08	8 0.518	18 32.56	56 0.02		31 0.04	0.08	8 0.002			4210	2723	17	¥	13	-	*	610	4	1 58	28		ø	85.9	15134
124384	24	0.603 0.019	9 38.54	2.27	13.36			26 0.33	3 0.25	25 0.04	0.08	8 0.001	1 28	Ŷ	3010	2875	87	-	4	÷	ų Υ	330	12	5 43	80 	88	හ	86.3	12673
4001478																													
137424	÷	0.343 0.014	4 40.60	5.84	27.95	5 0.121	21 11.03	0.75	5 0.17	17 0.20	20 0.44	4 0.023	3 67	0	680	6172	46	μ ΥΩ	20	0	8	220	₽	0 173	3 12	64	63	87.1	11135
137425	• •4	0.616 0.017												θ¦	2820	11447	49	~	-	5	4	690				126	30	81.6	21752
137426	ر ی	0.745 0.014	4 39.04	6,34			01 3.15	5 0.34			19 0.28	8 0,001			3740	11348	48	~	ŝ	3	0	840						81.5	23962
137429	ŝ	0.974 0.080	0 43.47	5,33	26.04	4 0.467		7 0.23			20 0.22	2 0.001	52		5010	8324	63	æ	νņ	0	0	1090	_				÷	83.7	25372
137430	ø	0.652 0.021													4135	4977	36	មា	Ţ	÷	с Т		19	46	15			85.8	16805
137433	o	0.529 0.019	9 39.77	3.26	13.42	2 0.250	50 27,12	12 2.17	7 0.45	15 0.08	0.23	3 0.001	4	?	4310	4664	5	•	8	-	-	620				88	*	86.7	15264

Appendix 4: Table A4.2. XRF analyses of selected RC holes for MM3.

-1

Appendix 4: TableA4.2

undari oranori	DOW New und	200				nîn .	2	DJBN .	222	-	2021	0	5	5	5	50		Ĩ	2		n	5	>	5	3		1 112001
(m)	6	%	%	%	%	%	%	%	%	%	%	d mqq	ld udd	d udd	ppm pj	udd udd	mqq m	u ppm	Шdd	bpm p	bpm r	ld wdd	dd wdd	mdq mqq	mqq m	%	mqq
ARC1008																											
83610 1	0.154 0.006	5 47.83	13.11	24,65				0.09	0.24	0.37	0.024	338	30 1	`		80 12	2	¢	¢	15	260	·	34	3 3 3	, -	87.6	7412
83612 3	3 0.289 0.020	0 42.75	7,48			2 4.90	3.75			0.16	0.009	92	5 4	·		35 5	12	ę	4	**	160	72		_	24	83,2	8836
83613 4	0.768 0.065	5 33.95	5.22	37,10	0.342	2 3.45		0.37		-	0.008	119	6 2ĭ	2930 4	4883 6	36 3	17	-	N	N	200			11 97		83.0	17516
83614 5	5 1.076 0.034	4 49.41	3,96	27.14	0.142	2.64				0,14	0.001	24	4	9 0/6	6867 5	51 2	14	ဟု	ð	-	900	32	78	6 97	~	84.4	24114
83617 8		4 39.64	5.33	31.70	1,310	0 2.72	-	0.84		0.21	0.001	869	14 67		8567 7	1 7	Ŧ	4	4	r ņ	080			10 19	2 17	82.1	33562
83618 9	0.289 0.026	3 83.40	1,99	9.26	0.211	0.60	0.03	0.16	0.05	0.08	0.001	121	17 10	1090 2	2830 1	18 3	ကို	*	g		250			7 42	9 0	95.8	7583
•	1.025	3 29.43	6.03	43.81	0.479	9 2.19	_	0.70		-	0.005	259	-2 34	-	0391 7	76 6	в	4	₽ P		750	-				83.1	26171
	0.897	3 22,91	7.08	51.97	0.209						0.002	48	4	•	-	76 6	ų	9	4	ເຕ ເດ	760	Ċ	156 1	17 184	6 26	85,2	2394E
83623 14	1.155	9 45.43	4,84	27.67	0.198		0.07	0.86	0.18		0.001	27	9 9	5120 6	-	59 3	5	7	2		086	29				84.4	25214
	0.946	5 42,15	3.43	17.41	0,387	19.39					0.001	27	4 6(22 4	ę	9	Ħ	ς	950		47 1		1 12	83.9	22655
	0,596	47.84	2.54	13.39	0.411	21.27		0.59	-	0.10	0.001	22	7 51	5020 3		21 2	\$	លុ	₽	Ţ	560		`		e e	86.7	15091
	0.375		2.01	13.07	0.203		_		-	-	0.001	15	9 2		2807 2	21 4	8	ņ	5	0	300		42	8 67	ŝ	88.2	9645
83632 22	0.382	3 44.51	2.16	13,90	0.222	23,95	5 0.36	0,40	-	0.08	0.001	19	5 21	810 3		43 3	Ϋ́	ņ	ŝ	Ť	350	*	38 1	10 72	~ .	85.7	10470
83637 27	7 0.322 0.013	3 43.82	1,89	11.10	0.156	3 30.33	3 0.32	0.20	0.06	0.07	0,001	4	4	520 2	2999 1	13 7	o	ů	ŝ	, ,	190	8	47	63	9	87.9	8185
ARC0776																											
37749 1	0.307 0.017	7 20.97	6.30	55.52		16.1	0.16	0.08	0,06	0.25	0.025	362	11 5	Ţ		78 1I	13	თ	-17	÷-	320	•	11	9 108	8 27	85.4	21528
37750 2		38,30	5.32	37.83		1.93	-	0.05	0.10	0.17	0.006	69	-7	145 15	5431 3	34 6	4	÷	13	Ţ	40		•	13 80	16	84.2	19881
37751 3	0.589	3 44.13	2.10	23.50	0.065	6.01	5.04			0.05	0.001	388	-2 23	_	7598 5	<u>5</u>	1	0	0	0	140					81.3	17246
37755 6	1.346 0.096	5 43.76	3.89	27.59	0.287	5.03		0.73	-	0.15	0.001	32	89 54		27768 3	35 4	21	-	7	10	320			6 201	8 10	81.8	48923
37756 7	0,964	58,51	2.39	22.93	0.168		0.12	0.56		0.09	0.001	25	8 31	_		32 -1	16	-	2	• •	470	24	58 1	1 122	2 8	87.7	21170
37758 9	0.927 0.065	56.82	2.19	16.24	0.858	9.43	-	-	-	0,07	0,001	221	,-			31, 6	ŝ	÷	N	ō	580				=	86.7	23142
37760 11	1 0.497 0.018	3 50.37	1.51	9.81	0.192	25.08	-			0.05	0.001	16				10 2	ŝ	Ņ	Ņ	C4	330			8 64	9	87,6	11985
37764 15	5 0.470 0.018	3 54,96	1.76	13.26	0.261	17.08	3 0.21	0.51	0.09	0.06	0.001	ഹ	₹ ₹	1380 34	3603 1	17 2	0		4	0	420				4	88.2	13410
ARC0774																											
37693 1	0.526 0.017	73.44	4,27	9.52	0.194	1 2.04	0.47	0.06	0.27	0.15	0,010	120	46 1		2162 2	ម ខ្ល	15	0	භ	12	55		29 1	6 52	37	90.4	8191
37694 2	0.705 0.024	45.19	2.53	12.21	0.321	11.88		0.32		0.08	0.004	141	**	200 2	561 3	17 3	32	ņ	£	8 2			34 1	10 61	21	78.9	1525(
37695 3	0.548 0.008	33.83	1,03	6.54	0.062		2.59	0.35		0.02	0.001	46	20 36	11 0530	691	5	Q	ņ	10	- -	-	366	21	33	25	63.9	14426
37696 4	0.442 0.005	33.11	1,37	4.05	0.028			0.19	_	0.01	0.001	ល	7 15		1131 ,	4	4	7	2	ကို	340		13	1 20	0	67.7	7284
37697 5	1.189 0.051	1 46.78	2.30	26,14	0.730			-		0.09	0.001	96	4 6			9 9	-	3	ς	5			35 4	121	6 0	85.5	26253
37700 8	0.888 0.038	3 58.17	1,21	20.92	0.669	9 6.14	0.34			0.04	0.001	47	18 46			47 3	ŝ	0	Ø	ц Ч	1050	15	ខ្ល	9 104	4 9	88.3	18784
37703 10	0.706 0.038	3 59,68	1.17	20.47	0.394	6.42		0.71	0.15	0,04	0.001	25	4 54	5480 3-		6	Ŷ	4		? ?			16	36 5	с С	89.1	17504
37704 11	1 0.475 0.006	3 10.69	0.20	3.30	0.061	40.78		0.22		0.00	0.001	-	6 2E			2	N	4	2	י ד	100		0	: 24	ŝ	55.5	8666
37706 13		3 12.81	0.22	3.61	0.182	39,30		0,19	0.04	0.00	0.001	*	11 22		637	2	6	ņ	ŝ	0	310	5	5	26	0	56.9	6570
37709 16	5 0.333 0.011	16.47	1.02	6.39	0.129	37.17	1.15	0.25	0.07	0.03	0.001	ŝ	6 16	1810 41	4321 2	0	10	ů	ø		250		5	5 48	е С	62.7	9922
37712 19	9 0.265 0.009	9 24,26	0.57	6.31	0.144	32,91		0.22	0.05	0.01	0.001	4	2 14	1420 5		7	**	÷	2	ry	160		33	43	2	67.0	9569
37715 22	2 0,309 0.012	27.02	1,03	7.21	0.134	33.45	5 0.72	0.42	0.09	0.02	0.001	23	8 34	3410 54	5437 (6 6	ŝ	•	មា	÷	410	ø	31	53	ۍ ۳	70.1	12579
37719 26	s 0.223 0.010		1.84	5,86	0.125		0.82	0.25	0.07	0.08	0.001	Ņ	3 10		5723 4	4	-	~	-	т г	120	~	3B 6	3 46	8	75.6	9266

a in the

(m) %	Hole (D	Depth	%NI %Co		AI205	SiO2 Al2O3 Fe2O3 MnO	3 MnC		o CaO	O Na2O	<u></u>	0 1102	P205	5 09	ပိ	ö	Ğ	రె	Ga	<u>га</u>	dN B	Pb Rb	s S	ര്	>	7	Zu	2	OXIDE	TolaiTr
10 1 0.259 0.015 3.20 6.93 6.14 7.15 1.4 0.14 0.016 0.23 0.15 0.14 0.15 0.24 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.16 0.015 0.15 0.014 0.15 0.14 0.15 0.014 0.15 0.014 0.15 0.014 0.015 0.15 0.014 0.15 0.014 0.15 0.014 0.15 0.014 0.15 0.014 0.15 0.014 0.15 0.014 0.15 0.014 0.15 0.014 0.15 0.014 0.15 0.014 0.15 0.014 0.15 0.014 0.15 0.014 0.15 0.014 0.16 0.015 0.014 0.15 0.014 0.15 0.014 0.015 0.014 0.015 0.014 0.015 0.014 0.015 0.014 0.015 0.014 0.015 0.014 0.015 0.014 0.014 0.014 0.014 0.01		(m)		*	%	*	*					.	%	ndq		mdd												udd u	%	mdd
1 0.259 0.019 33.34 0.13 34.0 17 39 5 3 37 17 39 5 3 30 17 19 9 3 30 17 19 3 3 17 19 3 3 17 19 3 3 17 19 3 3 1 20 107 58 7 28 3 0.490 0.010 35.25 1.77 0.91 0.72 3 1 2 10 17 19 1 2 1 3 1 2 10 17 19 1 1 1 2 1 3 11 1 1 2 1 <t< td=""><td>ARC0786</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td></t<>	ARC0786																													•
2 0.160 0011 0.32 0.000 203 0.000 203 0.000 203 0.000 203 0.000 203 0.000 203 0.000 203 0.000 203 203 0.000 203 0.000 203 203 1 2010 0.000 203 203 1 2010 7 23 1 2 1 1 20 1 201 101	37969	÷	0.259 0.015		8,53	35,86										320	5833	48	22	29	ະກ	ന	300			1 17	6	120	87,9	10142
3 0169 0070 288 72 001 3 200 017 3 4 4 4 4 10 0220 0010 3550 2.44 770 0152 0.44 0010 3550 2.44 770 0152 0.44 0010 3550 2.44 770 0152 0.04 100 0000 19 2 1160 320 119 2 1 4<	37970	~	0.190 0.011													430	4274	39	17	19	c,	9	470			4 17	55	118	86.0	8129
6 0.210 0.011 3.247 1.76 0.163 0.247 1.76 0.173 204 1.76 0.17 201 1.7 201	37971	en	0.159 0.007						~							1150	2188	1	4	÷	.	e e	280				32	28	71.4	5606
10 0.220 0.10 0.12 0.17 0.00 19 2 10 0.22 0.011 17 20 19 2 1 20 1 20 10 12 11 20 12 11 20 12 11 20 12 11 20 12 10 12 10 12 11 20 12 10 12 10 12 10 12 10 12 10 12 10 12 12 12 12 12 12 10 12 12 12 10 13	37974	9	0.210 0.010			7.60			~						\$	830	2905	24	~	.~	Ņ	-	210			4	47	ŝ	75.6	6289
11 0.221 0.011 37.2 2.35 0.141 0.010 1.75 0.24 0.060 0.03 19 2 700 3493 21 3 1 2 6 2 100 2 100 10 46 0.103 31.32 1.90 0.014 0.017 0.014 0.014 2.71 0.006 0.014 0.015 0.014 0.016 0.006 0.016 0.014 0.116 0.014 0.116 0.014 0.116 0.014 0.116 0.014 0.116 0.116 0.116 0.116 0.116 0.116 0.116 0.116 0.116 0.116 0.116 0.116 0.116 0.116 0.116 0.116 0.116 0.116 0.116	37978	t 0	0.209 0.010						~						24	1160	3276	19	ი	0	Ņ	۳ ۲	290			-	5	9	17.4	7038
13 0.221 0.011 3.53 2.34 6.57 1.03 3.1.2 1.00 0.03 0.01 1.0 2.0 2.0	37979	11							~						2	700	3493	3	ŝ	-	2	8	140			~	5	6	80.8	6806
1 0.337 0.015 3.333 0.015 3.337 0.015 3.46 5 3.40 15546 47 19 13 19 5 3.45 21 270 20 70 3 0.337 0.015 3.473 4.05 0.055 2.17 0.030 0.15 1.11 50 116 15 7 7 19 13 21 70 20 70 15 15 50 116 15 8 114 50 7 15 10 14 21 70 20 70 17 5 0.733 0.024 5.041 5.055 0.161 0.013 0.041 516 6300 20 101 157 104 20 21 100 157 175 10 1155 0.033 519 0.101 0.031 0.011 1037 123 20 101 157 129 101 120 121 121 121 121 121	37983	15		36,36		8.67			-				-		φ	510	3072	6	ę	មា	Ť	4				භ –	55	ŝ	81.0	6110
1 0.323<0015	480.0785																													
3 0.347 0.012 34.78 4.66 4.05 0.028 2.19 118 21 315 14161 50 7 15 10 47 5 118 15 82 5 1.227 0.063 3.67 1.85 0.36 0.06 0.04 14 -3 15 16 17 15 111 6 1.227 0.064 5.063 1.05 0.04 0.04 0.05 0.06 0.04 0.11 0.05 0.06 16 16 17 15 10 14 2 17 15 17 15 10 14 0.1 0.01 0.	37888	÷			7.07	45.34				_	_	<u>ب</u>	0.036			340	15548	47	18	¢,	13	ය ප	345					68	85,6	20322
5 0.733 0.024 2.7.34 0.043 9.22 0.24 0.03 127 0.04 1.7 27 14 0 14 3 1910 6830 22 3 2 1 1 3 2 5 160 17 17 17 1 1 1 1 1 1 1 3 2 5 19 3 130 7 17 1 1 1 1 1 1 1 1 1 2 2 1 1 3 2 3 10 7 17 1 1 1 1 1 0 1 0 1	37890	. 62			-				-	-			0.015	-	•	315	14161	50	~	5	5	*	175					17	84.1	16695
6 1.227 0.046 5.063 1.87 2.376 0.081 3.67 1.85 0.38 0.004 530 2 11 1 3 2 625 60 48 9 136 10 1.639 0.033 41.03 5.004 5.39 0.10 0.11 0.033 51.9 .3 0 55.0 2.8 109 7 175 11 1.639 0.033 41.03 5.00 0.01 0.10 0.01 0.03 56 7 5 10 7 13 117 12 1.163 0.035 5.03 0.01 0.01 0.001 39 0 4 2 7 14 36 7 19 7 19 7 19 7 19 7 14 0.13 0.01 0.001 142 16 53 10 7 10 7 13 14 17 10 17 10	37893	ŝ								-		-	-			1910	6930	22	e	q	0	~	600			ся -	11	t 3	73.4	17451
8 1.188 0.094 5.064 5.98 4.21 0.01 0.11 0.13 2.004 5.98 4.90 17 17 17 11 1.659 0.033 51.08 2.70 16.17 1.198 0.14 0.53 0.01 0.11 0.033 15 8 7 16 7 17 12 0.133 51.08 2.70 16.57 0.29 0.03 17 14 710 2 2 2 2 1 17 117 15 0.931 0.031 1.25 0.00 0.01 0.01 0.03 6 1 1 2 2 1	37894	9				23.76				-		-	0.004			1820	6360	26	2	1	-	3	625			8	136	9	82.4	21930
10 1.639 0.033 41.03 4.80 26.57 0.238 8.07 0.07 0.51 0.11 0.033 13 2 3 0 1560 27 117 112 1.105 0.033 51.98 2.70 16.57 1.617 11.98 0.10 0.11 0.003 16 4770 4025 16 6 40 2 2 2 2 12 0 980 24 68 7 119 16 0.911 0.030 4.855 0.03 0.559 14.44 0.13 0.57 0.04 0.35 0.4 143 1 1 3 4 1 4 3 1 1 3 4 1 4 3 1 1 1 3 4 1 4 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	37896	8			3,39					-						2380	34901	22	3	22	ۍ د	6 6			•	ь Ф	175	e	80,7	51886
12 1.105 0.033 51.98 2.70 16.7 1.113 0.14 0.031 0.56 19 4.770 4025 16 4 2 2 2 12 1.105 15 0.332 0.034 6.50 0.07 0.56 0.01 0.031 6.5 14 20 2 2 2 2 2 2 1 118 16 0.911 0.033 16.95 0.01 0.03 0.00 139 0 4 3 7 1 3 1 1 3 4 -1 4 -3 710 21 35 1 35 1 35 1 13 1 140 2 3 1 1 37 1 1 37 1 1 3 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1	37898	10		•	4.80				-							4670	10378	25	9	38	~	0	156(~	152	22	81.8	33649
15 0.332 0.034 8.6 0.01 0.05 0.01 142 16 830 676 34 0 2 6 2 1080 25 59 7 19 16 0.911 0.023 2.51 16.39 0.579 14.44 0.13 0.57 0.001 305 0.01 142 16 5830 6765 34 4 0 2 6 -2 1080 35 59 7 39 18 0.737 0.021 51.33 2.51 16.39 0.579 14.44 0.13 0.57 0.001 39 0 4.13 14 -1 40 2 4 -1 -3 710 21 39 108 16 7 18 1 0.379 0.015 0.13 0.11 0.13 0.27 245 1 4 -1 400 26 2 1 4 1 40 2	37900	12	1,105 0.033									-			4	4770	4025	16	8	40	ş	2	122(~	117	₽	85.7	21813
16 0.911 0.033 2.81 2.010 1.053 1.053 0.675 1.44 0.13 0.57 0.001 30 0.001 39 0 4.80 6.75 34 4 0 2 6 -2 1080 35 59 7 39 18 0.737 0.021 51.33 2.51 16.39 0.579 14.44 0.13 0.57 0.001 39 0 4.80 6413 19 2 1 0 4 -3 710 21 35 10 87 11 0.555 0.026 0.59 0.19 0.11 0.19 0.44 0.35 2067 10 20 4 1 -1 -1 20 21	37903	15		-								-			6I-	4350	10474	29	ę	96	ະຄ	2 0	980			-	118	Ø	82.9	25757
18 0.737 0.021 51.3 2.51 16.39 0.579 14.44 0.13 0.57 0.001 39 0 4280 6413 19 2 -1 0 4 -3 710 21 35 10 81 21 0.555 0.021 5.81 0.399 15.85 0.007 0.09 0.001 18 0 3010 12252 13 1 1 -3 4 -1 440 20 48 1 0.379 0.015 41.13 6.42 37.57 0.130 0.14 0.13 2.74 490 10.75 1 40 2 4 4 40 20 400 1 40 15 10 41 1 40 1 4 1 40 10 1 1 490 10.265 10 41 1 490 10.265 10 10 10 11 1 1 1	37904		0.911 0.030			20,10	-					_				5830	6765	34	*	0	~	e Si Si Si Si Si Si Si Si Si Si Si Si Si	108(~	66	9	84.6	23430
21 0.555 0.020 48.95 5.08 0.53 0.07 0.09 0.001 18 0 3010 12252 13 1 1 -3 4 -1 440 20 8 8 183 1 0.379 0.015 41.13 6.42 37.57 0.136 1.56 0.19 0.41 0.19 0.42 0.025 245 1 490 10266 36 10 17 10 17 5 255 29 188 15 2 7 97 2 4 0.13 0.13 0.14 0.13 0.27 0.008 86 0 5 165 12 97 2 3 440 165 165 12 97 2 97 2 3 465 560 165 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 <td>37906</td> <td></td> <td>0.737 0.021</td> <td></td> <td>2.51</td> <td>16.39</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>_</td> <td></td> <td></td> <td>o</td> <td>4280</td> <td>6413</td> <td>19</td> <td>2</td> <td>7</td> <td>0</td> <td>4 6</td> <td>710</td> <td></td> <td></td> <td>· · · ·</td> <td></td> <td>÷</td> <td>86.1</td> <td>19166</td>	37906		0.737 0.021		2.51	16.39				-		_			o	4280	6413	19	2	7	0	4 6	710			· · · ·		÷	86.1	19166
1 0.379 0.015 41.13 6.42 37.57 0.136 1.56 0.19 0.11 0.19 0.42 0.027 245 1 490 10266 36 10 17 10 17 5 255 29 188 15 72 4 0.784 0.033 38.31 4.42 31.48 0.113 7.04 0.46 0.49 0.13 0.27 0.003 850 42 9 2 5 16 6 620 45 165 12 97 37 5 1.128 0.033 38.31 4.74 31.48 0.13 7.04 0.46 0.44 0.35 0.013 0.9 3 3490 8304 42 9 2 5 16 6 205 10 165 12 015 0.005 16 0.11 0.01 0.01 11 15 17 15 17 15 17 15 17 15 165 105 10 155 10 15 16 155 1	37909		0.555 0.020							-			-	_	o	3010	12252	13	-	÷	ę	र भ	440		·	_	88	¢	85.2	21622
1 0.379 0.015 41.3 6.42 37.57 0.136 1.56 0.11 0.19 0.42 0.027 245 1 490 10266 36 10 17 10 17 5 255 29 188 15 72 97 37 4 0.784 0.033 35.31 4.42 31.48 0.113 7.04 0.46 0.49 0.14 0.35 0.013 99 3 3490 8304 42 9 2 5 16 6 20 45 165 12 97 5 1.128 0.032 37/02 4.78 35.78 0.151 2.78 0.24 0.80 0.15 0.008 86 0 5220 25 10 45 17 10 47 790 56 105 10 155 7 1149 0.74 0.86 0.13 0.27 0.008 86 0 52 10 45 10 155 10 155 10 155 10 155 <t< td=""><td>ARC0783</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	ARC0783																													
4 0.784 0.033 38.31 4.42 31.48 0.113 7.04 0.46 0.49 0.14 0.35 0.013 93 3490 8304 42 9 2 5 16 6 20 45 165 12 97 5 1.128 0.032 37.02 4.78 35.78 0.151 2.79 0.24 0.80 0.13 0.27 0.008 86 0 52.20 82.32 25 10 -2 -1 0 -4 790 56 105 10 155 7 1.176 0.058 49.13 3.20 0.16 0.66 0.12 0.102 21 33 4850 5800 16 3 10 165 32 23 8 169 10 160 10 155 10 155 10 155 10 155 10 155 10 155 10 155 10 155 10	37910	,	0.379 0.015							-	-	-	0.027		•	490	10266	36	10	17	10	7 5	255		**			68	87.8	15649
5 1,128 0.032 37.02 4.78 35.78 0,151 2.78 0.24 0.80 0.13 0.22 25 0 2 -1 0 -4 790 56 105 10 155 6 1,176 0.058 49.13 3.20 0.149 3.20 0.16 0.66 0.12 0.12 0.02 21 33 4850 5800 16 3 1 -5 770 53 84 8 169 7 1.149 0.074 36.98 2.027 15 50.02 21 33 4850 5800 16 3 1 -1 -7 1 840 169 7 20 20 210 53 9 230 9 0.835 0.073 4.04 0.48 0.40 0.40 0.41 0.40 0.41 400 16 7 2 2 2 2 2 2 2 2 </td <td>37913</td> <td>4</td> <td>0.784 0.033</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td>-</td> <td>_</td> <td></td> <td>ŝ</td> <td>3490</td> <td>8304</td> <td>42</td> <td>ĝ</td> <td>2</td> <td>ŝ</td> <td>6 8</td> <td>620</td> <td>•</td> <td>·</td> <td></td> <td></td> <td>32</td> <td>82.8</td> <td>21082</td>	37913	4	0.784 0.033							_		-	_		ŝ	3490	8304	42	ĝ	2	ŝ	6 8	620	•	·			32	82.8	21082
6 1.176 0.058 49.13 3.22 26.62 0.16 0.66 0.12 0.12 0.002 21 33 4850 5800 16 3 1 5 770 53 84 8 169 7 1.149 0.074 36.98 2.77 18.23 0.221 25.52 0.12 0.42 0.06 0.11 0.001 -1 11 5550 4342 25 3 11 -1 7 1 840 16 53 9 230 9 0.835 0.072 2.61 0.48 0.42 0.07 0.11 0.001 14 -2 4100 3664 25 2 4 0 530 21 46 16 100 12 0.637 0.022 46.31 0.49 0.48 0.09 0.13 0.001 47 2 4200 4723 16 4 260 23 57 14 94 </td <td>37914</td> <td>ະກ</td> <td>1.128 0.032</td> <td></td> <td>4.78</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.005</td> <td></td> <td>0</td> <td>5220</td> <td>8232</td> <td>25</td> <td>10</td> <td>Ņ</td> <td>- -</td> <td>7</td> <td>790</td> <td></td> <td>•</td> <td></td> <td></td> <td>52</td> <td>82.0</td> <td>26283</td>	37914	ະກ	1.128 0.032		4.78								0.005		0	5220	8232	25	10	Ņ	- -	7	790		•			52	82.0	26283
7 1.149 0.074 36.98 2.77 18.23 0.221 25.52 0.12 0.42 0.06 0.11 0.001 -1 11 5550 4342 25 3 11 -1 -7 1 840 16 53 9 230 9 0.835 0.035 42.07 2.61 13.80 0.529 26.04 0.48 0.42 0.07 0.11 0.001 114 -2 4100 3664 25 2 25 -2 4 0 630 21 46 16 10 12 0.637 0.022 46.23 2.86 16.35 0.431 19.44 0.48 0.49 0.03 0.01 68 2 4200 4723 16 4 26 -2 7 3 560 23 57 14 94 15 0.512 0.016 44.54 3.21 12.55 0.323 22.98 0.28 0.44 0.09 0.16 0.003 36 -11 3310 3843 1 4 16 7 26 -1 315 19 46 10 88	37915	9	1.176 0.058			26.62									33	4850	5800	16	3		دە	ې م	770				169	17	84.1	24138
9 0.835 0.035 42.07 2.61 13.80 0.529 26.04 0.48 0.42 0.07 0.11 0.001 114 -2 4100 3664 25 2 25 -2 4 0 630 21 46 16 10 12 0.637 0.022 46.23 2.86 16.35 0.431 19.44 0.48 0.49 0.09 0.13 0.001 68 2 42.00 4723 16 4 26 -2 7 3 560 23 57 14 94 15 0.512 0.016 44.54 3.21 12.55 0.323 22.98 0.28 0.44 0.09 0.16 0.003 36 -11 3310 3843 1 4 16 7 26 -1 315 19 46 10 88	37916	~	1.149 0.074			18.23									=	5550	4342	25	ຕ	÷	÷	2	840				230	ŝ	84,4	23284
12 0.637 0.022 46.23 2.86 16.35 0.431 19.44 0.48 0.49 0.09 0.13 0.001 68 2 4200 4723 16 4 26 -2 7 3 560 23 57 14 94 15 0.512 0.016 44.54 3.21 12.55 0.323 22.98 0.28 0.44 0.09 0.16 0.003 36 -11 3310 3843 1 4 16 7 26 -1 315 19 46 10 88	37918	Ö	0.835 0.035		2.61	13.80			_						-	4100	3664	25	2		ą	¢	630					6	86.1	17421
15 0.512 0.016 44.54 3.21 12.55 0.323 22.98 0.28 0.44 0.09 0.16 0.003 36 -11 3310 3843 1 4 16 7 26 -1 315 19 46 10 88	37921	12							-			-			2	4200	4723	16	4	26			560					-	86.5	16368
	37924	15			3.21	12.55		-							-11	3310	3843	•	4	16			315					16	84,6	12987

Hole ID Depth	DU %N %U	5				,																					
(L)	(e	%	%	%	8	*	%	%	*	%	d %	nqq mqq	udd u	udd u	udd u	mdd	1 mdd	d uidd	udd udd	udd u	mdd (Шdd	udd	udd	mdd	%	udd
ARC0780															1	•	:						ę	6	ţ,	(1	
37825 1	1 0.628 0.027		3,65	29.30	0.220	5.25	3,36	0.44	•	-		100 13			6 6	، د م	5		× •			8 9	2 0	Rint of	8	0.00	CP0/1
37826 2	2 0.424 0.024		2.92	23.07	0,066	7.89	9.11	0.18		-				•••	4 50	τ ^γ	-	Ņ,	- ' 0 !	310			Ø	81	R :	6'9'	INAB
37827 3	3 1.055 0.059	40.03	4,90	33.23	0.085	3.22	0.55	0.69		-			1	• -	7 82	-	<u>5</u>	י. קי	10 2	1950		99	0	2	8	83.0	25463
37828 4	4 0.765 0.048	1 20.81	5,84	55,09	0.086	1,78	0.13	0.47							2 48	¢	0		-10 7	066		69 67	ස	33	20	84.5	18160
37830 6		17.44	9.01	55.31	0.053	1.21	0.04	0.39	0.10	0.21 0		-7 14	1 2425	-		Ø	-	ŧ	-7 4	915		97	4	4	17	83.8	17466
	0.817		1,54	15.35	0.055	2.00	0.07	0.53	0,19	0.03 0	0.001	33		0 4656	6 30	N	0		а 1	610		18	9	65	භ භ	90.2	16655
	0.712		0.97	12.25			0.05	0.53			•			0 3323		N	ŝ	4	2	630	26	14	~	53	-	90.5	15546
	270 U 092		1 1.8	16.09	0.649		0.04	0.61						•		0	9		4	750		9	မ	06	4	88,88	19760
	10000				779.0		200	63.0								ŗ	¥		с. Ч	610		5	¥:	70	C 2	91.0	15553
	0.691		50.0	20.61	270.0			0.03 1								4 e			, r , r			2 -	• e	. 43		0.10	10105
37838 13			0.35	9,33	0.137			0.33			0.001	0 0	2460			n	-	.	₩ 	321		- 1	ו גד	8 1	N :	01.4	01101
37839 14	4 0.596 0.024	69,05	0,64	13.82	0.322		0.02	0.44	0.11		0.001	က အ	3550	•••		5	ရာ	0	en en	480		24	ç	68	2	89.7	13581
		65,40	0.53	12.81	0.294	9,95	0.02	0.31	0.07	0.01 0	0.004	5 16	3 3070		2 28	en	7	4	1		-	22	~	79	e	89,4	12577
	0.288		0.28	7.03	0.098			0.19		0.00	0.001	19 -1	1550		4 13	0	L-	-	6.2	- •	3	មា	~	34	9	91.4	6747
	0.670		0.84	17 4D				0.37				44 7	2500		9 13	-	•	4	4 3	390	8	20	~	87	2	80,3	13905
				2.2. V				0.14				τ	1220			* *	ŗ,	c,	5 0	160		N	2	21	2	28.7	6122
	*										1000	- a	0.61			•	· c					e.	*	10	ç	58.0	6145
	0.333				000/0			5								• •	4 5	. 4					•	i i		0 00	79.67
37850 21	5 0.251 0.012	72.54	0.34	9.78	0.089		0.05	0.20			0.001	12 8	086		0 7	≎	71	ņ	;; ;;		4	h ط	ŧ	5	t i	00'00	
37853 28	8 0.271 0.016	5 63.49	0.46	12.26	0.124	8,04	-	0.28			0.003	-3 ≓	0 1510		7 12	2	Ø	2	4	230	в –	27	හ	53	~	85.8	6888
	0 0,385 0.013	3 29.40	0.60	6.29	0.141	29.76	0.15	0.18	0.04	0,00,0	0.001	6 0	1360	•	4	0	8	0	с, 2	170	*	ņ	2	38	0	66.6	6815
37858 33	0.339		0.23	6.04	0.071	36.03	0.30	0.12	0.03	0.00 0	0.001	6 8	860	1178	80	•	2	Ţ	5 -2	110	, 19	2	2	24	2	59.8	5649
ARC1283																											
94529 1	1 0.165 0.007	48.43	3.06	6.61	0.056	15.74		0,22				152 18	3 1830		5 32	en	8	n	7 6	3350	0 321	49	ಲ	46	42	83.0	9501
94530 2	2 0.196 0.010	40.21	2,48	7.41	0.106	19.11	9.32	0.27	0.11	0.12 0	0.008 1	165 3	3310			ຕ	<u>,</u>		0 2	15520			r-	47	25	79,1	23751
	0.322			11.79	0.200	25.26	0.16	0,33	0.05	0.12 0	0,006	20 -4	1870	0 4008			2	Ņ	0	250			►-	71	9	92.4	9683
	0.313			11.32				0.25					•	0 4089	9 30		B		1 4	600			4	73	13	91.9	9539
	212.0		1 94	7 06	0.128			0.27									4	7-	5 7	80			g	51	2	77.3	6020
	0.212			8.13	0.123			0.08			0.004					N	15		7	50	38	3	9	48	ç	78.6	5655
	12 0.204 0.009			7.88	0.119			0.13			0.001	0 8-					15	0	-3 -5	60			4	5	10	78.3	5695
ARC0793																											
39374 1	1 0.402 0.019	39.31	5.83	41.69	0.195	1.26	0.13	0.07	0,17	0,33 0	0.034 1	119 19	3 370		4 60	₽	₽ 1	9	12 5	320	33	50	5	102	63	0.69	14945
39376	2 0.239 0.013	3 22.79	9.07	52,68	0.032	0.36	0.21	0.01	0.09	0.36 0	0.028	94 6	0	11965	35 75	හ	-10	0	-17 13	3 240			12	52	42	85,6	15182
1027A 5	720 0		10.00			0.50	0.25	0.02	0.04	0.31 0	0.013	47 -23	0 0	16359	59 53	Ŧ	0	13	10 -3	110) 22		r	51	36	84,4	19518
	10050		0.93				0.19	0.03						14322	22 60	ţ	3	2	.6 0	120	18		12	78	31	84.8	17932
	2000		208	52.04			20.0	0.07								ŧ	7	13	4	195	19		ŝ	179	18	84.8	32673
01 00000 10				R7 80		1 17	0.04	000				CP 66	- C		,	¢	ų	÷	5 2			130		230	11	84.0	34677
				22.05			010	02.0								-	18	~	13 -2				14	199	10	83.5	30996
				34 63				66.0							17 30	4	ų.	Ą	÷.	220				149	12	84.2	26324
	*N -															• •	ų	•		006				113	Ę	75.1	22314
	0.838			50.61				0.00					,			4 4	2 00		4 C - r					0.1	; ;	0.00	703607
	1,035			96'/1				5.0								•	3 :			100					F		000000
39394 20	0.795			14.29				0.25			0.001		•			द ·	= '				2		2 9	5	4 4	4.00	006/7
39396 22	2 0,740 0,019	\$ 40.72	1,38	12.97	0.249	21,88	3.56	0,21	0.0	0.04 0	0.001	47 -11	1 1800	0 15680	30 19	-	er)	Ņ	0 0	Z50				103	N	81.0	4000N
																								:	1		1

Appendix 4: TableA4.2

	•																											
	(m)		%	*	%	%	%	*	%	%	%	mqq %	udd u	mdd	mqq	- 1	mdd mdd mdd		dd mdd	mqq mqq	mqq 1	bpm	mqq mqq		mqq mqq	% E		шdd
ARC0791														;			1	1	•		ŝ	ć	ļ					Ĩ
	1 0.380			-				0.08	0.01		0.40 0.0	0.032 396	ы Ф	8	AUE / L	24	Ð	-	۰ م	5	007	07	007	<u></u>	55	-		10570
		0.023 2						0,26	-		-			90	14087		ŝ	-	9		130	4	143			32 84.1		20192
~	6 0.607	0.026 5	50,86	2.81	31.89 (0,081	0.89	0.19	0.12 0	0.15 0.	0.08 0.0	0.009 65	10 17	100	5615		9	20	7	0	4	80	49	_				12372
~	8 0.634	0.033 7	72.77	0.92	16.46 (0.138	1.04	0.03	0.30	0.13 0.	0.01 0.0	0.001 45	ມ ທີ	1430	2796		N	*	5 7		230	23	27	- 0				11295
	0.686			0.49		0.195	1.11	0.33	-	0.12 0.	0.00 0.0	0.002 27	7 15	1240	3055			12	0	с С	200	26	22			3 92.6		11942
***	0,680	0.035				0,171	0,99	0,03	-	0.08 0.	-	0.001 22	33	750	3237		0	- 7	9 0	3	180	12	- 12	сл		2 93.8		11433
-	1.279	0.136					1,64	0.02	-		-	0.001 369	9 5	1830	2782	38	Ţ	6	5 Y	8	340	35	9	~	91	90.9	-	19642
	1 020	0.049		-			4.95	0.02	0.34 0		_		4	2140			0	۲	2	7	390	15	ţ <u></u>	9		4 89.5		15762
• •	0.717	0.077					6.11	0.02	-				3 13	1650			o	, 4	ہ ۲	2	310	15	æ	4			·	12248
				•			28.81	000						2130			~		-5-	-	380	12	9	0				5335
4	100.0						10.07							0244				. u	ہ ب ر		100	t t	ţ	α	9			0794
N.								± ;								2 1		, ,	; •			: :	: \$, -				1010
evi	0.331							0.16		-	_		3 -	0010			- •			, •	5	2 r	2 .	 				
N				0.51				0.24		_		01 L00,0		1691		- 1	÷ •		- •	۲ د م -		- 1	0 1	4 C				1700
N.	0.268			0.28				0.14	-				₽ :	000	0/01		; (- (; (> (+ -	2 9	0 6	o (, . , .	5 5			
67	0.259	0.010	34.57	0.30	5.83	0.069 2	21.12	0,43	0.10		n'a nn'a		n	820	80	2	>	2	י ?	•	001	0	\$	• •		1.90		0000
ARC0607					32 01	0.000	200	÷	0+0	0.35.0	0.0 80.0	80 5000		640	2745		a	t,	t v	17	2800	ie Ie	63	14				263
	00100	100'0					20.0						;;				•	:,	• •		107.	1	, t					
+ 1	2 0.150	0,006						07.7	_			0.00/ 80		DB62		2		- 1	- • - •	4 : 4 :	CALL	8	3 8			5.1. B.		000
	0.148							8.73						3620			N	-	?		0/6	30	20	- -				6719
	0.191	0.011 5												3460			~	чл N	ິ ຕ	с 0	630	76	5		2		•	10109
~	0.134	0.006 4	41.00	3.00	8.07 0	0.077 1	19.73	2.59		0.54 0.	0.13 0.0	0.004 7		770			ø	Ņ			170	18	82			7 75.5		5414
<u>,</u>	0.171	0,006	59.63	3,48	10.72 0	0.052	9,63	1.59	0.52 (0,48 0,	0.16 0.0	0.012 2:	3 43	1370	3176		2	*	0		230	11	110					6847
ARC0606																_												
	1 0.180	0.012	22.37 (6,68	43.64 0	0.097	8.81	1.59	0.02 0	0.11 0.	0.66 0.0	0.044 62	7 5	15	6076	20	17	ហ្	ф С	ଡ ସ	215	36	295	1	• -			12502
• •	2 0.175	0.008		1.48	6.30 0	0.086 2	28.52	6.88		0.02 0.	0.06 0.0	0.007 69	9 14	-40	1724			ۍ د	-7 -7	දා 2	60	129	45			9 74		848
×	0.200	0,009		1.73	8,52 (0.101 3	32.69	1.21				0.009 49	ъ о	80	2378	18	N	сэ -	9 0	с, С	20	10	36			3 75,1		4712
w	0.207		38.27	1.71	9.38 (0.145 2	28.02	1.40	0.22 0	0.07 0.	0.07 0.0	0.009 4	12	800	2422			¢	э Э	0 9	120	9	53	e	46	8 79		671
*-					8.11 C	0.135 3		2.02				0.003 15	ς γ	240	3619		4		ч 0		60	7	4 3					200
-	0.193		32.79	1.71	7.33 0	0.122 2	29,66	4.25	0.18 0	0.04 0.	0.06 0.0	0.004 23	3	540	3169	Ŧ		Ņ	2	4	80	16	ł	9	\$	5 76.1		5924
*-	0.203					0.133 3	31.30	1,53	0.24 0	0.06 0.0	0.06 0.0	0.009 19		460	3065		N		ы Ч		100	2	54	र र				860
ARC0231																												
	1 0.209	0.018 5	51.37 (6.16		0.085	3.43	11,34	-	0.36 0.	0.49 0.0	0.027 342	13 19	410	••	51	13	20	~	3 15	360	161	131	ę				6686
. 4	2 0.404		40.16	3.69		0.108 1	10.17 1	14.45	0.37 0	0.19 0.	0.22 0.0	0.007 479	61 6	4210	2943		ო	-	3	69 69	980	358	72	4	69		-	13696
÷.)	3 0.682		32.01	4,95 1	12.18 C	0.498	7.25 1	15.21		0.20 0.	0.28 0.0	0.006 628	8 56	700	4583		¢	16	~	÷	32160		88	9		-	-	46763
v	4 1.262					0.411		1.58				0.003 209	6 7	3460	9117		12	32 -	 		2570		97	20	195 2			29940
12,	5 1.159	0.194										0.001 285	5 33	2930	9762		12	=	16		2020	71	94	16	155 3	5 84.5		28968
-	1.484	0.309				1,172	5,95					0.003 677	7 55	1690	9860		ę	22	е, г.	ю в	2060		128	1				32759
-	0.956	0.223						0.12						830	9890	29	15	r-	2 11		1750	51	116	1	148 3	39 86.1		25316
-	0.477	0.020					9,77						1-15	910	7305		11	9 9	-3 13	е е	860	29	6	15	84 4	2 82.7		14355
	0302	0.016					~										Ť	G			660	96	110					13178
																	-	>	-		*10	3	0					

e - compe

2		-		2		8	6	5	~	~			_		0	ŝ	en	ŝ	0	en	2	ŝ		4	*	0	5	8	**	ម្ន	2	0	5	-
TotalTr	mdd	6120	7904	1049	1600	17858	1419	1522	9856	6589	8847	7186	3111		1076	2141	2398:	36875	2704	2645	2711	2494		17624	20594	1809	1627	3115	3063	42706	4406	31533	31355	28024
OXIDE	%	80.6	93.7	89.68	87.1	91,3	93.0	88.1	90,3	94.8	92.9	76.3	59.4		69.69	86,1	86.7	84.3	86.1	82.7	83.5	85.7		82.7	82.3	82,3	88.0	79.0	82.7	81.3	82.0	81.5	82.3	82.9
š	bpm	44	16	-	5	Ņ	7	7	0	N	ş	o	"		41	14	6	12	Ċ	B	6	15		1 00	63	8	¢	18		20	ŝ		14	6
Zn	mqq r	25	24	38	54	62	43	69	36	62	36	24	13		20	73	81	103	97	87	109	102		\$	86	57	58	115	162	245	215			104
۲	uddu	6	4	~	8	ග	₽				5		0		9	с э		-		₽		Ŧ		с» 6	69 19	~	~	.		3 14			₽	
>	udd u	4 67	9 21	÷	₽ 	÷		22		7	6	27	2		•			32						208									76	1
ي م	mdd	29	319	₽ ₽	20	1 8	ŝ	æ	ŝ	~	æ	9	9			62	ě				8			23	22	37			9					
S	mdd	370	270	260	470	700	630	440	210	230	190	200	100		4020	1880	500	1460	1040	1640	1550	1280		550	320	470	550	1000	660	940	1700	1270	1080	1085
å	mqq 1	ŝ	-	÷	-	ų	4	-	ņ	-	~	0	မာ		មា	e	0	ή	Ŷ	?	-	Ņ		Ņ	~	6	ŝ	*	*	3	7	*	¥	ę
4 1	udd u	r)	0ţ	7	ŝ	14			Ŷ	N	φ	ന	0		S	9	10	Ģ	æ	¢	10	~		÷	12	ę	មា	ŝ	0	1	2	Ch	2	*
qN F	udd u	6	5	0	*	7	**	ŵ	Ņ	**	2	ŝ			ξ	9	ę,	-	64	ې ۲	-	T		4	6	ø	4	-	77 ~~	ę	с 2	•	0	ŝ
Ga La	udd udd	Ę	2	4	2	-	e e	~	-	Ŷ	-	0	۳ ج		-	¥	5 2	0	~	47 	Y	5		33	ب 4		~ ~	φ ••	12	~ ~	2	9	8	4
0	dd uudd	12	E	28	. 55	59	58	35	æ	17	20	11	2		19	3	22	28	15	30	35	92		96	78 1	95	54	28	23	11	5	E	42	37
ა გ	d mdd	1240			3235 3		2258 2			1431	2531	1832	467		0681	3629 3	4501	5293 7	5314 0	4163 3	4888	5538		4922 8	17723 7	12884 8	7478	13852 (17108 8	20747	13191 4	12884 3	12249 4	9040
					_	-			_			-				.,	•			-				4	•						5070 13	,		
0	in ppm	068	650	1320	2610	6850	5510	3280		1430	1310	1510	650		2570	4230	7860	17510	11820	12550	12540	10600		220	415	1340	1 2940	5390	4620	7080	-	9 8240	8790	11520
a Ce	mqq m	3 27		0	2 7	7 3	1			3 14	3 10		10		6 26	8	30	ະ ອຸ	*	13	4	2		1 -16	-21	φ		14	5 -13	8 15	2 -20	-19		44
5 Ba	mdd		2 38	_	-	·			9 9		11 28	_	6 1		6 206	109	1 46			10		_		8 331	3 25		1 99	2 60	3 45	1 108	1112			2 45
P205	%	0.006	0.002	0.001	-	-	-	_			0,001	0.001	0.001		0,006	0.001	0,001	0.001	0.001	0.001	0.001	0.001		0.018	0.023	0.013	0,001	0.002	0.003	0.001	0.001	0.001	0.001	0.002
7102	%	0.07	_	-	-	_	00'0	-		0.00	00.0	0.00	0.00		0,12	0.09	0.08	0.11	0.08	0,09	0.10	0.11		0.48		0.20	0.07	0.21	0.28	0.24	0.15	0.13	0.15	0,08
K20	8	0,10	0.04	0.05	0.11	0.14	0,13	0.09	0.07	0.09	0.14	0,06	0.02		0.17	0.14	0.12	0.19	0.15	0,13	0.13	0.13		0.08	0.09	0.08	0.10	0.21	0.14	0.17	0.13	0.13	0.13	0.08
Na2O	8	0.14	0.12	0.21	0.40	0.59	0.46	0.37	0.21	0.17	0.24	0.16	0.05		0.22	0,49	0.64	1.31	0.93	0.91	0.97	0.90		0.06	0.12	0.27	0.45	0.94	0.71	1.01	1.20	0,87	0.90	0.89
CaO	*	11.09	1.33	0,04	0.07	0.02	0.02	0.02	0.01	0.02	0.02	0.24	0,18		18.60	1,67	0.32	0.16	0,09	0.11	0.20	0.20		0.19	0.25	1,83	0.14	0.15	0.08	0.09	0.10	0.07	0.22	0.51
О ^В М	%	8,96	2.36	6.96	7.19	4.65	2.68	7.23	6.71	2.67	3.27	20.11	37.31		12,14	11.78	17.98	10.45	15.59	16.78	17.84	16.65		0.40	0.54	2.34	1.42	2.88	3.48	4.81	17.23	7,95	13,91	26.89
MnÖ	%	0.113	0.094	0.175	0.227	0.483	0.255	0.276	0.095	0.072	0.123	0.092	0.073		0.012	0.794	0,406	0.714	0.265	0.461	0.418	0.207		0.032	0.048	0.059	0.043	0,040	0.187	0.630	0.882	0.331	0.402	0.320
e203	*	5.98		-					9.52 (9,93		3.72		6.14	16.94				19.87	20,11	20.63		43.53 (57.13	23.53 (30.31 (42.32 (35.96 (24.15 (18.95 (22.98 (14.37
1203 F	%	1.40	_								0.22		0.06		2.28						2.75 2			15,11 4		5,22 5	2.87	5.61 3	7,84 4	6.14 3	3.71 2	3.40 1	3.71 2	2.22 1
SiO2 Al2O3 Fe2O3 MnO	%	52.73													29,88						40,98			22.82 1		15.10	59,38	38.61	27.64	32,29 (34.49	49.72	39,85	37.58
%NI %Co		0.271.0.023	0.436 0.023	0.644 0.037		0.723 0.034	0.545 0.0	0,847 0.031	0,621 0,012	0.336 0.0	0.455 0.0	0.348 0.0	0.184 0.0		0.151 0.007		1.056 0.0	1,188 0.044	0.643 0.022	0.764 0.0	0.760 0.027	0.701 0.022		0.106 0.007	0.148 0.010	0.285 0.021	0.488 0.016	1,035 0.023	0.747 0.030	1.186 0.143	1.217 0.148	0.828 0.058	0.823 0.062	0.587 0.027
Depth 3	(E)	1	- 6	50			-								1	2	. 60 1		0	-				, 0	• •	0 9	7 0.	8 1,			15 1,	-		20 0.
	-	78 9												26	! ~				244	•			28			~	~		5					
Hole ID		ARC0789 39768	39770	39272	39273	39276	39277	39280	39282	39283	39285	39286	39287	ARC0126	106258	106259	106260	106262	106266	106267	106270	106274	ARC0128	106294	106297	106299	106300	106301	106305	106306	106308	106309	106312	106236

· ····*

Appendix 4: TableA4.2

APPENDIX 5: PIMA-II SPECTRA OF KAOLINITE.

· in uses

Reflected infrared PIMA-II spectra for RC holes CBRC1391 and 0735 are presented in Figures A5.1 and A5.2, respectively. Drill hole CBRC1391 is representative of the 'kaolinite-1' regolith unit, which is characterized by a near monotonous sequence of well-ordered kaolinite as indicated by good resolution of the Al-OH absorption doublets at 1396-1414 nm and 2162-2208 nm (Fig. A5.1). In comparison, resolution of the absorption doublets of kaolinite identified in all other samples (*i.e.*, within the 'kaolinite-2' regolith unit) was not as well defined as in the 'kaolinite-1' unit (Fig. A5.2). The reflected infrared spectra for RC hole CBRC0735 also provide a good indication of the spectral characteristics of the main smectite phases (*e.g.*, nontronite and saponite) identified in these drill holes.

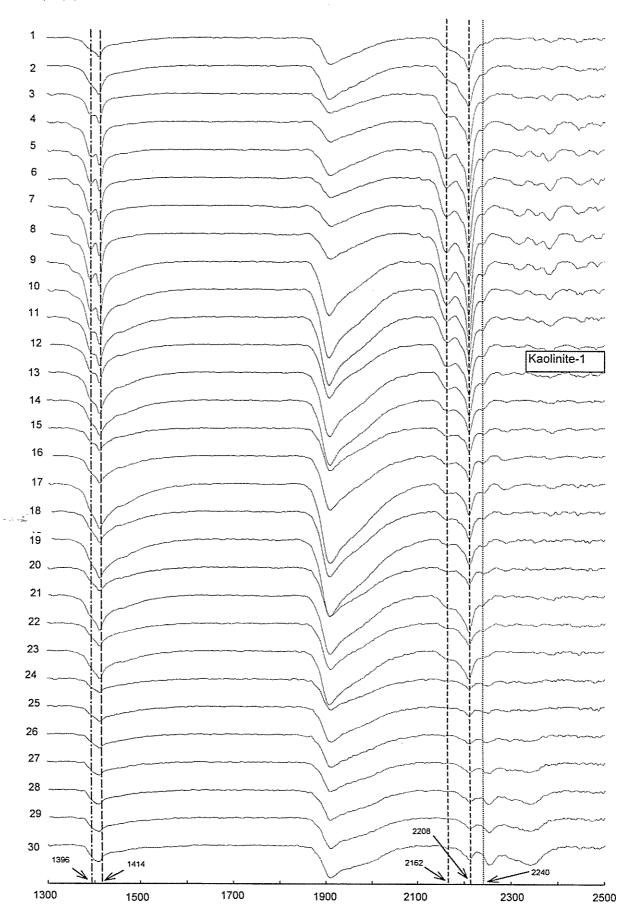
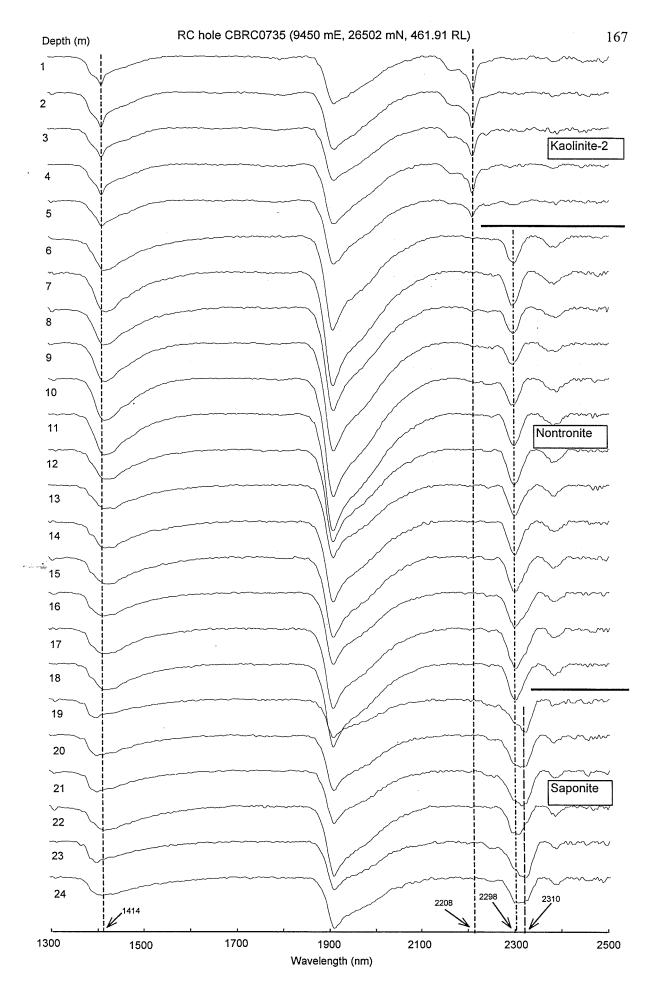



Figure A5.1. PIMA-II spectra for RC hole CBRC1391. Spectra are presented as the Hull Quotient of the raw spectra. The kaolinite-1 unit is characterized by a near monotonous sequence of well crystallized kaolinite that shows good resolution of the absorption doublets near 1400 and 2208 nm. Some Fe-substitution within kaolinite is shown by the absorption band at 2240 nm. The lower portion of the profile consists of a mixture of kaolinite and Fe-chlorite.

Wavelength (nm)

Figure A5.2. PIMA-II spectra for RC hole CBRC0735. Spectra are presented as the Hull Quotient of the raw spectra. Kaolinite at the surface of the profile shows poorer resolution of absorption doublets at 1400 and 2208 nm compared to the better crystalline kaolinite in the kaolinite-1 unit (see Figure A5.1). The main regolith units are also shown.

Appendix 6: Hole ID	Denth	e Ab.1. Norme		Appendix 5: Table Ab.1. Normary Emineral abundances of service the more than with the barth Renolith	ח פפומרומר יי	10100101															%
1	(m) (m)	1	Kaolinite	Kaolinite Opal-Si/Qtz	Fe-oxides	llite	Nontronite	Saponite (Chlorite 1	Talc Serpentine	ntine Magnesite	esite Dolomite	nite Calcite	ite Gibbsite	te Bassanite	e Alunite	Chromite	e Rutile	Apatite	Asbolan	Total
CBRC0796																					
30379	۰-	Kaolinite	31.0	9.4	47.2	0.9	6.4	0.0	0.0	0.0 0.0	0.00	0 2.32	2 0.21	1 0.0	0.2	0.0	1.67	0.55	0.05	0.08	100.0
30381	ო	Kaolinite	28.4	2.1	44.9	0.5	2.6	0.0							14.6	0.0	0.74	0.36	0.02	0.23	100.0
30383	4	Kaolinite	35.2	0.0	49.7	0.5	4.6	0.0							5.6	0.0	0.79	0.48	0.02	0.19	100.0
30384	S	Kaolinite	39.6	0.0	51.1	0.5	3.8	0.0							1.1	8.0 0	0.92	0.72	0.04	0.21	100.0
30390	<u>0</u>	Nontronite	26.5	7.4	52.1	0.8	7.0	0.0							0.2	0.0	1.29	0.51	0.01	0.30	100.0
30391	11	Nontronite	31.8	8.1	42.0	0.8	8.2	0.0							0.2	0.00	2.96	0.56	0.00	0.16	100.0
30392	5	Nontronite	13.3	16.3	39.8	1.1	13.6	0.0							0.2	0.00	2.11	0.38	0.00	0.29	100.0
30393	i Ç	Nontronite	0.0	24.7	22.6	1,3	18.7	0.0							0.3	0.00	1.44	0.27	00'0	1.46	100.0
30305	ξ	Nontronite		25.4	20.1	1.3	18.1	0.0							0.2	0.00	1.43	0.24	0.00	0.96	100.0
20202	2 Ç	Nontronite		9.85	19.5	1.0	15.2	0.0							0.1	0.00	1.39	0.24	0.00	0.66	100.0
RUCOR	: 4	Nontronite	0.0	26.0	14.4	0.7	10.2	0.0							0.1	0.00	1.05	0.17	0.00	0.41	100.0
30404	24	Nontronite	0.0	28.8	14.8	0.6	7.5	0.0							0.0	0.0	1.03	0.18	0.00	0.44	100.0
CBRC0797																					
30405	-	Kaolinite	43.9	17.5	26.4	2.9	5.3	0.0								0.00	1.12	0.58	0.03	0.05	100.0
30406	2	Kaolinite	43.0	9.3	36.9	1.9	4.5	0.0								0.00	1.79	0.84	0.02	0.05	100.0
30407	ю	Kaolinite	17.9	0.0	71.4	0.4	1.2	0.0								0.00	2.88	2.40	0.07	0.06	100.0
30410	ç	Kaolinite	17.7	0.0	51.5	0.7	1.7	0.0								0.00	3.05	0.94	0.09	0.04	100.0
30414	0	Kaolinite	29.3	0.0	53.9	0.3	2.5	0.0								0.0	2.71	0.46	0.09	0.09	100.0
30415	ę	Kaolinite	29.9	0.0	60.1	0.2	0.8	0.0								0.00	1.69	0.40	0.09	0.13	100.0
30417	2 12	Kaolinite	48.9	0.0	40,4	0.5	0.0	0.0	0.0	0.0 0.0	0.86	6 0.32	2 0.00	0 1.4	0.1	0.00	1.67	0.35	0.06	5.48	100.0
30419	14	Nontronite	14.9	14.6	58.1	0.8	4.1	0,0								0.00	1.59	0.29	0.04	0.68	100.0
30420	15	Nontronite	12.7	28.7	41.3	÷	4.7	0.0								0.00	1.79	0.22	0.03	0.33	100.0
30423	18	Nontronite	7.9	38.8	42.2	0.9	3.1	0.0								0.0	1.30	0.18	0.01	0.51	100.0
30425	19	Nontronite	3.2	48.0	31.9	1.1	5.8	0.0								0.00	0.94	0.14	0.00	0.58	100.0
30426	20	Nontronite	1.6	55.2	25.7	1.2	5.7	0.0								0.0	0.87	0.12	0.00	0.19	100.0
30429	23	Nontronite	0.0	60.7	24.5	0.9	5.3	0.0								0.0	0.77	0.06	0.02	0.13	100.0
30430	24	Nontronite	0.0	67.4	18.0	0.8	6.2	0.0								0.00	0.55	0.05	0.00	0.38	100.0
30432	26	Nontronite	0.0	68.9	16.5	0.9	6.2	0.0								0.0 0	0.00	6 0 0	20.0	45.0	
30435	29	Nontronite	0.0	80.8	10.3	0.6	6.7	0.0								8.0	0.00		70'n	+ 5 G	0.001
30440	34	Nontronite	0.0	75.0	10.6	0.6	3.3	0.0								0.0	02.0	0.02	0.00	55.U	100.0
30441	35	Nontronite	0.0	57.3	13.8	0.7	4.8	0.0								8.0	54.0 54.0	5.0	8.0		2.00
30445	39	Nontronite	0.0	53.0	8.2	0.6	4.U	0.0								800		500	0.0	77.0	0.001
30446	4	Nontronite	0.0	26.0	4.9	0.4	2.4	0.0								0.0	0.23	00.0	0.0	0.13	0.001
30448	42	Nontronite	0.0	26.3	5.6	0.4	0.8	0.0					~.			0.00	0.22	00.0	0.01	0.13	100.0
CBRC0799																					
30475	-	Nontronite	24.5	36.4	22.9	2.1	4.7	0.0		Ö					0.1	0.00	3.11	0.29	0.03	0.11	100.0
30476	7	Nontronite	27.5	43.4	4.4	2.8	7.0	0.0		Ó					0.0	0.00	0.33	0.34	0.00	0.06	100.0
30479	ç	Nontronite	34.6	37.6	0.2	2.7	16.3	0.0		o					0.0	0.0	0.06	0.34	0.01	0.04	100.0
30480	9	Nontronite	33.5	36.9	0.0	5.4	14.8	0,0	0.1	0.0 0.0	0 6.12	2 2.73	3 0.00	0.0	0.0	0.0	0.05	0.36	0.0	0.06	100.0
30481	7	Nontronite	34.4	36.3	0.0	4.4	15.2	0.0		Ö					0.1	0.00	0.05	0.33	0.00	0.05	100.0
30484	10	Nontronite	32.4	36.1	0.0	12.9	9.6	0.0		Ö					0.0	0.00	0.02	0.37	0.01	0.06	100.0

168

Appendix 6: Table A6.1

	(m) (m)	Regolith Unit	Kaolinite	Opal-Si/Qtz	Fe-oxides	Illite	Nontronite	Saponite	onite Chlorite	Talc S	Serpentine	Magnesite	Dolomite	Calcite	Gibbsite	Bassanite	Alunite	Chromite	Rutile	Apatite	Asbolan	% Total
CBRC0727																						
26946	-	Kaolinite	48.8	0.0	32.6	0.9	2.5	0.0	0.0	0.0	0.0	1.02	0.61	0.00	9.2	0.1	0,0	3.26	0.81	0.04	0.08	100.0
26950	5	Kaolinite	31.2	0.0	55.5	0.4	1.2	0.0	0.0	0.0	0.0	1.26	0.16	0.00	7.5	0.1	0.00	1.95	0.50	0.04	0.14	1001
26954	ß	Kaolinite	33.3	0.0	52.4	0.3	3.7	0.0	0.0	0.0	0.0	1.52	0.30	0.00	3.3	0.1	0.00	4.22	0.44	0.05	0.22	100.0
26955	0	Kaolinite	27.9	0.0	62.8	0.3	2.9	0.0	0.0	0.0	0.0	1.11	0.28	0.00	1.6	0.1	0.00	2.02	0.49	0.08	0.36	100.0
26958	, C	Kaolinite	29.5	2,3	61.6	0.3	1.6	0.0	0.0	0.0	0.0	0.72	2.04	0.00	0.0	0.0	00.00	1.01	0.28	0.01	0.42	100.0
26959	: ¢	Kaolinite	23.3	2.0	64.6	0.3	1.7	0.0	0.0	0.0	0.0	0.61	5.00	0.00	0.0	0.0	0.00	1.84	0.36	0.02	0.22	100.0
26061	44	Talr	33	11.6	57.4	0.3	0.0	2.0	15.8	0.0	0.0	0.00	7.13	0.00	0.0	0.0	0.00	1.94	0.28	0.05	0.19	100.0
1000	2 9	Talo	0.0	5.1.0	000	70		28	17 9	5	00	000	9.66	000	0.0	0.0	0.00	1.36	0.19	0.03	0.68	100.0
20602	₽ !	Taic	0.0	- 1 47	0.00	1 U 5 C		, c	040	0 F			0.17	000			000	1 44	0 22	100	0.47	1001
26963	17	laic	0.0	7.07	5.10	0.0	0.0	+ •		1.7		0.0		8				5			500	
26964	18	Taic	0.0	5,3	12.0		0.0		Z'01	00.0	0.0	0.00	07.0	0.0				20.0			800	
26967	21	Talc	0.0	5.8	8.0	0.1	0.0	0.7	5.9	78.3	0.0	0.00	0.09	0.00	0.0	0.0	0.0	0.92	10.0	0.00	50.0	3
26968	22	Talc	0.0	6.4	8.3	0.1	0.0	1.8	8.4	73.3	0.0	0.00	0.12	0,00	0.0	0.0	0.00	1.27	0.09	0.00	0.10	100.0
26970	24	Talc	0.0	10.8	15.5	0.2	0.0	1.7	6.7	63.1	0.0	0.00	0.30	0,00	0.0	0.0	0.00	1.22	0.07	0.02	0.31	100.0
CBRC0732																						
27067		Kaolinite	26.6	22.6	32.4	3.1	4.5	0.0	0.0	0.0	0.0	4.99	3.28	0.00	0.0	0.1	0.00	1.81	0.45	0.03	0.16	100.0
27068		Nontronite	1.6	35.3	13.7	4.7	7.0	0.0	19.7	0.0	0.0	1.43	14.99	00'0	0.0	0.1	0.00	0.84	0.31	0.02	0.40	100.0
27060		Nontronite	00	17.9	12.5	2.5	18.4	0.0	15.5	0.0	0.0	7.51	6.41	0.00	0.0	17.5	0.00	1.29	0.22	0.00	0.35	100.0
27071	o uc	Nontronite	0.0	21.3	13.6	2.4	24.8	0.0	20.0	0.0	0.0	13.53	0.23	0.00	0.0	1.4	0.00	1.47	0.28	0.00	0.96	100.0
27074		Talc	00	18.3	21.6	2.2	0.0	23.0	21.6	10.5	0.0	0.00	0.19	0.00	0.0	0.5	0.00	1.28	0.26	0.00	0.68	100.0
27076	, 5	Tar Tar	60	32.7	22.3	2.2	0,0	19.8	20.0	0.0	0.0	0.00	0.29	0.00	0.0	0.4	0.00	1.36	0.30	0,00	0.49	100.0
21012	2 5	Talc	7.8	28.5	25.5	2.3	0.0	19.4	13.8	0.0	0.0	0.00	0.31	0.00	0.0	0.4	0.00	1.39	0.36	0.00	0.19	100.0
27081	: ¥	Tac	10.6	27.7	24.8	2.2	0.0	19.7	9.9	0.0	0.0	0.00	2.34	0.00	0.0	0.3	0.00	1.85	0.36	0.00	0.11	100.0
27082	16	Talc	9.7	25.9	23.8	2.0	0.0	17.8	9.2	0.0	0.0	0.00	9.13	0.00	0.0	0.3	0.00	1.51	0.34	0.00	0.29	100.0
27084	18	Talc	0.0	20.3	18.3	1.8	0.0	18.4	19.1	8.6	0.0	0.00	11.07	0.00	0.0	0.2	0.00	1.24	0.27	0.00	0.57	100.0
27085	19	Talc	0.0	31.2	16.2	1.7	0.0	16.6	17.4	10.2	0.0	0.00	4.95	0.00	0.0	0.2	0.00	1.10	0.25	0.00	0.21	100.0
27091	24	Talc	0.0	48.0	5.7	1.3	0.0	7.3	18.7	14.8	0.0	0.00	3.36	0.00	0.0	0.0	0.0	0.37	0.25	0.05	0.16	100.
CBKCU/34	Ŧ	Maalinita	28.1	3.0	48.3	20	30		00	00	0.0	2.98	0.46	0.00	0.0	. 0.3	00.0	2.44	0.51	0.07	0.20	100
27133	-	Nontronite	00		26.1	2.8	5.0	0.0	14.9	0.0	0.0	1.11	2.08	0.00	0.0	0.0	0.00	1.05	0.17	00.0	0.14	100.0
27135	r uc	Nontronite	0.0	42.5	21.0	1.9	6.7		15.6	0.0	0.0	7.94	1.49	0.00	0.0	0.0	0.00	1.37	0.20	0.00	0.19	100.
27136		Nontronite	0.0	32.8	14.2	1.5	7.6		19.5	0.0	0.0	9.91	12.96	0.0	0.0	0.0	0.0	0.93	0.44	0.00	0.15	100.
27137		Nontronite	0.0	35.3	8.8	0.8	4.7		15.4	0.0	0.0	28.36	5.59	0.00	0.0	0.0	0.00	0.60	0.21	0.00	0.19	100.
27139		Nontronite	0.0	40.4	11.6	0.9	7.2		9.6	0.0	0.0	27.54	1.69	0.0	0.0	0.0	0.00	0.75	0.12	0.00	0.27	100.
27142		Nontronite	00	34.5	17.2	1.7	13.4		13,4	0.0	0.0	17.03	1.14	0.00	0.0	0.0	0.00	1.17	0.18	0.0	0.25	100.0
27147	2 -	Nontronite	00	39.2	11.0	1.0	0.6		8.8	0.0	0.0	28.84	0.45	0.00	0.0	0.0	0.00	0.81	0.12	0.00	0.68	100.0
27148		Nontronite	0.0	64.3	7.9	0.6	3.0		5.7	0.0	0.0	17.38	0.27	0.00	0.0	0.0	0.00	0.58	0.07	0.01	0.18	100.0
27149		Nontronite	0.0	31.6	22.8	1.8	16.0		18.6	0.0	0.0	5.72	0.75	0.00	0.0	0.1	0.00	1.62	0.30	0.01	0.68	100.0
27152		Nontronite	0.0	29.9	18.3	1.3	12.0		15.1	0.0	0.0	18.36	2.67	0.00	0.0	0.0	0.00	1.51	0.23	0,0	0.56	100.0
27154		Nontronite	0.0	29.8	12.9	0.9	7,4	0.0	11.0	0.0	0.0	32.34	3.98	00'0	0.0	0.0	0.00	1.12	0.17	0.00	0.37	100.0
27155		Nontronite	0.0	31.9	15.5	1.2	10.9	0.0	12.6	0.0	0.0	21.12	5.17	0.00	0.0	0.0	0.00	0.99	0.17	0.00	0.50	100.0
27157	27	Nontronite	0.0	32.6	14.3	1.2	9.1	0.0	12.8	0.0	0.0	25.04	3.39	0.0	0.0	0.0	0.00	0.96	0.18	0.00	0.43	100.0
00400																	1					

e in ange

% Asbolan Total		I						0.39 100.0	I																Ī											0.24 100.0	
Apatite	0.06	0.01	0.00	0.01	0.00	0.0	0.01	0.00	0.00	0.0	0.0	0.00	0.0	0.01	0.01	0.00	0.0	0.00	0.01	0.0	0.0	0.00	0.00	0.0	0.00	0.00	0.01	0.01		0.05	0.06	0.02	0.01	0.01	0.01	0.01	
e Rutile	0.47	0.16	0.10	0.14	0.23	0.22	0.25	0.18	0.12	0.06	0.07	0.07	0.11	0.12	0.09	0.07	0.06	0.06	0.05	0.03	0.02	0.03	0.04	0.08	0.03	0.04	0.07	0.05		0.38	0.86	0.26	0.30	0.33	0.34	0.24	500
Alunite Chromite	0.15	0.43	0.64	1.71	3.56	3.37	3.85	3.64	3.02	1.55	1.14	. 1.13	0.96	1.06	0.90	0.74	0.59	0.68	0.76	0.44	0.40	0.52	0.64	0.72	0.29	0.32	0.43	0.38		0.29	0.39	0.46	0.72	0.19	0.36	0.58	
Alunite	0.00	0.00	0.00	0,00	0.00	0.00	0.00	0.00	0,00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.0	0.0	0.00	0.00		0.0	0.00	0.00	0.00	0.00	0.00	0.00	
Bassanite	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1		0.1	0.3	0.2	0.2	0.1	0.1	0.1	
Gibbsite	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Calcite	0.00	0.00	0.00	0.00	0.00	0.00	0,00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	8 0	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.0	0.00	0.00	
Dolomite	1.70	1.51	1.53	1.05	12.22	25.01	1.61	1.07	1.24	0.67	0.54	0.37	0.47	1.78	8.48	9.61	27.10	0.51	0.32	2.63	2.97	5.30	5.51	4.01	3.71	3.07	3.18	3.16		32.23	17.55	0.76	0.70	0.43	1.22	0.42	
Magnesite	2.02	0.00	1.00	13.21	2.48	0.00	13.59	25.96	30.73	23.96	18.72	22.93	21.53	26.03	23.90	21.50	14.51	15.64	12.60	57.47	63.09	56.30	55.92	43.13	54.18	12.76	0.97	2.70		0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Serpentine	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	71.5	78.3	78.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Talc	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	27.9	44.1	3.3	16.1	35.4	
ponite Chlorite	0.0	13.0	10.4	11.6	18.2	9.6	19.2	14.7	11.1	6.5	5.9	6.2	8.3	9.8	7.0	5.7	5.0	5.5	5.3	3.8	2.6	3.1	3.7	5.9	3.3	4.2	6.3	5.0		10.4	12.5	16.4	9.3	0.3	18.5	17.2	
Saponite	0.0	00	0.0	0.0	0.0	0.0	0.0	0.0	2.8	2.8	3.6	3.9	5.1	6.0	3.2	2.8	2.5	3.7	2.6	2.5	2.2	2.8	3.3	4.0	1.8	1.5	2.0	2.4		5.2	20.4	10.8	11.3	17.7	14.4	13.2	
Nontronite	0.0	7.0	71	4.0	8.7	63	7.6	5.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0'0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Illite	7.5	23	17	10	4	10	! .	0.9	0.8	0.6	0.6	0.6	0.8	0.8	0.7	0.6	0.6	0.7	0.7	0.5	0.5	0.5	0.6	0.7	0.5	0.3	0.3	0.2		1.5	1.8	0.7	0.9	1,4	0.9	0.6	
Fe-oxides	5.6	10.9	14.3	15.4	21.8	19.8	23.7	16.2	15.5	9.1	10.8	10.7	15.2	17.2	11.6	10.2	8.7	9.5	8.4	5.7	5.0	5.9	6.9	10.4	5.8	6.3	8.2	7.9		7.6	10.6	4.8	6.3	5.9	6.5	8.0	
Kaolinite Opal-Si/Otz	39.7	60.7	63.1	51 B	310	28.3	28.5	31.5	34.5	54.7	58.4	54.0	47.2	36.7	44.0	48.5	40.7	63.6	69.0	26.8	23.1	25.5	23.3	30.8	30.3	0.0	0.0	0.0		35.6	18.5	37.5	16.9	60.1	41.5	24.0	
Kaolinite (38.7	9.0	00			o a o u		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		6.2	16.9	0.0	9.4	10.3	0.0	0.0	
Regolith Unit	Kaolinite	Nontronita	Nontronite	Nontronite	Nontronite	Nontronite	Nontronite	Nontronite	Saponite	Serpentine	Serpentine	Serpentine		Talc																							
(m) (m)	*	. ,	שמ			2 7	_	5 Q		20	21	22	23	24	25	26	27	28	91	32	37	40	4	44	47	51	52			-	2	4	S	თ	12	13	
Hole ID	CBRC0780 29168	20120	01102	20175	2017A	01157	29181	29184	29186	29189	29190	29191	29192	29193	29194	29195	29196	29197	29200	29201	29206	29209	29210	29213	29217	29221	29222	29224	CBRC1505	58171	58172	58174	58175	58179	58182	58183	

1 (b)(b) (1 (0) (1) (0) (1) (0) (1) (0) (1) (0) (1) (0) (1) (0) (1) <th>1 Control 1 Contro 1 Control</th> <th>Hole ID</th> <th>Depth R (m)</th> <th>Regolith Unit</th> <th>Kaolinite</th> <th>Kaolinite Opal-Si/Qtz Fe-oxides</th> <th>Fe-oxides</th> <th>Illite</th> <th>Nontronite</th> <th>Saponite C</th> <th>ponite Chlorite Talc</th> <th></th> <th>Serpentine</th> <th>Magnesite</th> <th>Dolomite</th> <th>Calcite</th> <th>Gibbsite</th> <th>Bassanite</th> <th>Alunite (</th> <th>Chromite</th> <th>Rutile</th> <th>Apatite</th> <th>Asbolan</th> <th>% Total</th>	1 Control 1 Contro 1 Control	Hole ID	Depth R (m)	Regolith Unit	Kaolinite	Kaolinite Opal-Si/Qtz Fe-oxides	Fe-oxides	Illite	Nontronite	Saponite C	ponite Chlorite Talc		Serpentine	Magnesite	Dolomite	Calcite	Gibbsite	Bassanite	Alunite (Chromite	Rutile	Apatite	Asbolan	% Total
1 Control 101 302 101 001 </td <td>I Kanthe 14, Col Col<td>CBRC0744</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td>	I Kanthe 14, Col Col <td>CBRC0744</td> <td></td>	CBRC0744																						
5 Member 200 113 000 <td>F Kenthe 200 113 360 000<td></td><td></td><td><aotinite< td=""><td>18.4</td><td>58.2</td><td>14.9</td><td>0.9</td><td>1.6</td><td>0.0</td><td></td><td>0.0</td><td>0.0</td><td>4.79</td><td>0.27</td><td>0.00</td><td>0.0</td><td>0.1</td><td>0.00</td><td>0.44</td><td>0.17</td><td>0.04</td><td>0.08</td><td>100.0</td></aotinite<></td></td>	F Kenthe 200 113 360 000 <td></td> <td></td> <td><aotinite< td=""><td>18.4</td><td>58.2</td><td>14.9</td><td>0.9</td><td>1.6</td><td>0.0</td><td></td><td>0.0</td><td>0.0</td><td>4.79</td><td>0.27</td><td>0.00</td><td>0.0</td><td>0.1</td><td>0.00</td><td>0.44</td><td>0.17</td><td>0.04</td><td>0.08</td><td>100.0</td></aotinite<></td>			<aotinite< td=""><td>18.4</td><td>58.2</td><td>14.9</td><td>0.9</td><td>1.6</td><td>0.0</td><td></td><td>0.0</td><td>0.0</td><td>4.79</td><td>0.27</td><td>0.00</td><td>0.0</td><td>0.1</td><td>0.00</td><td>0.44</td><td>0.17</td><td>0.04</td><td>0.08</td><td>100.0</td></aotinite<>	18.4	58.2	14.9	0.9	1.6	0.0		0.0	0.0	4.79	0.27	0.00	0.0	0.1	0.00	0.44	0.17	0.04	0.08	100.0
5 Features 27.1 21.0 <t< td=""><td>F Kachina 221 Q10 C00 C00<!--</td--><td></td><td></td><td>Saolinite</td><td>30.0</td><td>11.9</td><td>48.9</td><td>0.6</td><td>1.6</td><td>0.0</td><td></td><td>0.0</td><td>0.0</td><td>5.71</td><td>0.02</td><td>0.00</td><td>0.0</td><td>0.1</td><td>0.00</td><td>0.57</td><td>0.40</td><td>0.01</td><td>0.24</td><td>100.0</td></td></t<>	F Kachina 221 Q10 C00 C00 </td <td></td> <td></td> <td>Saolinite</td> <td>30.0</td> <td>11.9</td> <td>48.9</td> <td>0.6</td> <td>1.6</td> <td>0.0</td> <td></td> <td>0.0</td> <td>0.0</td> <td>5.71</td> <td>0.02</td> <td>0.00</td> <td>0.0</td> <td>0.1</td> <td>0.00</td> <td>0.57</td> <td>0.40</td> <td>0.01</td> <td>0.24</td> <td>100.0</td>			Saolinite	30.0	11.9	48.9	0.6	1.6	0.0		0.0	0.0	5.71	0.02	0.00	0.0	0.1	0.00	0.57	0.40	0.01	0.24	100.0
0 1	9 Common 211 208 305 11 711 000 <td></td> <td>_</td> <td>(aolinite</td> <td>22.0</td> <td>19.5</td> <td>39.8</td> <td>0.9</td> <td>2.7</td> <td>0.0</td> <td></td> <td>0.0</td> <td>0.0</td> <td>13.49</td> <td>0.21</td> <td>0.00</td> <td>0.0</td> <td>0.0</td> <td>0.00</td> <td>0.68</td> <td>0.41</td> <td>0.02</td> <td>0.20</td> <td>100.0</td>		_	(aolinite	22.0	19.5	39.8	0.9	2.7	0.0		0.0	0.0	13.49	0.21	0.00	0.0	0.0	0.00	0.68	0.41	0.02	0.20	100.0
10 Kachina 12 210 321 12	1 Continue 15 210 360 11 741 000 <td></td> <td>_</td> <td>Caolinite</td> <td>22.1</td> <td>20.8</td> <td>38.5</td> <td>1.1</td> <td>7.1</td> <td>0.0</td> <td></td> <td>0.0</td> <td>0.0</td> <td>7.69</td> <td>0.60</td> <td>0.00</td> <td>0.0</td> <td>0.0</td> <td>0.00</td> <td>0.85</td> <td>0.35</td> <td>0.01</td> <td>0.83</td> <td>100.0</td>		_	Caolinite	22.1	20.8	38.5	1.1	7.1	0.0		0.0	0.0	7.69	0.60	0.00	0.0	0.0	0.00	0.85	0.35	0.01	0.83	100.0
1 Momine 25 101 201 <td>1 Continue 25 112 344 0 1 Nettorine 0</td> <td></td> <td></td> <td>Caolinite</td> <td>19.7</td> <td>21.0</td> <td>36.9</td> <td>1.1</td> <td>7.4</td> <td>0.0</td> <td></td> <td>0.0</td> <td>0.0</td> <td>10.01</td> <td>0.56</td> <td>0.00</td> <td>0.0</td> <td>0.0</td> <td>0.00</td> <td>0.84</td> <td>0.32</td> <td>0.00</td> <td>2.18</td> <td>100.0</td>	1 Continue 25 112 344 0 1 Nettorine 0			Caolinite	19.7	21.0	36.9	1.1	7.4	0.0		0.0	0.0	10.01	0.56	0.00	0.0	0.0	0.00	0.84	0.32	0.00	2.18	100.0
1 Regentine 255 117 505 0.7 249 0.05 0.	1 Kentling 25 111 362 07 42 000 000 123 013 000 123 013 <td></td> <td></td> <td>(aolinite</td> <td>28.6</td> <td>10.2</td> <td>49.4</td> <td>0.8</td> <td>4.5</td> <td>0.0</td> <td></td> <td>0.0</td> <td>0.0</td> <td>3.96</td> <td>0.24</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.00</td> <td>0.83</td> <td>0.54</td> <td>0.01</td> <td>1.00</td> <td>100.0</td>			(aolinite	28.6	10.2	49.4	0.8	4.5	0.0		0.0	0.0	3.96	0.24	0.0	0.0	0.0	0.00	0.83	0.54	0.01	1.00	100.0
i Membine 200 111 200 000 </td <td>i Nativalie 0.0 1.0 0.0 <t< td=""><td></td><td></td><td>(aolinite</td><td>25.5</td><td>11.7</td><td>50.2</td><td>0.7</td><td>4.2</td><td>0.0</td><td></td><td>0.0</td><td>0.0</td><td>4.50</td><td>0.13</td><td>0.00</td><td>0.0</td><td>0.0</td><td>0.00</td><td>1.12</td><td>0.51</td><td>0.03</td><td>1.37</td><td>100.0</td></t<></td>	i Nativalie 0.0 1.0 0.0 <t< td=""><td></td><td></td><td>(aolinite</td><td>25.5</td><td>11.7</td><td>50.2</td><td>0.7</td><td>4.2</td><td>0.0</td><td></td><td>0.0</td><td>0.0</td><td>4.50</td><td>0.13</td><td>0.00</td><td>0.0</td><td>0.0</td><td>0.00</td><td>1.12</td><td>0.51</td><td>0.03</td><td>1.37</td><td>100.0</td></t<>			(aolinite	25.5	11.7	50.2	0.7	4.2	0.0		0.0	0.0	4.50	0.13	0.00	0.0	0.0	0.00	1.12	0.51	0.03	1.37	100.0
1 Neutronie 00 211 212 11 95 000 000 000 337 036 000 000 337 036 000 000 337 036 000 000 337 036 000 000 337 036 000 000 337 036 000 <td>1 Numericante 00 221 211 90 000 37 000 37 000 37 000 37 000 37 000 37 000 37 000 37 000 37 000 37 000 37 000 37 000 37 000 36 <th< td=""><td></td><td></td><td>(aolinite</td><td>29.0</td><td>11.8</td><td>43.5</td><td>0.7</td><td>2.8</td><td>0.0</td><td></td><td>0.0</td><td>0.0</td><td>7.79</td><td>0.26</td><td>0.00</td><td>0.0</td><td>0.0</td><td>0.00</td><td>2.32</td><td>0.57</td><td>0.01</td><td>1.24</td><td>100.0</td></th<></td>	1 Numericante 00 221 211 90 000 37 000 37 000 37 000 37 000 37 000 37 000 37 000 37 000 37 000 37 000 37 000 37 000 37 000 36 <th< td=""><td></td><td></td><td>(aolinite</td><td>29.0</td><td>11.8</td><td>43.5</td><td>0.7</td><td>2.8</td><td>0.0</td><td></td><td>0.0</td><td>0.0</td><td>7.79</td><td>0.26</td><td>0.00</td><td>0.0</td><td>0.0</td><td>0.00</td><td>2.32</td><td>0.57</td><td>0.01</td><td>1.24</td><td>100.0</td></th<>			(aolinite	29.0	11.8	43.5	0.7	2.8	0.0		0.0	0.0	7.79	0.26	0.00	0.0	0.0	0.00	2.32	0.57	0.01	1.24	100.0
1 Numericals 0.0 233 226 11 800 0000 000 000 00		1	•	ontronite	0.0	22.1	21.2	1.1	9.5	0.0		0.0	0.0	12.83	0.61	0.00	0.0	0.0	0.00	3.37	0.36	0.00	1.21	100.0
9 Nontrenties 0:0 237 200 0:0 0	9. Nontronition 010 727 700 010 0331 0301			ontronite	0.0	23.3	22.6	1.1	9.0	0.0		0.0	0.0	15.98	0.57	0.00	0.0	0.0	0.00	3.54	0:30	0.00	0.27	100.0
2 Networke 00 277 181 00 733 000 00	2 Numericinal 01 271 188 09 53 000 226 000 228 000 228 000 000 000 000 000 000 000 000 228 000<			ontronite	0.0	23.7	22.0	1.1	8.6	0.0		0.0	0.0	15.91	0.61	0.00	0.0	0.0	0.00	3.08	0.31	0.00	0.68	100.0
3 Nontrentile 00 327 011 10	37 Neurinelie 0.0 31.0 13.1			ontronite	0.0	27.7	18.8	0.9	6.3	0.0		0.0	0.0	22.85	0.89	0.00	0.0	0.0	0.00	2.90	0.26	0.00	0.50	100.0
3 Nontronite 00 733 051 051 050 053 051 000 050 050 053	31 Numericative 0.0 31.0			ontronite	0.0	30.1	18.1	1.0	7.1	0.0		0.0	0.0	22.27	0.71	0.00	0.0	0.0	0.00	2.66	0.23	0.00	0.55	100.0
35 Supporting 0.0 35.9 12.4 0.0 51.1 11.0 0.0 21.5 0.0 0.0 22.5 0.0 0.0 22.5 0.0 0.0 0.0 0.0 22.5 0.0 0.0 0.0 0.0 22.5 0.0 0.0 0.0 0.0 22.5 0.0	35 Supervite 0.0 0.69 1.24 0.0 0.00 <t< td=""><td></td><td></td><td>ontronite</td><td>0.0</td><td>31.0</td><td>18.2</td><td>1.2</td><td>8.6</td><td>0.0</td><td></td><td>0.0</td><td>0.0</td><td>17.93</td><td>0.61</td><td>0.00</td><td>0.0</td><td>0.0</td><td>0.00</td><td>2.68</td><td>0.25</td><td>0.00</td><td>0.60</td><td>100.0</td></t<>			ontronite	0.0	31.0	18.2	1.2	8.6	0.0		0.0	0.0	17.93	0.61	0.00	0.0	0.0	0.00	2.68	0.25	0.00	0.60	100.0
3 Supporting 0:0 30:0 165 0.7 0.0 0	3 Sependie 0.0 30.0 16.5 17.0 0	1		anonite	0.0	36.9	12.4	0.6	0.0	5.1		0.0	0.0	31.58	0.36	0.00	0.0	0.0	0.00	1.63	0.13	0.00	0.32	100.0
Substrati 0:0 28:3 16:5 0:0 0:0 25:1 18:9 0:00 0:0	37 Sepantia 0.0 28.7 18.6 0.0 0			anonite	00	30.9	16.5	0.7	0.0	5.3		0.0	0.0	28.19	1.20	00'0	0.0	0.0	00.0	2.62	0.17	0.01	0.49	100.0
32 Sepanding 00 211 100 214 000 214 000 224 000 034 000 034 000 034 000 034 000 034 035 000 034 035 000 034 035 000 034 035 000 034 035 000 034 035 03	27. Sepantie 0.0 281 237 111 0.0 134 136 100 135 100 0.			anonite		28.3	18.5	0.8	0.0	5.0		0.0	0.0	25.12	1.89	0.00	0.0	0.0	0.00	3.39	0.20	0.00	0.48	100.0
33 Sepentine 0.0 11.4 14.6 0.0 34 13.6 0.0 0.31 0.0 27.1 0.20 0.00 27.1 0.00 0.01 0.	33 Septentine 0.0 11.4 146 0.6 0.0 34 135 0.0 0			aponite	0.0	28.1	23.7	÷	0.0	5.4		0.0	0.0	15.52	1.09	0.00	0.0	0.0	0.00	3.49	0.26	0.02	0.60	100.0
35 Sepantine 00 310 113 04 00 15 000 000 000 172 000 010 000 172 000 <td>35 Septention 31 11.3 0.4 0.0 15.7 0.00 16.13 0.00 17.2 0.00 17.3 0.00 17.3 0.00 17.3 0.00 17.3 0.00 17.3 0.00 17.3 0.00 17.3 0.00 0.00 17.3 0.00 0.00 17.3 0.00 0.00 17.3 0.00 <t< td=""><td>L</td><td></td><td>arnantina</td><td>00</td><td>11.4</td><td>14.6</td><td>0.6</td><td>0.0</td><td>3.4</td><td></td><td>0.0</td><td>52.8</td><td>0.00</td><td>0.85</td><td>0.00</td><td>0.0</td><td>0.0</td><td>0.00</td><td>2.21</td><td>0.20</td><td>0.00</td><td>0.34</td><td>100.0</td></t<></td>	35 Septention 31 11.3 0.4 0.0 15.7 0.00 16.13 0.00 17.2 0.00 17.3 0.00 17.3 0.00 17.3 0.00 17.3 0.00 17.3 0.00 17.3 0.00 17.3 0.00 0.00 17.3 0.00 0.00 17.3 0.00 0.00 17.3 0.00 <t< td=""><td>L</td><td></td><td>arnantina</td><td>00</td><td>11.4</td><td>14.6</td><td>0.6</td><td>0.0</td><td>3.4</td><td></td><td>0.0</td><td>52.8</td><td>0.00</td><td>0.85</td><td>0.00</td><td>0.0</td><td>0.0</td><td>0.00</td><td>2.21</td><td>0.20</td><td>0.00</td><td>0.34</td><td>100.0</td></t<>	L		arnantina	00	11.4	14.6	0.6	0.0	3.4		0.0	52.8	0.00	0.85	0.00	0.0	0.0	0.00	2.21	0.20	0.00	0.34	100.0
α expension α			Ĭ	umentine		34.0	5	40	00	, 1, 1,		00	257	00.0	16.13	0.00	0.0	0.0	0.00	1.72	0.09	0.01	0.26	100.0
Kaolinie 233 154 451 12 21 000 0.00 0.00 0.01 0.00 0.03 0.06 0.0			•	almadia	0	0.10	2	5	2	2		2												
I Mathine x_{12} 1, x_{21} <th< td=""><td>F Nachlinte 2.2 1.3 3.6 0.5 1.2 0.0 <t< td=""><td>47</td><td>2</td><td></td><td>c</td><td>4 5 4</td><td>16.1</td><td>¢ 7</td><td>+ c</td><td></td><td></td><td>0</td><td></td><td>0 83</td><td>000</td><td></td><td>00</td><td>60</td><td>000</td><td>1 30</td><td>0.33</td><td>0.06</td><td>90.0</td><td>100.0</td></t<></td></th<>	F Nachlinte 2.2 1.3 3.6 0.5 1.2 0.0 <t< td=""><td>47</td><td>2</td><td></td><td>c</td><td>4 5 4</td><td>16.1</td><td>¢ 7</td><td>+ c</td><td></td><td></td><td>0</td><td></td><td>0 83</td><td>000</td><td></td><td>00</td><td>60</td><td>000</td><td>1 30</td><td>0.33</td><td>0.06</td><td>90.0</td><td>100.0</td></t<>	47	2		c	4 5 4	16.1	¢ 7	+ c			0		0 83	000		00	60	000	1 30	0.33	0.06	90.0	100.0
9 Namine 21. 10.4 0.6 0.6 </td <td>\circ Kalinitie 321 103 302 001 103 301 000 000</td> <td></td> <td></td> <td></td> <td>0.20</td> <td></td> <td>- 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20</td> <td>4 G</td> <td>- c</td> <td></td> <td></td> <td></td> <td></td> <td>163</td> <td>0.03</td> <td></td> <td></td> <td>10</td> <td>000</td> <td>162</td> <td>0.47</td> <td>100</td> <td>0.16</td> <td>100.0</td>	\circ Kalinitie 321 103 302 001 103 301 000				0.20		- 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20	4 G	- c					163	0.03			10	000	162	0.47	100	0.16	100.0
Matinitie 3.3 Vol 3.0 Vol 0.0	Madinite 3.3 5.0 7.5 0.7 4.1 0.0 0			Vaolinite	44.1		20.00	2 G	- -					263	0.07	0.00		00	000	0.74	0.47	0.03	62.0	100.0
Admini 1.1 3.1 3.4 0.7 4.2 0.0 <	Addition 21,1 24,3 0,1 44,0 0,1 42,0 0,0 <			Valinite	00.00	1.02	2.90 7.7	2 0	5. r					854	0.79	0.00		00	000	1.09	0.35	0.01	0 29	100.0
Matrix 7.0 5.1 3.7 0.7 <	National 130 0.1 0.2 1.1 0.1 0.0			vaolinite	1.12	5.4.2	0.10		- 6					R RO	118	0.00		000	0.00	1.06	0.27	0.01	0.26	100.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Taic 129 158 480 0.4 0.0 0.8 189 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	1		Tolo	0.6	51.2	23.8	20		15		12	00	000	0.17	000	0.0	0.0	00.0	1.01	0.21	0.01	0.15	100.0
Taic 118 17, 282 150 450 05 00 20 20 00 00 00 00 00 00 00 00 00 00	Taic 118 17 368 0 0 00 21 159 00 00 00 00 00 00 00 00 00 00 00 00 00		2	1 alc	0.0	7.10		5				10			100					1 74	0.58	20.0	0.78	100.0
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		* u	Tale	14.0	0.0	20.00	t 4		200					0.36	000		00	000	3 33	0.49	0.01	1.04	100 0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		2 Ç		0.11	10.0	30.1	40		10		0.0	0.0	0.00	0.20	0.00	0.0	0,0	0.00	5,83	0.55	0.02	1.77	100.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$: 6	Talc	96	31.7	28.2	0.5	0.0	3.6		0,0	0.0	0.00	0.21	0.00	0.0	0.0	0.00	6.79	0.44	0.07	0.65	100.0
24 Tate 00 355 8.1 0.7 0.0 1.5 1.7.3 3.1.8 0.0 0.01 0.0 0.45 0.25 0.03 <td>23 Tale 0.0 39.5 8.1 0.7 0.0 15 17.3 31.8 0.0 0.01 0.0 0.02 0.25 0.25 24 Tale 0.0 35.5 10.6 4.5 0.0 1.5 17.3 31.8 0.0 0.00 0.68 0.00 0.45 0.25 26 Tale 0.0 37.5 20.3 0.0 5.7 17.0 16.5 0.0 0.00 0.68 0.00 0.01 1.29 0.74 28 Tale 0.0 37.5 20.3 0.0 5.2 17.0 16.5 0.0 0.00 0.00 0.01 0.00 0.01</td> <td></td> <td>3 5</td> <td>Talc</td> <td>00</td> <td>43.5</td> <td>7.4</td> <td>0.2</td> <td>0.0</td> <td>0.9</td> <td></td> <td>40.1</td> <td>0.0</td> <td>0.00</td> <td>0.03</td> <td>0.00</td> <td>0.0</td> <td>0.0</td> <td>0.00</td> <td>0.54</td> <td>0.07</td> <td>0.02</td> <td>0.06</td> <td>100.0</td>	23 Tale 0.0 39.5 8.1 0.7 0.0 15 17.3 31.8 0.0 0.01 0.0 0.02 0.25 0.25 24 Tale 0.0 35.5 10.6 4.5 0.0 1.5 17.3 31.8 0.0 0.00 0.68 0.00 0.45 0.25 26 Tale 0.0 37.5 20.3 0.0 5.7 17.0 16.5 0.0 0.00 0.68 0.00 0.01 1.29 0.74 28 Tale 0.0 37.5 20.3 0.0 5.2 17.0 16.5 0.0 0.00 0.00 0.01 0.00 0.01		3 5	Talc	00	43.5	7.4	0.2	0.0	0.9		40.1	0.0	0.00	0.03	0.00	0.0	0.0	0.00	0.54	0.07	0.02	0.06	100.0
24 Tatic 1,7 33,4 10;6 4,5 0,0 7,0 26;3 0,0 0,0 0,0 1,2 0,7 0,0 0,7	24 Tale 17 33,4 106 4,5 0.0 7.0 26.3 0.0 0.00 0.00 0.00 1.29 0.74 26 Tale 0.0 36.5 16.9 0.7 0.0 31 11.5 29.8 0.0 0.01 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 <		1 8	Talc	00	39.5	8	0.7	0.0	1.5		31.8	0.0	0,00	0.15	0.00	0.0	0.0	0.00	0.45	0.25	0.03	0.08	100.0
F Tate 00 365 163 0.7 0.0 3.1 115 29.8 0.0 0.19 0.00 0.19 0.10 0.33	F Tale 0.0 36.5 16.9 0.7 0.0 3.1 11.5 2.9.8 0.0 0.19 0.00 0.0 0.00 0.04 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.10 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.10 0.16 0.10 0.16 0.10 0.16 0.10 0.16 0.10 0.16 0.10 0.16 0.10 0.16 0.10 0.10 0.10 0.10 0.16 0.10 0.16 0.16 0.10 0.16 0.10 0.16 0.10 0.10 0.16 0.10 0.16 <td></td> <td>2.0</td> <td>Talc</td> <td>14.7</td> <td>33.4</td> <td>10.6</td> <td>4.5</td> <td>0.0</td> <td>2.0</td> <td></td> <td>0.0</td> <td>0.0</td> <td>0.00</td> <td>0.68</td> <td>00.00</td> <td>0.0</td> <td>0.0</td> <td>0.00</td> <td>1.29</td> <td>0.74</td> <td>0.01</td> <td>0.75</td> <td>100.0</td>		2.0	Talc	14.7	33.4	10.6	4.5	0.0	2.0		0.0	0.0	0.00	0.68	00.00	0.0	0.0	0.00	1.29	0.74	0.01	0.75	100.0
29 Tate 00 37.5 20.3 0.9 0.0 5.2 17.0 16.5 0.0 0.48 0.00 0.	29 Taic 0.0 37.5 20.3 0.9 0.0 5.2 17.0 16.5 0.0 0.48 0.00 0.0 1.04 0.23 32 Serpentine 17.8 30.9 6.8 4.3 0.0 7.8 21.5 0.0 0.00 9.65 0.00 0.00 0.00 0.36 0.58 33 Serpentine 0.0 16.4 11.3 0.8 0.0 52 37.0 0.00 0.00 0.00 0.00 0.36 0.58 33 Serpentine 0.0 16.4 11.3 0.8 0.0 22 9.7 0.0 58.3 0.00 0.0 0.00 0.46 0.13 35 Serpentine 0.0 47.2 9.8 0.0 0.01 0.00 0.46 0.01 0.00 0.45 0.11 36 Serpentine 2.1 5.4 0.1 0.0 0.00 0.14 0.00 0.00 0.00 0.45<		1 K	Talo		36.5	16.9	0.7	0.0	с Т		29.8	0.0	00.0	0.19	00.0	0.0	0.0	0.00	0.84	0.16	0.03	0.33	100.0
32 Serpentine 17.6 309 6.8 4.3 0.0 7.8 21.5 0.0 0.00 9.65 0.00 0.0 0.00 0.36 0.38 0.33 0.33 0.33 0.33 0.00 0.16 0.10 0.00 0.36 0.36 0.33 <th0.3< td=""><td>32 Serpentine 17.8 30.9 6.8 4.3 0.0 7.8 21.5 0.0 0.00 9.65 0.00 0.0</td><td></td><td></td><td>Talc</td><td>0.0</td><td>37.5</td><td>20.3</td><td>0.9</td><td>0.0</td><td>5.2</td><td></td><td>16,5</td><td>0.0</td><td>0.00</td><td>0.48</td><td>0.00</td><td>0.0</td><td>0.0</td><td>0.00</td><td>1.04</td><td>0.23</td><td>0.04</td><td>0.66</td><td>100.0</td></th0.3<>	32 Serpentine 17.8 30.9 6.8 4.3 0.0 7.8 21.5 0.0 0.00 9.65 0.00 0.0			Talc	0.0	37.5	20.3	0.9	0.0	5.2		16,5	0.0	0.00	0.48	0.00	0.0	0.0	0.00	1.04	0.23	0.04	0.66	100.0
33 Serpentine 0 16.4 11.3 0.8 0.0 2.2 9.7 0.0 58.3 0.00 0.49 0.00 0.0 0.45 0.11 0.00 0.26 3 35 Serpentine 0.0 47.2 9.8 0.7 0.0 3.4 7.8 0.0 0.00 0.46 0.09 0.46 0.09 0.26 3 35 Serpentine 0.0 47.2 9.8 0.7 0.0 3.4 7.8 0.0 30.0 0.14 0.00 0.46 0.09 0.26 3 35 Serpentine 0.0 492 19.9 1.0 0.0 1.1.5 0.00 0.14 0.00 0.0 0.00 0.246 0.30 36 Serpentine 0.0 492 19.9 1.0 0.0 11.5 0.00 0.14 0.00 0.01 0.01 0.02 0.46 0.30 3 3 Serpentine 0.0 0.00 0.14 0.59 0.75 0.14 0.30 3 Serpentine 2.4 <	33 Serpentine 0.0 16.4 11.3 0.8 0.0 2.2 9.7 0.0 58.3 0.00 0.49 0.00 0.4 0.0 0.45 0.11 35 Serpentine 0.0 47.2 9.8 0.7 0.0 3.4 7.8 0.0 3.00 0.14 0.00 0.0 0.46 0.03 36 Serpentine 0.0 49.2 19.9 1.0 0.0 3.4 7.8 0.0 0.14 0.00 0.0 0.46 0.03 37 Serpentine 0.0 49.2 1.9 1.0 0.0 4.3 11.7 0.0 11.4 0.00 0.0 0.0 0.0 0.0 0.0 0.14 0.15 0.16	1		erpentine	17.8	30.9	6.8	4.3	0.0	7.8		0.0	0.0	0.00	9.65	0.00	0.0	0.0	0.00	0.36	0.58	0.03	0.38	100.0
35 Serpentine 0.0 47.2 9.8 0.7 0.0 3.4 7.8 0.0 30.0 0.00 0.14 0.00 0.0 0.0 0.00 0.46 0.09 0.02 0.46 7 36 Serpentine 0.0 49.2 19.9 1.0 0.0 4.3 11.7 0.0 11.5 0.00 0.18 0.00 0.0 0.0 0.00 1.07 0.16 0.04 0.90 3 37 Serpentine 24.7 25.4 6.7 4.2 0.0 11.1 0.0 0.0 0.0 0.0 0.00 2.1.22 4.94 0.0 0.0 0.014 0.59 0.75 0.18 3 38 Serpentine 24.7 25.2 7.1 5.9 0.0 9.3 0.0 0.0 76.3 0.00 0.10 0.00 0.14 0.56 0.78 0.19 3 38 Serpentine 20.1 2.52 7.1 5.9 0.0 9.3 0.0 7.0 0.0 0.0 0.00 0.19 0.00 0.00 0.00 0.14 0.55 0.18 0.19 0.10 0.00 0.00 0.14 0.55 0.18 0.19 0.00 0.10 0.00 0.14 0.55 0.18 0.18 0.10 0.00 0.10 0.00 0.14 0.55 0.18 0.18 0.18 0.18 0.10 0.00 0.10 0.00 0.19 0.10 0.00 0.18 0.18 0.18 0.05 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18	35 Serpentine 0.0 47.2 9.8 0.7 0.0 3.4 7.8 0.0 30.0 0.00 0.14 0.00 0.0 0.46 0.03 36 Serpentine 0.0 49.2 19.9 1.0 0.0 4.3 11.7 0.0 11.5 0.00 0.18 0.00 0.0 0.0 1.07 0.16 37 Serpentine 24.7 25.4 6.7 4.2 0.0 11.1 0.0 0.00 0.18 0.00 0.01 1.07 0.16 38 Serpentine 26.1 25.2 7.1 5.9 0.0 0.0 0.0 0.0 0.00 0.14 0.59 38 Serpentine 26.1 25.2 7.1 5.9 0.0 0.0 0.0 0.0 0.14 0.59 38 Serpentine 26.1 25.2 7.1 5.9 0.0 0.0 0.0 0.00 0.14 0.56 39 Serpentine 0.0 8.4 0.2 0.0 0.0 0.00 0.14			erpentine	0.0	16.4	11.3	0.8	0.0	2.2		0.0	58.3	0.00	0.49	0.00	0.0	0.0	0.00	0.45	0.11	0.00	0.26	100.0
36 Serpentine 0.0 49.2 19.9 1.0 0.0 4.3 11.7 0.0 11.5 0.00 0.18 0.00 0.0 0.0 0.00 1.07 0.16 0.04 0.90 7 37 Serpentine 24.7 25.4 6.7 4.2 0.0 11.1 0.0 0.0 0.0 0.0 2.122 4.94 0.0 0.0 0.00 0.14 0.59 0.75 0.18 38 Serpentine 26.1 2.5.2 7.1 5.9 0.0 9.3 0.0 0.00 0.14 0.65 0.78 0.19 7 38 Serpentine 20.1 2.5.2 7.1 5.9 0.0 9.3 0.0 0.0 7.63 0.00 0.00 0.19 0.00 0.00 0.00 0.14 0.65 0.78 0.19 7 48 Serpentine 20.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	36 Serpentine 0.0 49.2 19.9 1.0 0.0 4.3 11.7 0.0 11.5 0.00 0.0 0.0 0.0 0.0 1.07 0.16 37 Serpentine 24.7 25.4 6.7 4.2 0.0 11.1 0.0 0.0 0.0 0.0 0.0 0.14 0.59 38 Serpentine 26.1 25.2 7.1 5.9 0.0 9.3 0.0 0.0 0.0 0.14 0.59 38 Serpentine 26.1 25.2 7.1 5.9 0.0 9.3 0.0 0.0 24.41 0.21 0.0 0.0 0.14 0.55 42 Serpentine 0.0 8.4 0.2 0.0 0.0 0.0 0.14 0.55 42 Serpentine 0.0 8.4 0.2 0.0 0.0 0.0 0.00 0.00 0.14 0.55			srpentine	0.0	47.2	9.8	0.7	0.0	3.4		0.0	30.0	0.00	0.14	0.00	0.0	0.0	0.00	0.46	0.09	0.02	0.46	100.0
37 Serpentine 24.7 25.4 6.7 4.2 0.0 11.1 0.0 0.0 0.0 0.0 21.22 4.94 0.0 0.0 0.00 0.14 0.59 0.75 0.18 38 Serpentine 26.1 25.2 7.1 5.9 0.0 9.3 0.0 0.0 0.0 0.0 0.0 0.14 0.65 0.78 0.19 3.24.25.2 0.0 8.4 8.4 0.2 0.0 0.0 0.14 0.65 0.78 0.19 3.25.2 0.0 0.0 0.0 0.14 0.65 0.78 0.19 3.25.2 0.0 0.0 0.0 0.14 0.65 0.78 0.19 3.25.2 0.0 0.0 0.0 0.14 0.65 0.78 0.19 3.25.2 0.0 0.0 0.0 0.14 0.65 0.78 0.19 3.25.2 0.0 0.0 0.0 0.14 0.65 0.78 0.19 3.25.2 0.0 0.0 0.0 0.0 0.14 0.65 0.78 0.19 3.25.2 0.0 0.0 0.0 0.14 0.65 0.78 0.19 3.25.2 0.0 0.0 0.0 0.14 0.65 0.78 0.19 3.25.2 0.0 0.0 0.0 0.14 0.65 0.78 0.19 3.25.2 0.0 0.0 0.0 0.14 0.55 0.0 0.10 0.0 0.14 0.55 0.18 0.19 3.25.2 0.0 0.0 0.10 0.10 0.0 0.14 0.65 0.78 0.19 3.25.2 0.0 0.10 0.10 0.10 0.14 0.65 0.00 0.18 3.25 0.0 0.18 3.25 0.0 0.10 0.00 0.14 0.10 0.00 0.10 0.00 0.10 0.00 0.18 3.25 0.0 0.18 3.25 0.0 0.18 3.25 0.0 0.19 0.00 0.0 0.0 0.0 0.0 0.00 0.10 0.00 0.18 3.25 0.0 0.18 3.25 0.0 0.18 3.25 0.0 0.10 0.00 0.0 0.0 0.00 0.10 0.00 0.10 0.00 0.18 3.25 0.0 0.18 3.25 0.0 0.18 3.25 0.0 0.10 0.00 0.0 0.0 0.0 0.00 0.00 0.	37 Serpentine 24.7 25.4 6.7 4.2 0.0 11.1 0.0 0.0 0.0 0.1 0.0 0.1 0.59 38 Serpentine 26.1 25.2 7.1 5.9 0.0 9.3 0.0 0.0 0.0 0.4 0.59 38 Serpentine 26.1 25.2 7.1 5.9 0.0 9.3 0.0 0.0 0.0 0.14 0.55 42 Serpentine 0.0 8.4 0.2 0.0 0.4 5.5 0.0 76.3 0.00 0.14 0.55 0.05 0.14 0.55			erpentine	0.0	49.2	19.9	1.0	0.0	4.3		0.0	11.5	00.0	0.18	0.00	0.0	0.0	0.0	1.07	0.16	0.04	0.90	100.0
38 Serpentine 26.1 25.2 7.1 5.9 0.0 9.3 0.0 0.0 0.0 0.00 24.41 0.21 0.0 0.00 0.14 0.65 0.78 0.19 1 4.2 Serpentine 0.0 8.4 8.4 0.2 0.0 0.4 5.5 0.0 76.3 0.00 0.19 0.00 0.0 0.0 0.00 0.00 0.18	38 Serpentine 26.1 25.2 7.1 5.9 0.0 9.3 0.0 0.0 0.0 0.0 24.41 0.21 0.0 0.0 0.00 0.14 0.65 4.2 Serpentine 0.0 8.4 8.4 0.2 0.0 0.4 0.55 0.0 76.3 0.00 0.19 0.00 0.0 0.0 0.00 0.38 0.06			rpentine	24.7	25.4	6.7	4.2	0.0	11.1		0.0	0.0	0.00	21.22	4.94	0.0	0.0	0.00	0.14	0.59	0.75	0.18	100.0
22 20 20 20 20 20 20 20 20 20 20 20 20 2	42 Serpentine 0.0 8.4 8.4 0.2 0.0 0.4 5.5 0.0 76.3 0.00 0.19 0.00 0.0 0.0 0.00 0.38 0.06	_		vrnentine	26.1	25.2	7.1	5.9	0.0	9.3 2		0.0	0.0	0.00	24.41	0.21	0.0	0.0	0.00	0.14	0.65	0.78	0.19	100.0
				mantina	0.0	A A	84	0.2	0.0	0.4		0.0	76.3	0.00	0.19	0.00	0.0	0.0	0.00	0.38	0.06	0.00	0.18	100.0

% Total	100.0	100.0	0.001	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0		100.0	100.0	100.0		1000	100.0	100.0	100.0		100.0	100.0 100.0	1000	100.0	100.0	100.0	100.0	100.0
Asbolan	0.06	0.07	0.03	0.15	0.27	1.20	1.26	1.50	1.1	0.96	1.12	0.73	0.61	0.65	1.09	0.68	0.70	0.29	0.28	0.29	0.20	0.24	0.28		0.06	0.19	0.26	0.00	0.18	1.25	0.61	0.40		U.13	0.15 0.28	0.50	0.27	0.34	0.13	0.19	0.34
Apatite	0.05	0.07		60.0 0.00	0.07	0.01	0.01	0.01	0.01	0.01		00.0	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.02	0.02	0.01		0.05	0.03	0.03	86		0.01	0.01	0.00	0	90.0	0.06 0.05	0.01	00.0	0.00	0.00	0.00	0.00
Rutile	1.10	1.47	0.50	0.59	0.63	0.58	0.37	0.34	0.58	0.54	05.0	0.27	0.28	0.28	0.24	0.24	0.26	0.11	0.10	0.11	0.06	0.09	0.12	!	0.47	0.47	0.60		0.00	0.34	0.21	0.13		/9.0	0.59	0.24	0.15	0.19	0.16	0.11	0.13
Chromite	1.82	2.22	2.40 205	2.04	2.33	2.68	4.74	6.48	7.12	5.27	3.U/	2.02	2.05	2.27	1.96	2.10	2.53	1.10	1.23	0.65	0.51	0.70	0.79	1	2.57	1.15	1.22	77.7	0.50 7.51	1.89	1.22	0.98		2.19	1.75 2.08	200	2.32 1.61	1.44	1.35	0.81	0.79
Alunite	0.00	0.0	0.0	00.0	0.00	00.0	0.00	0.00	0.00	00.0	0.0	00.0	00.0	00'0	0.00	0.00	0.00	0.00	0.0	0.00	0.0	0.0	0.00		0.00	0.00	0.0		800	00.0	0.00	0.00		00'0	0.0		000	0.00	0.00	0.00	8.0
Bassanite	0.2	0.5	9.0 0	2.0	0.1	0.0	0:0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.2	0.3		5		0.1	0.1	0.0	Ċ	0.Z	0.2		0.0	0.0	0.0	0.0	0.0
Gibbsite	0.0	20.9	18.4	6.1	2.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0			0.0	0.0	0.0	0	0.0	2.8 5.6		000	0.0	0.0	0.0	0.0
Calcite	0.00	1.57	0.00	00.0	0.00	0.00	0.00	0.00	0.00	0.00	0.0	00.00	0.00	0.00	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.0	0.00		0.0	0.0	0.0	86	8.0	00.0	0.00	0.00	000	0.00	0.0	000	000	0.00	0.00	0.0	0.00
Dolomite	0.11	2.25	60'0 00 0	00.0	0.22	0.27	0.94	1.09	0.29	0.46	1.UB	1.12	1.13	1.13	0.95	0.97	0.67	0.42	0.63	0.36	0.24	0.30	0.30		0.10	0.19	0.31	0.00	00.0 02.0	1.68	1.61	1.17	000	0.30	0.11 0.05	1 07	1.89	2.35	1.87	1.55	1.63
Magnesite	1.00	0.0	15. 1	0.83	0.86	0.88	9.73	0.00	0.00	0.00	76.7	2.39 7.39	4.12	3.71	6.64	8.90	4.36	26.79	30.22	25.98	14.42	18.95	26.92		1.09	1.21	1.21	0	000	000	21.19	31.28	9	3.12	1.47 1.03	000	14.04	10,80	22.71	30.24	29.20
Serpentine	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0		0.0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Talc S	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0		0.0	00	0.0	0.0	1	0.0	0.0		0.0	0.0	0.0	0.0	0.0
Chlorite	0.0	0.0	0.0	0.0	0.0	0.0	0.0	18.8	3.9	6.4	23.6	20.5	20.4	21.0	17.0	18.4	17.9	9.4	.8.5	0 i	5.7	7.7	9.3		0.0	0.0	0.0		τ 1 2 2	216	16.4	11.7		0.0	0.0		13.1	15.7	13.3	9.2	10.4
Saponite	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	000	0.0	0.0	0.0	0.0	0.0	0.0	3.0	2.4	4	1.7	3.1		0.0	0.0	0.0			000	0.0	4.2	0	0.0	0.0		0.0	0.0	0.0	2.8	3.5
Nontronite	1.2	2.5	4 4	4 4	2.9	3.2	7.1	7.8	6.7	4.5	9.4	7.01 6 3	10.3	8.5	7.8	9.1	6.4	3.2	0.0	0.0	0.0	0.0	0.0		6.0	2.9	5.2	0.7	0.7	e o	8.1	0.0	č	2.1	0.8 2.3	2 4	38	4.3	3.7	0.0	0.0
llite	0.6	0.3	0.6	0.4	4.0	0.6	1.2	1.5	0.7	0.8	4. u	9	1.6	1.6	1.3	1.4	0.1	0.4	0.4	0.5	0.3	0.3	0.4		0.5	0.4	0.3	150	4.0	0.7	0.6	0.4		1.0	0.0 4.0	4.0	0.0	0.6	0.6	0.4	0.4
Fe-oxides	53.7	52.9	26.7	50.5 47.8	54.6	51.8	37.3	36.8	53.8	54.9	32.3	27.9	30.5	29.7	25.2	24.2	27.7	12.7	12.2	12.3	8.5	10.4	11.4		48.9	54.4	53.0	7.00	33.U	32.4	20.1	14.5		41.6	63.5 53.6	2000	33.0 18.5	22.9	18.5	14.5	15.0
	15.4	0.0	0.0	0.0	0.0	0.0	17.0	20.0	1.1	6.9	24.8	1.82	28.9	31.2	37.9	34.0	38.5	45.5	43.4	48.0	68.6	59.6	47.3		5.1	2.9	3.2	0.0	0.0 1 A 3	27.5	30.0	35.2		2.1	0.0	0.0	30.6 46.0	41.3	37.7	40.2	38.6
Kaolinite Opal-Si/Qtz	24.7	15.2	14.9	30.5 37.8	35.0	38.8	20.3	5.7	24.7	19.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		40.0	35.9	37.2	32.8	23.1 1 5 4	1. or	0.0	0.0	!	46.7	28.1 34 1		0.8	00	0.0	0.0	0.0
Regolith Unit	ļ	Kaolinite	Kaolinite	Kaolinite Kaolinite	Kaolinite	Kaolinite	Kaolinite	Nontronite	Nontronite	Nontronite	Nontronite	Nontronite	Nontronite	Nontronite	Nontronite	Nontronite	Nontronite	Nontronite	Saponite	Saponite	Saponite	Saponite	Saponite		Kaolinite	Kaolinite	Kaolinite	Kaolinite	Nontronite	Nontronite	Nontronite	Saponite		Kaolinite	Kaolinite Kaolinita	Lauii lite	Nontronite	Nontronite	Nontronite	Saponite	Saponite
Depth (m)		e	4 (υ (: ¢	8	19											-				50	51		-	4	ω ;				2 2			-	1 U		-		1		
Hole ID	CBRC0743 27414	27416	27417	21422	27426	27432	27433	27436	27437	27439	27440	2/442	27444	27445	27448	27450	27453	27454	27458	27463	27464	27465	27466	CBRC0724	26872	26875	26879	78897	26885	10002	26893	26896	CBRC0725	26897	26900 76007	20802	26905 26007	26910	26913	26916	26919

I																																														
" Total	100.0 100.0 100.0	100.0	100.0	100.0	100.0	100.0	100.0	0.001		100.0	0.001				100.0	100.0	100.0	100.0	100.0	100.0	100.0	0001	1000	100.0	100.0	100.0	100.0	100.0	100.0	100.0		100.0	100.0	100.0	100.0	100.0	0.001		100.0	100.0	100.0		100.0	100.0	100.0	1
Asbolan	0.08 0.07 0.07	0.23	0.16	0.37	1.54	0.45	0.30	0.00		0.13	60.0 0	60'0	8 9 9 9	21.0	0.66	0.38	0.18	0.28	1.62	2.14	0.26	50 U	0.36	1.21	0.72	0.22	1.58	0.19	0.31	0.25	0.33	0.26	0.29	0.33	0.32	0.33	0.26	000	0.16	0.19	0.17	12.0	0.20	0.16	0.14	5
Apatite	0.05 0.05	0.03	0.01	0.00	0.07	0.01	500	2		0.07	90.0	0.00 100	c) ()	80'0	0.18	0.10	0.00	0.01	0.01	0.0	0.01	200	500	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.0	00.00	0.00	0.00	0.01	0.00	00.0	000	0.02	0.01	0.03	500	0.02	0.01	00.00	22.2
Rutile A	0.57 0.34 0.35	0.42	0.43	0.16	0.24	0.11	80.0	200		2.62	0.77	0.50	0.2	10.0	0.29	0.28	0.11	0.17	0.12	0.22	0.08	0.34	0.37	0.29	0.09	0.14	0.18	0.13	0.14	0.12	80.0	0.10 0.10	0.10	0.06	0.08	0.07	0.04	200	0.01	0.01	0.00		0.00	0.03	0.01	
Chromite	3.07 2.20 1.42	3.10	2.91	2.27	2.71	1.26	131	2		2.42	2.62	2.17	2.80	ne.2	5.51	3.82	1.04	1.18	0.71	1.59	1.71	108	134	2.80	0.77	1.81	2.36	2.78	3.65	5.23	3.3Z	2.52	1.13	0.36	0.33	0.29	0.23	0.19	0.16	0.18	0.18	0.10	0.22	0.23	0.19	· · · ·
Alunite CI	0.00 0.00	0.00	0.00	0.00	0.00	0.00	000	20.0		0.00	0.00	0.00			800	0.00	0.00	0.00	0.00	0.00	0.00	000		0.00	0.00	0.00	0.00	000	0.00	0.00		00.0	0.00	0.00	0.00	0.00	0.0	80	0.00	0.00	0.00	8.0	00.0	0.00	0.00	,,,,
Bassanite A	0.2 0.3															0.1														0.0																
1																																														
e Gibbsite	0.000	0.0	0.0	0.0	0.0	0.0				2.5	4.4	4. C		5.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0		0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0		0.0	0.0	0.0	
Calcite	0.0 00.0	00.0	0.00	0.0	0.00	0.0		2000		0.0	0.00	0.0	00.0		00.0	0.00	0.00	0.00	00'0	0.0	0.00	000	0.00	00.0	0.00	0.00	0.0	00.0	0.00	0.0	0.0	00.0	0.00	0.00	0.00	0.00	0.00		0.0	0.00	0.00	0.0	00.0	0.00	0.00	12.2
Dolomite	0.18 0.54 0.00	0.15	0.62	1.00	1.74	1.51	20.1	5		0.13	0.04	0.00	0.24		000	0.35	1.54	1.89	2.12	2.33	0.82	0 53	0.49	0.58	1.22	0.97	0.98	0.73	0.79	0.62	U.32	12,88	10.17	1.88	0.53	0.61	0.44 44 0	140	36.24	43.37	6.86	15.40	12.59	46.63	71.90	
Magnesite	0.96 0.62 0.53	0.00	0.00	0.0	0.0	7.63	10.68 19.52	70.61		0.52	0.63	0.79	0.82	0.77	0.89	0.00	0.00	0.00	4.55	4.44	20.44	000	0.00	00.0	4.65	17.02	25.35	34.84	0.00	0.00	0.0	000	0.00	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.00	200	11.10	0.0	000	
Serpentine	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0		0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	00	0.0	0.0	0.0	0.0	0.0	0.0	47.0	45.1	3/.8	32.6	38.5	31.2	23.4	21.3	16.1	20.4	7.5	6.7	69.8 67.0	0.78	64.6	28.2	10.2	
Talc Se	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5		0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0,0	0.0	0.0	00		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	00	
	0.0	2.2	3.3	5.4	17.3	9 2 7 0	0.7	2		0.0	0.0	0.0	0.0		0.0	2.7	6.6	12.0	7.9	12.2	6.5	70	6.7 6.7	4 6 8 6	8.3	12.8	14.7	11.5	12.4	11.7	р. Ч.	າ ຕິດ	8.7	5.3	6.1	5,9		4 0 4 7	1.7	1.8	1.6	0 T N T	5	3.0	17	
Saponite Chlorite	0.0	00	0.0	0.0	0.0	0.0	0.0	2		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.7		0.0	0.0	0.0	4.5	6.4 1- 10	4 4	4.2	4.3	9.0	0.0 7.4	3.8	5.6	5.3	3.9	7.4		3.4	1.9	1.8	ο 	1.7	0.7	ч ч	
Nontronite S	0.4 2.6		2.9	3.6	6.8	5.5	4.8 0	n. C		0.2	1.5	0.0	5.6	ה ה זי ה	2 O O	3.6	4.4	5.8	8.9	0.8	0.0	r 7	۲. ۲	2.4	6.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0,0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0		
s Illite	0.5 0.6 0.3	03	0.5	0.7	0.9	6 0 0	0.6	0.0		0.2	0.5	0.5	7.0	0.0	2.0	0.4	0.8	0.8	1.0	1.1	0.5	*		12	1.3	0.8	0.7	0.5	0.5	0.5	0.5	0.0 0.0	0.5	0.6	0.6	0.6	0.0		0.4	0.4	0.3	5.0	50	0.2	100	
Fe-oxides	49.7 48.8 60 1	609	51.7	50.4	34.2	16.4	12.8	4.71		6.77	51.7	61.2	54.8	60.3 0	66.4	64.1	23.6	36.9	23.0	25.1	10.1	3.00	0.02	38.2	20.9	24.0	17.5	10.7	11.4	10.9	10.3	11.2	11.4	12.0	11.1	11,4	9.5	τ. α	7.6	8.9	9.5	4 7	- 4	6.9	5	
Opal-Si/Qtz	3.2 9.0 75	6.3	12.5	29.7	33.3	57.8	55.6 57.0	n.2c		0.0	0.0	0.0	4.0 0.0	0.2	0.0	10.2	59.8	40.4	50.0	40.0	54.8	0 50	23.8 20.5	36.4	56.0	37.6	30.6	34.5	19.6	21.3	33.0 7 5 T	26.2 25.9	25.4	42.7	52.3	55.5	65.2	40.0 64.3	42.9	36.7	9.7	0.2	+ 7 U U	13.8	0.0	
Kaolinite Opal-Si/Qtz	41.0 35.0 31.3	24.1	24.9	6.5	1.2	0.0	0.0	0.0		13.2	37.2	32.3	33.0	32.2	C.UZ	14.0	2.0	0.5	0.0	0.0	0.0	0.00	28.8	7.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	000	0.0	0.0		
	Kaolinite Kaolinite Kaolinite	Nontronita	Nontronite	Nontronite	Nontronite	Nontronite	Nontronite	Nontronite		Kaolinite	Kaolinite	Kaolinite	Kaolinite	Kaolinite	Kaolinite Kantinite	Nontronite	Nontronite	Nontronite	Nontronite	Nontronite	Saponite		Nontronite	Nontronite	Nontronite	Saponite	Saponite	Saponite	Serpentine	Serpentine	Serpentine	Mix. Serp. Mix. Sern	Mix. Serb.	Mix. Serp.	Mix. Serp.	Mix. Serp.	Mix. Serp.	Mix. Serp.	Mix. Sero.	Mix. Serp.	Mix. Serp.	Mix. Serp.	Mix. Serp. Mix Serr	Mix. Serp.	Mix Sam	
(m)	რ ის ოკის		- -							÷	2	9	~ '	œ :	5 5	2 4									- <i>2</i> - 0			24 ¢		9													_	18		
	CBRC0712 26613 26615 26615	26620	26622	26623	26624	26625	26628	26631	CBRC0714	26645	26649	26650	26651	26652	26654 26657	26658	26661	26663	26665	26666	26669	CBRC0783	29819 20824	23021 29822	29824	29825	29827	29830 29832	9833	29835	29838	29839 20840	29841	29842	29845	29849	29850	29853	29859	29861	29864	29866	20873	29876	01002	

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Hole ID Depth Regolith Kaolinite Opal/Clz Fe-oxides Illite Nontronite (m) Unit	Kaolinit	0	Kaolinite Opal/Qtz Fe-oxides	e-oxides	Illite No		Saponite C	Chlorite 1	Talc Serp	Serpentine M	Magnesite	Dolomite	Calcite	Gibbsite	Bassanite	Alunite	Chromite	Rutile	Apatite	Asbolan	% Total
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	172 00 174 00 0																			i			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Talc 17.1 25.9		25.9		28.8	4.72	0.0	0.6			0.0	0.0	4.9	0.0	0.0	0.33	0.0	0.52	0.52	0.11	0.19 6.5	100.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 0 60 60 60 00 <td>0.0</td> <td></td> <td>21.3</td> <td></td> <td>8.7</td> <td>20.2</td> <td>0.0</td> <td>19.4</td> <td></td> <td></td> <td></td> <td>0.0</td> <td>4 C</td> <td></td> <td></td> <td>0.15</td> <td></td> <td>0.13</td> <td>0.13</td> <td>70.0</td> <td>5 C</td> <td>1000</td>	0.0		21.3		8.7	20.2	0.0	19.4				0.0	4 C			0.15		0.13	0.13	70.0	5 C	1000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1 0			11 8		7.1	180	0.0	43.1			0.0	0.0	7 O O	0.0	0.0	0.06	0.03	0.14	0.14	0.00	0.10	100.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Talc 0.0 12.1		12.1		7.8	1.57	0.0	47.0			0.0	0.0	0.0	0.0	0.0	0.06	0.02	0.14	0.14	0.00	0.14	100.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0		11.7		9.1	1.80	0.0	45.0			0.0	0.0	0.0	0.0	0.0	0.06	0.04	0.14	0.14	0.00	0.24	100.0
00 337 0.2 17.5 0.0 330 2.6 0.0 0.0 0.0 010 337 0.2 17.5 0.0 330 2.6 0.0 0.0 0.0 101 383 1.5 0.0		0.0		0.0		4.0	1.22	0.0	22.8			0.0	38.2	13.4	0.0	0.0	0.05	0.00	0.05	0.05	0.00	0.16	100.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1.3		0.0		5.1	1.23	0.0	33.7			0.0	38.0	2.6	0.0	0.0	0.04	0.00	0.07	0.07	0.00	0.16	100.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	038 010 266 32 231 010 274 101 010 026 030 036 031	0.4		0.0		5.3	1.61	0.0	33.9			0.0	32.9	2.4	0.0	0.0	0.03	0.0	0.08	0.08	0.00	0.17	100.0
		0.0		0.0		5.0	0.98	0.0	28.6			0.0	27.4	10.7	0.0	0.0	0.02	0.00	0.08	0.08	0.00	0.17	100.0
69 0.0 </td <td>255 63 00 00 00 00 00 00 045 0.45 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.01</td> <td></td>	255 63 00 00 00 00 00 00 045 0.45 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.01																						
40 00 <t< td=""><td></td><td></td><td></td><td>7.1</td><td></td><td></td><td>2.55</td><td>6.9</td><td>0.0</td><td></td><td></td><td>0.0</td><td>1.0</td><td>0.3</td><td>0.0</td><td>0.0</td><td>0.27</td><td>0.00</td><td>0.45</td><td>0.45</td><td>0.09</td><td>0.25</td><td>100.0</td></t<>				7.1			2.55	6.9	0.0			0.0	1.0	0.3	0.0	0.0	0.27	0.00	0.45	0.45	0.09	0.25	100.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Kaolinite 30.0 9.6		9.6			0.86	4.0	0.0			0.0	1.8	0.5	0.0	0.0	0.18	0.00	0.45	0.45	0.06	0.22	100.0
341 0.0 17.4 0.0 0.0 0.0 0.0 <th< td=""><td>756 541 0.0 17.4 0.0 0.0 1.4 0.0 0.14 0.0<!--</td--><td></td><td></td><td>10.8</td><td></td><td></td><td>1.62</td><td>10.5</td><td>0.0</td><td></td><td></td><td>0.0</td><td>1.7</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.09</td><td>0.01</td><td>0.34</td><td>0.34</td><td>0.0</td><td>0.08</td><td>100.0</td></td></th<>	756 541 0.0 17.4 0.0 0.0 1.4 0.0 0.14 0.0 </td <td></td> <td></td> <td>10.8</td> <td></td> <td></td> <td>1.62</td> <td>10.5</td> <td>0.0</td> <td></td> <td></td> <td>0.0</td> <td>1.7</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.09</td> <td>0.01</td> <td>0.34</td> <td>0.34</td> <td>0.0</td> <td>0.08</td> <td>100.0</td>			10.8			1.62	10.5	0.0			0.0	1.7	0.0	0.0	0.0	0.09	0.01	0.34	0.34	0.0	0.08	100.0
565 0.0 12.3 0.0 0.0 13.5 0.0 0.0 0.15 445 0.0 12.1 0.0 0.0 24.5 0.0 0		Nontronite 0.2 18.8		18.8				34.1	0.0			0.0	0.0	0.0	0.0	0.0	0.15	0.38	0.18	0.18	0.00	0.12	100.0
505 0.0 12.1 0.0 </td <td>0.46 556 0.0 121 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.01 0.00 0.01 0.</td> <td>Nontronite 0.0 6.4</td> <td></td> <td>6.4</td> <td></td> <td></td> <td></td> <td>56.5</td> <td>0.0</td> <td></td> <td></td> <td>0.0</td> <td>1.8</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.15</td> <td>1.25</td> <td>0.24</td> <td>0.24</td> <td>00.00</td> <td>0.20</td> <td>100.0</td>	0.46 556 0.0 121 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.01 0.00 0.01 0.	Nontronite 0.0 6.4		6.4				56.5	0.0			0.0	1.8	0.0	0.0	0.0	0.15	1.25	0.24	0.24	00.00	0.20	100.0
445 0.0 10.8 0.0		0.0		11.2				50.6	0.0			0.0	3.5	0.0	0.0	0.0	0.12	1.14	0.21	0.21	0.00	0.61	100.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0 0.0 <td>0.0</td> <td></td> <td>14.4</td> <td></td> <td></td> <td>0.33</td> <td>44.5</td> <td>0.0</td> <td></td> <td></td> <td>0.0</td> <td>9.1</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.11</td> <td>0.99</td> <td>0.19</td> <td>0.19</td> <td>0.00</td> <td>0.57</td> <td>100.0</td>	0.0		14.4			0.33	44.5	0.0			0.0	9.1	0.0	0.0	0.0	0.11	0.99	0.19	0.19	0.00	0.57	100.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Serpentine 0.0 10.3		10.3			0.02	0.0	30.2			24.5	0.0	0.0	0.0	0.0	0.09	0.97	0.14	0.14	0.00	1.48	100.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0.0		17.0			0.26	0.0	23.5			31.2	0.0	0.0	0.0	0.0	0.08	0.57	0.10	0.10	0.0	1,41	100.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Serpentine 0.0 3.4		3.4			0.0	0.0	16.1			59.5	0.0	0.0	0.0	0.0	0.0 202	0.46	0.10	0. JU	0.0	0.63	0.001
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0		2.2			0.04	0.0	11.8			56.8	0.0	0.0	0.0	0.0	0.05	0.33	0.08	80.0	0.00	0.72	100.0
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			4.5			0.48	0.0	9.5			53.8	0.0	0.9	0.0	0.0	0.16	0.00	0.09	0.09	0.00	0.34	100.0
68 00 19.8 00 0.0 19.8 00 0.0 10.3 0.0 0.0 10.3 0.0<																							
30.5 0.0 10.3 0.0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Nontronite 0.0 31.4		31.4			2.38	6.8	0.0			0.0	12.2	2.3	0.0	0.0	0.10	0.00	0.46	0.46	0.06	0.19	100.0
38.8 0.0 9.6 0.0 0.0 15.5 0.0 0.0 15.5 0.0 0.0 15.5 0.0 0.0 0.5 1 0.0<	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			15.3				30.5	0.0			0.0	0.0	1.6	0.0	0.0	0.37	0.00	0.40	0.40	0.01	0.21	100.0
38.0 0.0 16.5 0.0 0.1 0.0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8.5		16.0				38.8	0.0			0.0	0.0	0.7	0.0	0.0	0.45	0.00	0.33	0.33	0.00	0.19	100.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0.0		21.1				38.0	0.0			0.0	5.1	0.1	0.0	0.0	0.55	0.00	0.25	0.25	0.00	0.89	100.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			7.0	1			0.0	17.8			47.9	0.0	3.3	0.0	0.0	0.36	0.00	0.12	0,12	0.00	0.41	100.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0		8.6			0.95	0.0	16.9			44.1	0.0	7.0	0.0	0.0	0.29	0.00	0.23	0.23	0.00	0.37	100.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$:				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	138 3.8 0.0 0.0 0.0 5.2 0.0 13.2 0.00 0.11 0.11 0.11 0.11 0.12 0.16 0.16 0.12 0.16 0.12 0.16 0.12 0.16 0.12 0.16 0.12 0.16 0.12 0.16 0.12 0.16<	33.9		31.4			2.98	3.8	0.0			1.1	0.0	1.2	0.0	0.0	0.13	0.00	0.40	0.40	90'0 0'00	0.09	100.0
16.2 0.0 6.6 0.0 </td <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>Kaolinite 19.5 32.0</td> <td></td> <td>32.0</td> <td>- 1</td> <td></td> <td></td> <td>3.8</td> <td>0.0</td> <td></td> <td></td> <td>5.2</td> <td>0.0</td> <td>13.2</td> <td>0.0</td> <td>0.0</td> <td>80.0</td> <td>0.00</td> <td>0.1/</td> <td>0.17</td> <td>0.02</td> <td>0.16</td> <td>100.0</td>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Kaolinite 19.5 32.0		32.0	- 1			3.8	0.0			5.2	0.0	13.2	0.0	0.0	80.0	0.00	0.1/	0.17	0.02	0.16	100.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			22.2				16.2	0.0			0.0	0.0	7.9	0.0	0.0	0.35	0.00	0.20	0.20	0.02	0.67	100.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			34.6				30.5	0.0			0.0	0.0	0.0	0.0	0.0	0.42	0.07	0.16	0.16	0.00	0.30	100.0
6.5 0.0 1.7 0.0 <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>Nontronite 6.2 18.0</td> <td></td> <td>18.0</td> <td></td> <td></td> <td></td> <td>38.1</td> <td>0.0</td> <td></td> <td></td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.36</td> <td>0.29</td> <td>0.24</td> <td>0.24</td> <td>0.00</td> <td>2.29</td> <td>100.0</td>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Nontronite 6.2 18.0		18.0				38.1	0.0			0.0	0.0	0.0	0.0	0.0	0.36	0.29	0.24	0.24	0.00	2.29	100.0
31.7 0.0 6.4 0.0 <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>3.3</td> <td></td> <td>80.1</td> <td></td> <td></td> <td></td> <td>6.5</td> <td>0.0</td> <td></td> <td></td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.08</td> <td>0.05</td> <td>0.08</td> <td>0.08</td> <td>0.00</td> <td>0.34</td> <td>100.0</td>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3.3		80.1				6.5	0.0			0.0	0.0	0.0	0.0	0.0	0.08	0.05	0.08	0.08	0.00	0.34	100.0
26.0 0.0 5.4 0.0 0.0 0.0 0.0 0.0 0.12 38.2 0.0 14.8 0.0 1.9 0.0 0.0 0.0 0.21 0.0 28.2 9.4 0.0 26.1 0.0 0.0 0.0 0.0 0.21 0.0 28.3 6.1 0.0 26.1 0.0 0.0 0.0 0.24 0.0 21.8 5.5 0.0 50.4 0.0 0.0 0.1 0.0 0.14 0.0 11.8 5.5 0.0 50.4 0.0 0.1 0.1 0.1 0.14 0.0 15.8 5.7 0.0 45.3 0.0 1.1 0.0 0.14 0.0 15.8 5.7 0.0 45.3 0.0 1.1 0.0 0.14	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10.2		8.7				31.7	0.0			0.0	0.0	0.0	0.0	0.0	0.21	0.26	0.28	0.28	0.00	0.87	100.0
38.2 0.0 14.8 0.0 1.9 0.0 0.0 0.0 0.0 0.0 0.1 </td <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td>0.01</td> <td></td> <td>25</td> <td></td> <td></td> <td></td> <td>26.0</td> <td>0.0</td> <td></td> <td></td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.12</td> <td>0.39</td> <td>0.41</td> <td>0.41</td> <td>0.00</td> <td>0.41</td> <td>100.0</td>	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.01		25				26.0	0.0			0.0	0.0	0.0	0.0	0.0	0.12	0.39	0.41	0.41	0.00	0.41	100.0
0.0 28.2 9.4 0.0 26.1 0.0 0.2 0.0 0.0 0.43 0.0 23.4 6.1 0.0 33.6 0.0 1.0 0.0 0.0 0.27 0.0 11.8 5.5 0.0 50.4 0.0 0.0 0.0 0.14 0.0 11.8 5.7 0.0 45.3 0.0 1.1 0.0 0.14 0.0 15.8 5.7 0.0 45.3 0.0 1.1 0.0 0.17	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	00		24.0				38.2	0,0			1.9	0.0	0.0	0.0	0.0	0.21	0.35	0.22	0.22	0.0	0.41	100.0
0.0 23.4 6.1 0.0 33.6 0.0 1.0 0.0 0.0 0.27 0.0 11.8 5.5 0.0 50.4 0.0 0.9 0.0 0.14 0.0 15.8 5.7 0.0 45.3 0.0 1.1 0.0 0.14 0.0 15.8 5.7 0.0 45.3 0.0 1.1 0.0 0.17 0.0 15.8 5.7 0.0 45.3 0.0 1.1 0.0 0.17	1.51 0.0 23.4 6.1 0.0 33.6 0.0 1.0 0.0 0.27 0.00 0.11 0.11 0.00 0.60 0.97 0.0 11.8 5.5 0.0 50.4 0.0 0.9 0.0 0.14 0.07 0.07 0.00 0.31 125 0.0 15.8 5.7 0.0 45.3 0.0 1.1 0.0 0.31 0.71 0.0 7.5 5.7 0.0 62.9 0.0 0.0 0.17 0.00 0.09 0.34 0.71 0.0 7.5 5.7 0.0 62.9 0.0 1.0 0.0 0.34	0.0		15.7	1			0.0	28.2			26.1	0.0	0.2	0.0	0.0	0.43	0.00	0.16	0.16	0,0	0.71	100.0
0.0 11.8 5.5 0.0 50.4 0.0 0.9 0.0 0.0 0.14 0.0 15.8 5.7 0.0 45.3 0.0 1.1 0.0 0.17 0.0 15.8 5.7 0.0 45.3 0.0 1.1 0.0 0.17	0.97 0.0 11.8 5.5 0.0 50.4 0.0 0.9 0.0 0.14 0.00 0.07 0.00 0.31 1.25 0.0 15.8 5.7 0.0 45.3 0.0 1.1 0.0 0.17 0.00 0.34 0.71 0.0 7.5 5.7 0.0 62.9 0.0 1.0 0.0 0.34 0.71 0.0 7.5 5.7 0.0 62.9 0.0 1.0 0.09 0.09 0.00 0.34	00		20.8				0.0	23.4			33.6	0.0	1.0	0.0	0.0	0.27	0.00	0.11	0.11	0.00	0.60	100.0
0.0 15.8 5.7 0.0 45.3 0.0 1.1 0.0 0.0 0.17	1.25 0.0 15.8 5.7 0.0 45.3 0.0 1.1 0.0 0.17 0.00 0.09 0.00 0.34 0.71 0.0 7.5 5.7 0.0 62.9 0.0 1.0 0.0 0.09 0.00 0.34			17.4				0.0	11.8			50.4	0.0	0.9	0.0	0.0	0.14	0.00	0.07	0.07	0.00	0.31	100.0
	0.71 0.0 7.5 5.7 0.0 62.9 0.0 1.0 0.0 0.0 0.09 0.09 0.08 0.08 0.00 0.23	0.0		16.8				0.0	15.8			15.3	0.0	1.1	0.0	0.0	0.17	0.00	0.09	0.09	00.0	0.34	100.0
0.0 7.5 5.7 0.0 62.9 0.0 1.0 0.0 0.0 0.0				114				00	7.5			52.9	0.0	1.0	0.0	0.0	0.09	0.00	0.08	0.08	0.00	0.23	100.0

e li ser

1 / 1 / 1	100.0	100,0	100,0	100.0	100.0	100.0	100.0 100.0		100.0		1000	100.0	100.0	100.0	100.0		1000		1000 1000			1000		0.000			1000	100.0	100.0	100.0		0 00+	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	0.001	0.001		100.0			100.0		100.0
	0,17	0.0	0.13	0.61	0.34	1,20	0.40		030	0.47	6 CF C	0.05	1.08	0.05	180		60.0	1000	0.50			0.13	2	500		0 13	200	02.0	0,21	0.21		4		0.08	0,17	1.94	0.54	2.20	0.58	1.53	0.00	0.01	6C V	0750	0.23	70.0	670	0.79	100	0 140
	0.07	0.02	0.00	000	0.0	n'n	80		0.03	800	500	000	000		000		800	800	88	88	3 8	88	2	000	800	800		500	800	0.01		000	500	0.0	0.01	0.0	0.00	8	0.00	8.0	000	0.00	20.0	10.0	0.03	20.0	500	000	8	
	0,28	0.20	0.05	0.17	0.10	0.00	0.05 0.07		0.18		8.6		010	200	5 8		8 8	200	0.01		5	200	-	ti C	18.0	0.03 0.16	200	800	0.08	0.09	•	020	010 0	0.07	0.08	0.16	0.34	0,12	0.16	0,12	010	01.0	97 U	01.0	0.39	0.54	110	0.12		
	0.28	0.20	0.05	0.17	0,10 0,20	an'n	0.05		0 18	2 800	000 000	100	010				38	0.03	50	500	0.00	2 6	-		Sa C	0.0 14	200	800	0.08	0.09		0.00	0,00	0.07	0.08	0.16	0.34	0.12	0,16	0.12	0.10	01.0	9¥ 0	040	0.39	0.72		0.12		
	0,00	0.00	0.00	0.00	0.0	0.01	00.0		000	800	800	800	0.43		22.0	64.0	800	000	88	200	8.0	000			800	0.00	800	000	000	0.00		000	8 8	000	00'0	0.43	0.88	0.29	0.44	0 40	0.00	0.00	02.0	000	000	200	111	0.00		
	0,16	0.02	0.22	0.44	0.24	0.32	0.16 0.21		20.0	5 1	0.65	2.0 110	0.41				0.10			200	17.0	0.05			0.14	27.0	5 C	0.14	0.07	0.04		£* C	000	0,29	0.33	0.16	0.21	0.39	0.21	0.20	95.0	0.22		0.10	631	74'n	VE U	0.30		
	0.0	0.0	0.0	0,0	0.0	0.0	0.0		00							50					0,0		5	4	000				0.0	0.0	•	00	0.0	00	0.0	0.0	0.0	0.0	0.0	0.0	0,0	0.0	0	0.0	0.0	0.0		000) i	
	0.0	0.0	0.0	00	0.0	0.0	0.0		0			o c	6.0			0.0	0.0	0.0		5	50		222		000		000		000	0.0		6	0.0	0.0	3.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Ċ	0.0	0.0	000			2	*
	0.3	1.5	17.9	0.2	0.0	L'D	9,0 9,5		5 7	o.*⊊	1.61	0, r. - C	00	2 H 5 C	n, c 0 c	0.0	0.0 •	0, 0	ט מ ס פ	0 • 5 c	4 1		4		4.8	200	0.02	7 F	- 2 2 8	6.7	i	e c	n 1	32.4	0.0	0.0	0.0	0'0	0,0	0,0	0.0	0.0	à	+ 0	1.2	4 4		2 F	2	
	4.1	0.0	1.5 2	3.8	1.5	16.1	0.0		000	0.0 5	227	57.5				n	64.2 80.5	00.0	2,20	20.00) og	0.0	4.0.4	1	0,0	0.0	0.01 2 2 C	101	21.0	0.0	1	5	000	0.5	0.0	0.0	0.0	10.9	0.7	0.0	0.0	0.0	c t	0.0	2,0	0.0		00	2	
<u>.</u>	0.0	0.0	0.0	0.0	0.0	0.0	49.9 26.9		6				000		0.0	0.0	00	n'n	5.4°E	20.1	44,1	69.Z	25	1	0.0		0.0		0.0	86.0		ç		0.0	0.0	0,0	0.0	0.0	0.0	24.9	18.0	29.8	6	0.0	0,0	0.0	0,0	47.8	0.14	
	0.0	0.0	0'0	0,0	0.0	0'0	0.0	2	6							0.0	0.0		0 0	0 0 0 0	0.0	0.0	o o		0,0	1.5	1.75	5, 20 A A	48.2	00	2	(0.0	0.0	0.0	0.0	0.0	0'0	0.0	00	0.0	0.0	c t	2.5	0.0	000	00		20	
	0.0	7.5	6.2	12.4	6.4	4.3	8 C 8	5	(;	50	5 C	2 0) - r (*	n c		5 I 0 I	000	200		0 (0 1	ся н	6 C 6 C	0.2		20,4	D.C	- C 0 U	D v n u	4 T.2	7.8	2	đ	00	000	0.0	0.0	8.2	7.0	10.5	ດ; ~ 1	6.7	8.7	c c	0.0	14,9	80 ; 7 (711	4 4 7 4	ņ,	•
	0,0	0.0	0'0	0.0	0.0	0.0	12.7 20.2		6	200				3 0 5 0	50	0.0	0.0	0.0	2, C 5, C	N. 6	5.71	10,8 2 4	2		4 1 7 7		4 7	0,4-1 14,0	0.6	55	2.2	t c	0.0	00	14.9	18,1	26.2	20.7	25.0	21.7	23.3	14,3	ŝ	0.0	0.0	0.0	0.0	0.0 4 4 6 4	201	
	3.5	2.3	15.0	33.5	24.2	31.0	0.0	2	6	0.0	8,21	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.5	7.05	R.07	8'A'X	0.0	P, 4	0.0	5	0.0	0.0	20		00	0.0	0,0	0.0	0.0	00	5	(2.5	10.2 10.2	0.0	00	0'0	0.0	0.0	0.0	0.0	0.0	*	4./	21.5	36.7	0'67	3 6	2	
	0.83	1.34	1.27	1.76	1,41	1.55	0.61 1 13	2		45.5	2.10	0.03		70, 1	181	1.18	0.35	U,46	0.87	000 100	1.18	0.95	00'0		3.57	4.79	2.02	4 CO 4	0.15	1 12	1	į	1.91	0.63 0.63	1 0.8	1.00	0.20	0,86	0,78	0.39	104	0.91	4	2.39	1.81	91	Ro L	10.0	0.00	
	60.0	41.3	20.1	19.0	17.1	6.4	9.3 17 7		r G	201	ກ ~ ເ	N 4 N 4	12.1	19.7	13,3	11,9	- c N 6	2.2	ត្ ភូមិ	5.5	6.5	- n - 1	4.7		34,9	20.8	0 - 0 -	9.9	7.5	8.0	2	ļ	47,6	44.6 26.6	28.0	23.3	30.0	16.5	24,9	20.8	16.3	15.4	1	38.7	26.5	29.3	20.3	10,0	0.51	
	13,1	35.9	37.6	28.0	48.4	38,9	22.5 34 3	4		2.5	36.4	7.07	51.0	7.0.7	44,1	44.7	2'2	9.7	0.0	0.0	0.0	5 C	0.0		21.7	27.2	0.0	000		ÅŔ	D, T		20.7	31,6 40.0	48.0	46.6	27.6	40.9	36.6	21.8	6,56	30,7		33.4	25.7	16.9	35.1	1°0 1 # #	0.1	
	17.2	9.7	0.0	0,0	0,0	0.0	0 0 0 0	5	•	4,9	0,0	0.0		0.0	0	0.0	0.0	0.0	0,0	0.0	0.0	0.0	0.0		6.7	6.4	0.0	0.0	0,0		0		18,5	12.8	4.6	, e ,	5,4	0.0	0.0	0,0	00	0'0		16.2	0,0	بي د 1	0.9	0.0	U,U	
OTH	Kaolinite	Nontronite	Nontronite	Nontronite	Nontronite	Nontronite	Serpentine	auniariac		Nontronite	Nontronite	Nontronite	Nontronite	Nontronite	Nontronite	Nontronite	Nontronite	Nontronite	Serpentine	Serpentine	Serpentine	Serpentine	Serpentine		Talc	Talc	Talc	Talc	Talc	Camandina	annnadrae		Kaolinite	Kaolinite Vacinite	Sanonita	Saponile	Saponite	Saponite	Saponite	Serpentine	Serpentine	Serpentine		Kaolínite	Nontronite	Nontronite	Nontronite	Serpentine	Serpentine	
Ē	-				~																	8			÷	2	(r) -	œ !	₽:	1			-	(7) W										-		ഹ				
	ARC0776 37749	37750	37751	37755	37756	37758	37760	10110	ARC0774	37693	37694	37695	3/696	37697	37700	37703	37704	37706	37709	37712	37715	37719	37720	ARC0786	37969	37970	37971	37974	37978	17004	71.80°	ARC0782	37888	37890 37890	01000 37804	37896	37898	37900	37903	37904	37906	37909	ARC0783	37910	37913	37914	37915	37916	3/918	

-

10101	0.001		1000	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0		100.0	100.0	100.0	100.0	100.0	100.0	100.0		100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100,0	100.0	100.0	100.0
	0.47	i c	240	0.18	0.11	0.11	0.67	0.98	96.0	0.22	0.48	0.41	0.15	0,46	0.13	0.12	0,15	0.20	0.21	0.11		0.08	0.16	0.29	0.27	0.19	0.18	0,17		0.32	0.07	0.03	0.05	0.13	0,11	0.94	0.72	0.33	0.63	0.39	0.39
	60 Q		000	0.00	000	0.00	000	000	000	000	0.00	0.00	0.00	00'0	0.00	0.00	0,00	0.01	0,00	00'0		0.02	0.02	0.01	0.02	0.01	0.01	0.00		0,09	0.07	0.03	0.05	0.05	0.03	0,00	0,04	00'0	0,02	0.00	0.00
	4 C	24.00		0.19	0.24	0.03	0.02	0.03	00'0	00'0	0.01	0.01	0.00	0'03	0,00	0.00	0,00	0.01	00.0	00'0		0.14	0,12	0.12	0,13	0.07	0.08	0.07		0.35	0.40	0.36	0.37	0.34	0.23	0.14	0.14	0,10	0.33	0.05	0.04
	4		200 210	0.19	0.24	0.03	0.02	0.03	0,00	0.00	0.01	0.01	0.0	0.03	0,00	0.00	0.00	0.01	0.00	0.00		0,14	0.12	0.12	0.13	0.07	0.08	0.07		0.35	0.40	0.36	0.37	0.34	0.23	0,14	0,14	0.10	0.33	0.05	0.04
	000	800	800	0.18	0.50	0.15	0.24	0.36	030	0.06	0.25	0.16	0.01	0.00	0.00	00.0	0.00	00'0	0.00	0.00		00'0	00'0	00.0	0.00	0,00	0.00	80		0.00	0000	0.00	0.0	0.0	0.00	00'0	0.00	0.00	0.0	0.00	0.0
	4C 0	14	2.5	0.38	0.12	0.20	0.14	0.11	0.08	0.11	0,05	0.05	0.08	0,18	0.07	0.08	0.07	0.11	0.08	0.05		1,40	7.31	0.12	0.28	0.04	0.02	0.03		0.16	0.12	0.06	0.06	0.10	0.09	0.02	0.11	0.10	0.11	0.09	0.12
	00		200	0.0	17	0.0	0.0	0.0	0,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0,0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0'0	0.0	0.0	00	0.0	0.0	0.0	0.0	0,0	0.0
	00			0.0	00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	00		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0,0	0'0	0.0
	r + +			00		00	0.0	0.0	0.0	0.0	0.0	0.0	0'0	0.0	0.6	0.8	0,1	0.1	0.4	0,9		24.1	22.6	0,4	1.5	6,3	8,7	9'6		0.1	0.5	0.8	0,5	0'0	0.0	0.4	2.2	30.4	11.9	1.7	13.6
	c			0.0		, 01 	5.0	5	5.7	28.7	10.5	19.8	11,1	28.5	75.4	76.8	13.6	18.9	61.4	74.8		18,8	0,0	0.0	0.0	27.7	24.1	23.9		2.5	0,5	0.8	1.0	2.2	2.6	0.0	2.5	3.4	7.8	23.0	00
	00			0.0		00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0,0	0.0	0'0	0,0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0'0	0'0	0.0	0.0	0'0	0.0	0.0	ANG
	00			000		00	0.0	00	00	0.0	0.0	0.0	0.0	0.0	0'0	0,0	0.0	0.0	0.0	0.0		0.0	32.1	63.7	62.7	44.0	49,4	47.7		0.0	0.0	0.0	0.0	0.0	0'0	0.0	0.0	0,0	0.0	0'0	00
	6 10 17	202	n Ç	999	5	22	0.5	0.6	0.0	0.0	0.0	0.2	0.0	1,1	0 م	0.0	0.0	0.1	1,2	0.2		0.0	7,3	9.1	9.6	61	6.9	6.3		0.0	0.0	0.0	0.0	0.0	0,0	8.6	11.3	8,5	21.3	4.7	- V
	0						00		0.0	00	0.0	0,0	0.0	0.0	0.0	0,0	0.0	0.0	0.0	0.0		0.0	10.3	12.5	4 G	8.3	3.0	4.8		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0,0	0.0	0.0	A A
	5 0 7	2	4 F	- 10	171	22.4	22.0	25.2	6.6	3.4	14.7	12.0	6.6	15.1	5,5	3.1	8.2	11.4	7.1	4.7		8.0	0,0	0.0	0.0	0.0	0.0	0.0		3.0	0,4	0.7	1.3	2.9	4,0	9.2	14.7	15.0	16.0	9.9	00
	50			2017 1 57	590	218	1.28	67	1.69	1 23	1.00	0.60	0.58	0.97	0.35	0,35	0.72	0.85	0.47	0.35		1,60	1.33	0.60	0.60	0,36	0.24	0.24		2.12	1.18	0.53	0.26	0.40	0.58	1.09	1.18	1,14	1.21	0,70	500
	676	2.1.2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 4 4 4 4 4	57 D	2 a	08	, - -	11.9	6	9.8	9.1	5,1	13.4	3.3	3.9	6.4	06	4	4.8		3,3	6.0	10.3	10.0	6,9	7,3	7,0		43.5	58.1	45.0	50.1	58.6	63.8	34.1	18.3	10.5	11,5	10.2	0.6*
	ł		5	1 2 2		200	643	455	72.B	57.2	63.2	57.6	76,4	40.2	14.7	14.8	70.6	59.3	25.0	14.2		36.7	12.7	2.8	5.4	0,0	0.0	0.0		32.8	13.0	23,0	17.7	11.9	12.4	42.1	48.7	30.5	29.0	49.2	
	č	‡ 4 ⊃ 1	57	- 	- 0 a F	6'01	000			00	0.0	0,0	0.0	0.0	0.0	00	00	00	0.0	0.0	ì	85	0.0	00	0.0	0,0	0.0	0.0		14.7	25.1	28.4	28.1	23.0	16,0	3.3	0.0	0,0	0.0	0.0	0.0
Unit			Nontronito	Nontronite	Nontronite	Nontronite	Nontrollo	Nontrollo	Nontronito	Nontronite	Nontronite	Nontronite	Nontronite	Nontronite	Nontronito	Nontronite	Nontronlte	Nontronita	Nontranita	Nontronite		Kaolinite	Talc	Talc	Talc	Talc	Talc	Talc		Kaolinite	Kaolinite	Kaolinite	Kaolinite	Kaolinite	Kaolinite	Nontronite	Nontronite	Nontronite	Nontronite	Nontronite	
E		- 1	NO	0 -	t u	•		n ⊊	2 =	Ę.	4	17	6	22	23	24	22	28	30	89	3		~	- 4	-	æ	10	12		-	7	ŝ	7	10	=	12	15	16			l
	ARC0780	C79/5	3/8/5	27875	07010	00010	37833	20010	17836	37838	37839	37842	37844	37847	37848	97849	37850	37853	37855	37858		ARC1283 94529	94530	94532	94536	94537	94539	94541	APC0793	39374	39375	39378	39380	39383	39385	39386	39389	39390	39391	39394	50000

I																																				
Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0		100.0	100.0	100.0	100.0	100.0	100,0	100.0	100.0		100.0	100.0	0.001		100.0	100.0		100,0	100.0	100.0	100.0	100.0	80	100.0		100.0
Inner	0.10 0.12	0.17	0.27	0.37	0.32	1.95	0.70	0.37	0.27	0.44	0.20	0.15	0.14	010	0.12	60.0	0.24	0,14	0.09		0.17	0.13	0.10 0.10	72.0	0.18	0.20		0.16	0.19	0.91	0.80	1.21	2.32	2,32	2 - X	0.11
Apaulo	0,08 0,08	0.02	0.00	0.00	0.00	0.00	0.00	000	0.01	0.00	80	00'0	80	900	0.02	0.02	0,03	0.01	0,03		0.12	0,02	2010	20.0	0.01	0.02		0.06	0,02	0.0	0.01	0,00	0.01	0.0	300	000
Rullia	0,45 0,29	60 0	0.01	0.00	0.00	0.00	0.01	0.04	0.07	0.02	800	00'0	000	0.38	0.14	0.12	0.19	0.15	0,18		0.74	90.0 1	/0'n	200	900	0.07		0.49	0.21	0.28	0.43	0.44	0.49	0.46	0.00	0.49
ciliate	0.45 0.29	0.09	0.01	0.00	0,00	0.00	0.01	0,04	0.07	0.02	50 O	0.00	0.00	0.38	0.14	0.12	0,19	0.15	0.18		0.74	90'0	70.0	20.0 200	90.0	0.07		0.49	0,21	0,28	0,43	0,44	0,49	0.46	50'0	0,49
Mulling	00'0 00'0	00 0	0.04	0.00	0.01	0.15	0.19	0.13	000	0.0	38	00'0	00'0	000	00,0	0.00	0.0	0.00	0.00		0.00	80	33	88	0000	00'0		0.00	000	0.0	000	000	000	0.73	0.43	0.25
ntillpeepd	0.13 0.07	0.02	0.08	0.10	0.08	0.05	0.05	0.05	0,17	0.13	0.16	0.05	0.06	134	0.89	0.28	0.31	0.09	0,12		0.11	0.03	10.0	88	0.04	0.05		0.16	0.43	14.61	1.25	1.00	1.02	0.33	0,24	0.14
amennio	000	0.0	0'0	0.0	0.0	0.0	0'0	0.0	0.0	0.0		000	0.0	00	0.0	0.0	00	0.0	0.0		0.0	00	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Calcite	0.0	00	0,0	0.0	0.0	0.0	0.0	0	0.0	0.0	0.0	00	0,0	00	00	00	1. T	0.0	0'0		0.0	0.0	0,0	ð c	0.0	0.0		12.2	1,4	0.1	0,0	0.0	0,0	0.0	0.0	0.0
notomite	0.0	0.6	0'0	1.0	0,0	0'0	0'0	0,0	6,1	0.3	80	040	Ę,	10	26.4	313	52	10.2	5.6		5.5	23.5	0,4	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	14.5	5.2		14.7	43.1	31,4	4,0	3.5	0.7	000	0,0	0,0
magnesue	0.9	0.0	0.8	1.4	1,55	3.2	9.8	1.3	57.2	70,6	(4.3 85.3	37.3	57.0	00	0.0	00	0'0	0,0	0.0		0.0	16.5	34.2	2.71	213	30.9		0.0	0.0	0.0	2.9	0.0	0.0	80 57 F	10,8	0'0
aunuariae	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	00	0.0	0.0	00	00		00	0.0	0'0		0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0,0	0.0	0.0	0.0	0.0	0.0	0.0
laic	0.0	00	0.0	0.0	0,0	0.0	0.0	0'0	0.0	0,0	0.0	0.0	0'0	10.4	33.6	29.6	0.0	49.5	6,6		12.3	47.1	44.8	54.0	44.7	41.3		0.0	0.0	0.0	0.0	0.0	00	0.0	0.0	00
CUIONIE	0.0	2.7	1.3	0.0	0.2	0.0	0,2	2.2	9,6	1.7	2.2	50	0.5	1 11	2.2	. 4	0.0	5.8	5,1		18.4	5,4	6.0	ເ ເ	9 69 0 40	5.0		0.0	0.0	0.0	27.1	18.6	19.3	2.2	0.3	14.5
Saponite	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0'0	0.0	0,0	000	0.0	5 7 3	13.5 2	14.5	24.3	15.8	21.2		0.8	1.1	() ()	6.7	- e	9.2		0.0	0.0	0,0	0.0	0.0	00	00	0,0	32.2
Nonuon	0.4 3.6	53	12.6	8.7	8.2	5,9	13.9	13.5	13.6	0,1 ,	11.7	40	3.9	0			0.0	0.0	0.0		0.0	0.0	0,0	0.0	000	0.0		5.1	14.1	12.2	45.7	41.2	52.8	51.8 5 1.8	32.1	0.0
	1.60	1.95	56	1.47	0.96	1.27	0.48	0.67	0.69	0.70	0.58	0.48	0.35	86 6	1 89	1 40	6.95	7.61	6.20		1.42	0.24	0.36	0.87	0.48	0.73		4.20	2.14	2.32	2.48	3.05	2.90	1.86	17.7	1.67
Fe-oxides	67.0 59.0	34.0	13.7	11,9	11.2	20.9	10.0	11.9	8,0	7.3	ຕ. ເ	5	4.6	v a	787		r on S of	6.9	6.9		45.8	5.9	0'0	6,6 ₽	5.0	7.2		8,5	4.6	8.2	3.6					15.2
	5,4 15,7	50.3	69.7	75,1	77.5	66.6	64.6	59.8	15.5	8.9	C. 1	52.3	32.1		11 7		44.6	3.7	44,4		8.5	0,0	0.0	0.0		0.0		40.5	26.6	19.0	11.5	16.3	6.3	4.3	11.5	23.9
Kaolinite Opal/Qtz	23.4 17 3	2.87	0.0	0.0	0,0	0.0	0.0	0'0	0,0	0.0	0.0		0.0	۳ ۵	- <i>4</i>		2.0	5	1,3		5.5	0.0	0.0	0.0	2 2	0.0		13.3	7.1	10.6	0.0	4.9	6.6	19,8	24.6	11.1
Regaltih Unit	Kaolininte Kaolininte	Montronite	Nontronite	Nontronite	Vontronite	t 1			Talo	Talc	Talc		Talc	Talc	Talc	Talc	Tair Tair	Talc		Kaolinite	Kaolinite	Kaolinite	Nontronite	Nontronite	Nontronite	Nontranite	Nontronite	Talc								
Depth (III)	u									_			333		- ~	40	טי מ	r 10	6		-	7	4	B (2 \$	9			~			ŝ				16
Hole ID D	ARC0791 39316 39335	30323	39324	39325	39328	39329	39334	36336	39337	39339	39341	24080	39351	ARC0607	20062		00000	32101	32104	ARC0606	32079	32080	32083	32087	32003	32095	ARC0231	3908	3909	3910	3911	3912	3916	3919	3923	3924

Total					•			4 100.0		·								100.0						1	1	-						4 100.0	-
	5	Ś	2 2	0	0	0.7	₹ 0	0,44	ő	0	0,21	÷.	0		0.0	1.2	0.5	1.16	0	0	0.6	0,31		0.0	0.1	0.1	00	00	0.3	, 0	1, A	0.64	0.7
	10.0		3	0.00	8	0.0	0.00	0.00	00'0	0.00	0.00	000	0.00		0.01	000	0.00	00,0	0.0	0.00	0.00	0.0		0.05	0.06	0,04	00'0	0.00	0.00	0.00	0,0	0.00	0,00
	20.0	500	5	100	0.02	0.0	0.0	0.01	0.0	0.00	0.00	0.0	0.00		0.13	0.03	0,08	0.12	0.10	0.10	0.12	0.13		0.55	0.48	0.23	0,08	0.25	0.33	0.29	0,15	0.15	0.15
	0.07	i c	10,0	0.01	0.02	0.00	0.00	0.01	0.0	0.00	0.0	00.0	0.00		0.13	0.09	0.08	0.12	0.10	0.10	0.12	0.13		0.55	0.48	0.23	0.08	0.25	0.33	0.29	0.15	0.15	0.15
	000	300	0.0	0.02	0.05	0.39	0.35	0.22	0.10	0.08	0.05	0.0	0.00		00.0	0.00	000	0,41	0,38	0.76	0.30	0.10		0.00	00.00	0.00	0.00	0.11	0.15	0,33	0.73	0.63	0.00
ottineena	210	5	2	0,11	0.19	0.05	0,05	0.05	0.03	0.05	0.05	0,09	0.05		1.89	0.89	0.23	0.48	0.26	0,33	0,60	0.59		0.29	0,17	0.24	0.28	0.47	0.24	0.28	0.25	0.20	0.51
	0			0.0	0,0	0.0	0.0	0.0	0'0	0.0	0.0	0.0	0.0		0.0	0.0	0,0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0'0	0.0	0,0	0.0	0.0	0.0	0.0	00
	0		0.0	0'0	00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		7.9	0,0	0.0	0.0	0.0	0.0	0.0	0.0		0,0	0.0	0'0	0.0	0.0	0.0	0'0	0.0	0.0	0.0
	350	0.00	9 i 4	0.0	0,0	0,0	0.0	0.0	0,0	0.0	0.0	0.7	0.5		46.7	4,6	0,8	0,0	0.0	0'0	0'0	0.0		0.3	0,6	6.5	0,2	0'0	0.0	0'0	0,0	0.0	0.1
aveolifam	000	50	2.0	14.0	14.2	9.6	5.6	14.9	14.0	5.7	7,0	42.1	77.4		0.0	10.1	21.3	0.0	0.0	0.0	0.0	0,0		0.0	0.6	1,8	0.0	0.0	0.0	0.0	29.0	11.7	23.0
aumaduac	Ċ		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0,0	0.0		0.0	0'0	0.0	0'0	13.3	17.8	17.5	15.5		0.7	0'0	0.0	0.0	0.0	0.0	0,0	0'0	0'0	0.0
	Ċ		0.0	0.0	0,0	00	0.0	0,0	0.0	0.0	0,0	0.0	0.0		0.0	0.0	0.0	0'0	0.0	0.0	0'0	0.0		0'0	0'0	0.0	0'0	0'0	0'0	0.0	0'0	0'0	0.0
CHIMIE	ti C	5	n, i	0.7	0.7	0.0	0.0	0.0	0'0	0.0	0.0	00	0'0		0.0	4.5	4.0	0.0	3,4	3.0	5.2	5.8		0'0	0'0	0.0	3,9	8.7	12.6	17.5	7.9	9.0	9.6
nutiondec	å	200	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0'0	0.0	0.0	0.0		8.4	18.8	23.5	42.5	38.4	38,8	41.0	37.2		0.0	0'0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0'0
	ŭ	0.0	9.6	B.4	16.3	5,9	2.2	10.8	3.8	0.0	0.0	3,6	0.5		0,0	0'0	0.0	0.0	0,0	0'0	0.0	0.0		2.7	5.2	12.1	19,7	45.0	32.4	46,8	45.8	38,2	36.7
11116	ţ	<u> </u>	0.47	0.56	1.27	1.16	1.11	0.79	0.69	0.73	1,05	0.70	0.23		2.05	1.70	1.40	2.03	1,46	0.75	1.34	1.57		1.05	1.19	1.09	1.29	2.82	1.69	1,90	0.54	0.86	1.57
sanwo-a	c c	ות יי	1.1	9.4	8.5	17.1	11.7	16.5	9,0	8,1	10.5	4.3	3.7		5,5	16.7	10.8	17.9	19.2	20.7	20.2	20.3		47.3	49.0	60,4	19.1	20,9	36.3	24.3	7.7	7.3	10.3
	1	19.0	18.9	66.5	58.2	65,1	78.6	56.2	72.2	85.3	81.1	48.4	17.5		23.0	41.2	37.3	32.2	22.9	16.9	13.0	18.3		3.7	0.1	3,4	51.8	14.5	4.2	4,9	5,3	31,2	17.2
Kaolinko	t t	7 F	0.0	0.0	0.0	0.0	0,0	0.0	0,0	0.0	0.0	0.0	0.0		6.4	0'0	0.0	3.1	0'0	0'0	0'0	0.0		42.8	42.0	13,8	3,6	7,0	11.4	2.1	0.0	0.0	0.0
Lunit	:	Nontronite	Nontronito	Nontronito	Nontronite		Saponite	Saponite	Saponito	Saponite	Serpentine	Serpentine	Serpentine	Serpentine		Pres. Serp.	Kaolinite	Kaolinite	Nontronite	Nontronite	Nontranite	Nontranite	Nontronite	Nontronite	Nontronite								
neptu (m)			n	ŝ	9	0	0	13	15	16	18	19	20		-	~ ~~	c)	5	6	10	13	1		•	4	s	-	æ	12	13	15	16	6
Hole ID	ARC0789	39268	39270	39272	39273	39276	39277	39280	39282	39283	39285	39286	39287	ARC0126	106258	106259	106260	106262	106266	106267	106270	106274	ARC012B	106294	106297	106299	106300	106301	106305	106306	106308	106309	106312

APPENDIX 7: BULK AND PARTICLE DENSITY MEASUREMENTS, MM3.

Introduction

The bulk density and particle density of fragments and nodules of serpentinized cumulate from the serpentine unit of selected RC drill holes at MM3 were determined to provide a measure of the porosity of the weathered (*i.e.*, serpentinized) cumulate. At least eight, representative fragments or nodules of cumulate were handpicked from each bulk, one meter composite RC drill sample collected from the sample farm at MM3. Two each were used for the measurement of bulk density, particle density and two for determining the moisture content correction. Remaining cumulate fragments were kept in storage for reference purposes.

Bulk density

The bulk density of cumulate fragments were determined using the clod method described by Blake and Hartge (1986a), where bulk density p_b (g/cm³) is given by the equation:

$$p_b = p_w W_{ods} / [W_{sa} - W_{spw} + W_{pa} - (W_{pa} p_w / p_p)]$$

where:

 p_w = density of water at the temperature of determination.

 W_{ods} = oven-dry weight of the sample (at 105° C).

 W_{sa} = weight of uncoated sample in air.

 W_{spw} = weight of wax coated sample in water.

 W_{pa} = weight of wax coating in air.

 p_p = density of paraffin wax, taken to be 0.91 g/cm³.

Particle density

Particle density was determined using the pycnometer method described in Blake and Hartge (1986b) where particle density, p_p (g/cm³) is given by the equation:

$$p_p = p_w (W_s - W_a)/[(W_s - W_a) - (W_{sw} - W_w)]$$

where:

 $p_w = density of water (g/cm^3)$ at the temperature of measurement.

 W_s = weight of the pycnometer and sample (corrected to oven dry weight).

 W_a = weight of the empty pycnometer.

 W_{sw} = weight of the pycnometer, sample and water.

 W_w = weight of the pycnometer (without sample) filled with water at the temperature of measurement.

Cumulate fragments and nodules were gently crushed in an agate mortar and pestle before determination of particle density, which, in most cases, were performed in duplicate.

Porosity

The porosity of the serpentinized cumulate nodules was calculated from measurements of bulk and particle densities by the method of Danielson and Sutherland (1986) from the equation:

$$S_t = (1-p_b/p_p) \times 100$$

where:

 S_t = total porosity as a percentage.

 $p_b = bulk density (g/cm^3).$

 $p_p = particle density (g/cm^3).$

Limitations of the method

The cumulate nodules, hand-picked from each composite sample were small, generally about 1-2 g in weight, but were mostly 0.5 to 1.0 g in weight. These fragments, therefore, may not be representative of the cumulate comprising the serpentine unit from which they derive, and may only represent those nodules and fragments robust enough to have survived the drilling and recovery process. In addition, their small size may have introduced errors in determinations of particle density and, especially, bulk density.

As a test of the methodology, measurements of bulk and particle density were conducted on samples of diamond drill core. Samples from diamond drill core CBDD5 were collected from the major regolith units identified with enough material collected to enable duplicate measurements to be performed using samples each of mass 4 to 5 g. Results for bulk and particle densities, and sample porosity are presented in Table A7.1.

The very low standard deviation for measurements of bulk and particle density indicates that good sample precision can be obtained by the methods used. Values of bulk density, particularly for regolith towards the base of the profile (saprolite and smectite clay units) are comparable to bulk densities determined by Anaconda Nickel NL for the smectite zone (SM) and saprolite zone (SA)

material. Bulk density values show a gradual increase from the bottom of the profile towards the surface where at the nontronite/kaolinite boundary a marked increase occurs. This is also indicated by a significant decrease in porosity and may indicate a partial collapse of the profile or is due to the illuviation of clay from upper portions of the profile.

Regolith	Porosity	SD	Bulk	SD	Particle	Sample
unit	(%)	N=2	density	N=2	density	depth (m)
			(g/cm ³)		(g/cm ³)	
Kaolinite	27	0.01	2.18	0.08	2.97	3.8
(FZ)*	29	0.41	2.42	0.06	3.42	6.3
	5	0.36	2.79	0.26	2.94	8.3
Smectite	33	0.34	1.95	0.03	2.91	11.5
	33	0.08	1.91	0.00	2.86	13.5
(SM)*	21	0.01	1.98	0.00	2.50	16.5
	32	0.00	1.64	0.01	2.39	18
Saprolite	38	0.02	1.63	0.03	2.63	23.3
(SA)*	38	0.08	1.76	0.05	2.84	31.5
	42	0.15	1.58	0.04	2.73	38.6
Saprock	41	0.17	1.71	0.14	2.91	42.6
(UM)*						

Table A7.1. Bulk der	sity, particle	density and poro	sity of samples from	diamond drill core CBDD5.
----------------------	----------------	------------------	----------------------	---------------------------

SD = standard deviation. N = number of samples.

* Profile logging terms used by Anaconda Nickel NL.

Porosity of serpentinized cumulate

Results for bulk density, particle density and porosity of serpentinized cumulate nodules from the serpentine unit of selected RC drill holes in MM3 are presented in Table A7.2. Values of porosity were plotted against values of the N/Ni+Al ratio for the serpentine unit of each drill hole (Fig. A7.1). The Ni/Ni+Al ratio has been used as a means of discriminating olivine cumulate (*i.e.*, ortho-, meso-, adcumulate) lithologies in fresh rock (Hill *et al.*, 1996). It has been used in this study to determine if there is a difference in porosity due to textural differences in the packing of serpentinized olivine grains preserved in the cumulate.

A general increase in porosity is shown with increasing Ni/Ni+Al values (Fig. A7.1.). The result is expected as the tightly packed, interconnecting nature of serpentinized olivine grains within adcumulates would likely result in a greater porosity than shown by orthocumulates, which consist

(depth m)	density (a/cm3)	SD	Bulk density (g/cm3)	SD	Porosity (%)	Hole I.) (depth m)	density (g/cm3)	S	density (g/cm3)	ß	Porosity %	depth m)	ranicie density (g/cm3)	SD	density (g/cm3)	SD	rorosity %
ARC0793																	
21	2.22	0.68 (N=2)	2.15	0 (N=2)	3,2												
22	2.38	0.42 (N=2)	1.7	0.21 (N=2)	28.5												
23	2.26	0.03 (N=2)	1.61	0.09 (N=2)	28.8												
24	2.41	0.16 (N=2)	1,63	0.02 (N=2)	32.5												
25	2.18	(l=1)	1.5	(I=1)	31.2												
26	2.39	(N=1)	1,56	(N=1)	34.7												
27	2.46	(I≃I)	1.88	0.16 (N=2)	23.6												
ARC0786						ARC0783						ARC0782					
12	2.52	0.10 (N=2)	2.48	0.15 (N=6)	1,5	÷	2.55	0.05 (N=-2)	2,64	1.34 (N=2)	-3.4	16	2.55	0.05 (N=2)	1.56	0.10 (N=2)	38.7
13	2.52	0.03 (N=2)	2.51	0.19 (N≊6)	0.4	12	2.65	0.00 (N=2)	1.5	0.10 (N=3)	43.3	17	2.57	0.13 (N=2)	1.85	0.26 (N=2)	28.0
14	2.61	0.00 (N=2)	2.49	0.11 (N=6)	4,6	13	2.78	0.13 (N=2)	1.53	0.12 (N=3)	45.0	18	2.52	0.25 (N=2)	1.61	0.08 (N=2)	36.1
15	2.49	0.14 (N≃2)	2.48	0.04 (N=6)	0.5	14	2.61	0.09 (N≒2)	1,48	0.07 (N=3)	43.4	19	2.29	0.25 (N=2)	1.57	0.09 (N=2)	31.3
						15	2.57	0.01 (N=2)	1.79	0.07 (N=2)	30.4	50	2.43	0.22 (N=2)	1.54	0.03 (N=2)	36.7 36.7
0110UQ V												17	¢0.7	00.12 (N=2)	R0.1	(7=N) 00.0	20.2
ARCU110	542	0 20 (N=2)	1.61	0 36 (N=2)	33.6												
2 *	246	0.26 (N=7)	5.6	0.08 (N=2)	7 14 7												
= \$		(2-N) 07-0	į	0 11 (N-2)	0 66												
2 5		(3-N) 61.0	+	(2-N) (1-0	- OC												
13	2,30	(2=N) 00.0	151	0.12 (N=2) 0.12 (N=2)	44.7												
15	2,36	0.00 (N=2)	1.79	0.38 (N=2)	24.1												
2																	
ARC1008						ARC0126											
16	2.62	0.04 (N=2)	1,59	0.08 (N=2)	39.4	o	2.51	(N=1)	•	0.19 (N=2)	59.4						
17	2.83	0.23 (N=2)	1.7	0.07 (N=4)	40.0	10	3.00	0.24 (N=2)	1.36	0.03 (N=2)	54.6						
18	2.60	0.11 (N=2)	1.47	0.04 (N=2)	43,4	11	2.73	0.07 (N=2)	1,35	0.11 (N=2)	50.6						
19	2.69	0.09 (N=2)	1.7	0.07 (N=3)	36.7	12	2,57	0.01 (N#Z)	1.4	0.07 (N=Z)	45.6						
20	2.56	0.04 (N=2)	1.85	0.06 (N=4)	27,8	13	2.76	0.02 (N=2)	1,33	0.07 (N=2)	51.8						
21	2.59	0.01 (N=2)	1,89	0.06 (N=4)	27.0	14	2.65	0.09 (N=2)	1.52	0.18 (N=2)	42.5						
22	2.70	0.09 (N=2)	2,06	0.48 (N=4)	23.8	15	2,68	0.06 (N=2)	1.41	0.11 (N=2)	47.4						
23	2.86	0.38 (N=2)	1.86	0.03 (N=4)	34.9	16	2.76	0.32 (N=2)	1,53	0.04 (N=2)	44,6						
24	2.47	0.10 (N=2)	1.83	0.11 (N=4)	25.8	17	2.59	0.07 (N=2)	1.56	0.05 (N=2)	39.8						
25	2,62	0.00 (N=2)	~	0.08 (N=4)	23.6												
26	2.60	0.06 (N=2)	2.09	0.04 (N=4)	19.8												
27	2.61	0.05 (N=2)	2.04	0,08 (N=4)	21.8	21.8											

Appendix 7. Table A7.2. Bulk density, particle density and porosity data of serpentine for selected RC drill holes in MM3.

*

of fewer, isolated olivine grains floating within an intercumulus matrix. The result, however, is not unequivocal. Further analysis is required on a larger number of samples with a more even distribution of Ni/Ni+Al values, particularly for Ni/Ni+Al ratios of < 0.2 and > 0.4, before a definitive conclusion can be established.

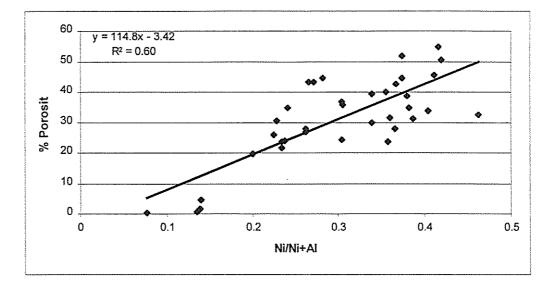


Figure A7.1. Porosity of nodules of serpentinized, olivine cumulate versus the Ni/Ni+AI ratio of the serpentine unit of RC drill holes presented in Table A7.2. Values of the Ni/Ni+AI ratio were calculated from the geochemical data supplied by Anaconda Nickel NL for these drill holes. Only porosity values for those samples with comparable %MgO values within each drill hole are shown (*i.e.*, samples in Table A7.2 with values of porosity highlighted in bold were not plotted). This was to ensure that only serpentine units with a similar degree of 'weathering' were compared.

References

- Blake, G.R. and Hartge, K.H. 1986a. Bulk density. In: A. Klute (Editor) Methods of soil analysis. Part 1: Physical and mineralogical methods. 2nd edition. Soil Science Society of America, Inc., Madison, Wisconsin, USA. 363-376pp.
- Blake, G.R. and Hartge, K.H. 1986b. Particle density. In: A. Klute (Editor) Methods of soil analysis. Part 1: Physical and mineralogical methods. 2nd edition. Soil Science Society of America, Inc., Madison, Wisconsin, USA. 377-382pp.
- Danielson, R.E. and Sutherland, P.L. 1986. Porosity. In: A. Klute (Editor) Methods of soil analysis. Part 1: Physical and mineralogical methods. 2nd edition. Soil Science Society of America, Inc., Madison, Wisconsin, USA. 443-462pp.

APPENDIX 8: MASS BALANCE, MM2 AND MM3

Introduction

Major element (*i.e.*, Si, Al, Fe and Mg) composition of the serpentine unit for drill holes in MM2 and MM3, as listed in Tables A8.1 and A8.2, respectively, are shown for values of the Ni/Ni+Al ratio in Figures A8.1 and A8.2. Values of the Ni/Ni+Al ratio have been used to discriminate cumulate lithologies (*i.e.*, ortho-, meso- and adcumulate) in fresh rock (Hill *et al.*, 1996). The same approach was used here to determine if major element compositions were related to the various cumulate types.

Examination of the major element chemistry was required to determine if an 'average' composition for the serpentine unit at both deposits could be obtained to provide a 'fresh rock' composition for those drill holes that did not show serpentine at depth. This is a requirement of the mass balance equation used (Section 1.11.6) and would otherwise have allowed examination of those drill holes that do not have a complete weathering profile (*i.e.*, serpentine at depth).

One limitation of this approach is that the serpentine unit at the base of each drill hole may not be truly representative of 'fresh' serpentinized ultramafic; drill holes were not deep enough to intersect fresh bedrock. In addition, mass balance calculations do not take into account any lateral mobilization of elements within the regolith.

Regolith chemistry

Although some degree of lithological discrimination was evident for drill holes at MM2 on the basis of their % Al₂O₃ contents, in general, the wide range in values of the major elements for the serpentine unit at both deposits (Figures A8.1 and A8.2) indicated that an 'average' composition could not be determined for this unit, as a whole, at either site particularly for drill holes at MM3. In addition, the results indicated that each drill hole needed be treated separately in the mass balance analysis.

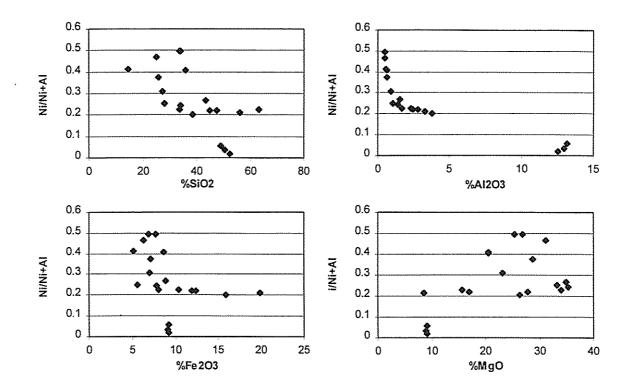


Figure A8.1. Weight % of Si, Al, Fe and Mg for Ni/Ni+Al values of serpentine units within drill holes at MM2. Results are for the XRF analysis of RC drill pulps (Section 1.11.4).

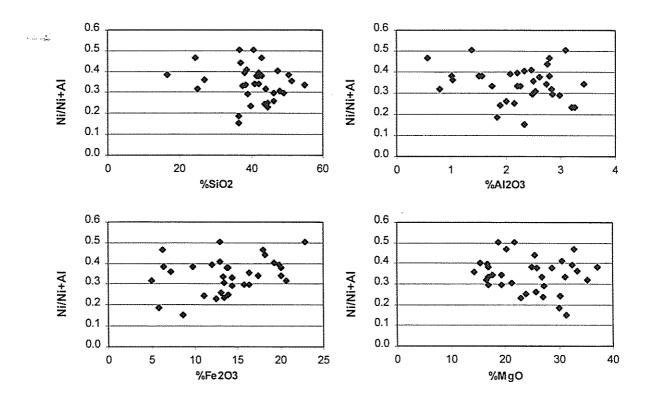


Figure A8.2. Weight % of Si, AI, Fe and Mg for Ni/Ni+AI values of serpentine units within drill holes at MM3. Results are for the XRF analysis of RC drill pulps (Section 1.11.4).

Hole ID	Regolith	Depth to			Cp/Cw		
	Unit	(m)	Zr	Fe	Ti	Cr	Nb
CBRC0780							
29168	Kaolinite-2	1	0.05	0.72	0.11	2.33	2.67
29170	Nontronite	3	0.24	0.55	0.36	0.87	2.67
29173	Nontronite	6	0.45	0.47	0.57	0.59	2.67
29175	Nontronite	7	0.41	0.42	0.37	0.20	2.67
29178	Nontronite	10	0.41	0.30	0.24	0.11	2.67
29179	Nontronite	11	0.28	0.33	0.25	0.11	2.67
29181	Nontronite	13	0.30	0.27	0.22	0.09	0.41
29184	Nontronite	16	0.31	0.36	0.27	0.09	0.59
29186	Saponite	17	0.50	0.40	0.38	0.11	1.33
29189	Saponite	20	0.38	0.68	0.77	0.21	0.89
29190	Saponite	21	0.45	0.60	0.74	0.29	2.67
29191	Saponite	22	0.90	0.59	0.71	0.29	2.67
29192	Saponite	23	0.56	0.44	0.45	0.35	2.67
29193	Saponite	24	0.38	0.38	0.39	0.30	2.67
29194	Saponite	25	0.56	0.55	0.52	0.36	2.67
29195	Saponite	26	0.64	0.64	0.74	0.44	2.67
29196	Saponite	27	0.45	0.76	0.88	0.56	2.67
29197	Saponite	28	1.50	0.70	0.79	0.49	2.67
29200	Saponite	31	0.75	0.79	1.04	0.45	2.67
29201	Saponite	32	1.00	1.16	1.59	0.76	2.67
29206	Saponite	37	1.13	1.33	2.78	0.83	2.67
29209	Saponite	40	0.69	1.14	1.52	0.65	0.89
29210	Saponite	41	0.90	0.95	1.28	0.52	2.67
29213	Saponite	44	0.45	0.64	0.66	0.46	2.67
29217	Saponite	47	0.75	1.13	1.61	1.12	2.67
	Serpentine*	>51	1.00	1.00	1.00	1.00	1.00
CBRC0744							
27467	Kaolinite-2	1	0.31	0.92	0.83	4.38	1.00
27471	Kaolinite-2	5	0.19	0.29	0.36	3.43	0.11
27474	Kaolinite-2	8	0.20	0.34	0.34	2.76	0.50
27475	Kaolinite-2	9	0.28	0.37	0.43	2.39	0.20
27476	Kaolinite-2	10	0.27	0.38	0.46	2.39	0.50
27478	Kaolinite-2	12	0.19	0.29	0.27	2.39	0.20
27480	Kaolinite-2	13	0.16	0.28	0.29	1.76	0.20
27481	Kaolinite-2	14	0.16	0.32	0.25	0.84	0.25
27482	Nontronite	15	0.30	0.53	0.41	0.60	1.00
27484	Nontronite	17	0.36	0.51	0.49	0.56	1.00
27486	Nontronite	19	0.34	0.53	0.47	0.65	1.00
27489	Nontronite	22	0.50	0.61	0.55	0.66	0.15
27490	Nontronite	23	0.38	0.63	0.62	0.72	1.00
27492	Nontronite	24	0.43	0.63	0.59	0.74	0.50
27493	Saponite	25	0.93	0.93	0.96	1.08	1.00
27496	Saponite	28	0.43	0.73	0.79	0.70	1.00
27499	Saponite	31	0.50	0.66	0.70	0.55	1.00
27500	Saponite	32	0.43	0.56	0.57	0.57	1.00
	,						

• -----

a'h

Appendix 8: Table A8.1. Cp/Cw ratios for Zr, Fe, Cr, Ti and Nb for RC drill holes at MM2.

Appendix	8:	Table	A8.1.	continued
----------	----	-------	-------	-----------

a).

Unit (m) Zr Fe Ti Cr Nb CBRC0747 27549 Kaolinite-2 6 0.26 0.34 0.23 0.37 1.75 27558 Kaolinite-2 9 0.35 0.33 0.22 0.78 1.75 27559 Kaolinite-2 10 0.61 0.35 0.31 0.54 0.29 27560 Kaolinite-2 11 0.92 0.51 0.53 0.59 0.88 27561 Talc 12 0.92 0.51 0.53 0.59 0.88 27564 Talc 15 0.44 0.34 0.26 0.19 0.11 27569 Talc 17 0.39 0.40 0.20 0.10 0.17 27569 Talc 20 0.45 0.43 0.26 0.09 0.21 27570 Talc 21 2.44 1.56 1.44 1.06 1.75 27579 Talc 29	Hole ID	Regolith	Depth to			Cp/Cw		······
CBRC0747 Z7549 Kaolinite-2 1 0.20 0.29 0.34 0.47 0.44 27554 Kaolinite-2 6 0.26 0.34 0.23 0.37 1.75 27558 Kaolinite-2 10 0.61 0.35 0.31 0.54 0.29 27560 Kaolinite-2 11 0.92 0.39 0.42 0.58 1.75 27561 Taic 12 0.92 0.51 0.53 0.59 0.88 27563 Taic 14 0.39 0.26 0.19 0.34 0.25 27564 Taic 15 0.44 0.34 0.23 0.18 0.17 27559 Taic 20 0.45 0.43 0.26 0.09 0.21 27570 Taic 21 2.44 1.56 1.44 1.06 1.75 27573 Taic 26 1.00 0.76 0.71 0.72 1.75 27576 Taic <th></th> <th></th> <th></th> <th>Zr</th> <th>Fe</th> <th></th> <th>Cr</th> <th>Nb</th>				Zr	Fe		Cr	Nb
27549 Kaolinite-2 1 0.20 0.29 0.34 0.47 0.44 27554 Kaolinite-2 6 0.26 0.34 0.23 0.37 1.75 27558 Kaolinite-2 9 0.35 0.33 0.22 0.78 1.75 27550 Kaolinite-2 11 0.92 0.39 0.42 0.58 1.75 27561 Talc 12 0.92 0.51 0.53 0.59 0.88 27563 Talc 14 0.39 0.26 0.19 0.34 0.25 27564 Talc 17 0.39 0.40 0.20 0.10 0.17 27569 Talc 20 0.45 0.43 0.26 0.09 0.21 27570 Talc 21 2.44 1.56 1.44 1.06 1.75 27573 Talc 23 0.37 1.35 0.42 1.29 0.88 27574 Talc 26	CBRC0747		()					
27554 Kaolinite-2 6 0.26 0.34 0.23 0.37 1.75 27558 Kaolinite-2 10 0.61 0.35 0.31 0.54 0.29 27560 Kaolinite-2 11 0.92 0.39 0.42 0.58 1.75 27661 Talc 12 0.92 0.51 0.53 0.59 0.88 27566 Talc 14 0.39 0.26 0.19 0.34 0.25 27566 Talc 17 0.39 0.40 0.20 0.10 0.17 27566 Talc 21 2.44 1.56 1.44 1.06 1.75 27570 Talc 23 0.37 1.35 0.42 1.29 0.88 27574 Talc 24 0.13 1.06 0.16 0.50 1.75 27576 Talc 29 0.65 0.63 0.50 0.35 27582 Serpentine 32 0.14 1.38		Kaolinite-2	1	0.20	0.29	0.34	0.47	0.44
27558 Kaolinite-2 9 0.35 0.33 0.22 0.78 1.75 27559 Kaolinite-2 10 0.61 0.35 0.31 0.54 0.29 27560 Kaolinite-2 11 0.92 0.51 0.53 0.59 0.88 27563 Talc 14 0.39 0.26 0.19 0.34 0.25 27564 Talc 17 0.39 0.40 0.20 0.10 0.17 27566 Talc 17 0.39 0.40 0.20 0.10 0.17 27566 Talc 21 2.44 1.56 1.44 1.06 1.75 27570 Talc 23 0.37 1.35 0.42 1.29 0.88 27574 Talc 26 1.00 0.76 0.71 0.72 1.75 27576 Talc 26 1.00 0.63 0.50 0.60 0.35 27582 Serpentine 32								1.75
27559 Kaolinite-2 10 0.61 0.35 0.31 0.54 0.29 27560 Kaolinite-2 11 0.92 0.39 0.42 0.58 1.75 27561 Talc 12 0.92 0.51 0.53 0.59 0.88 27563 Talc 14 0.39 0.26 0.19 0.34 0.25 27564 Talc 17 0.39 0.40 0.20 0.10 0.17 27569 Talc 21 2.44 1.66 1.44 1.06 1.75 27570 Talc 21 2.44 1.56 1.44 1.06 1.75 27573 Talc 23 0.37 1.35 0.42 1.29 0.88 27574 Talc 24 0.13 1.06 0.16 0.50 0.35 27562 Serpentine 32 0.14 1.38 0.19 1.67 0.88 29819 Nontronite 1	27558							
27560 Kaolinite-2 11 0.92 0.39 0.42 0.58 1.75 27561 Talc 12 0.92 0.51 0.53 0.59 0.88 27563 Talc 14 0.39 0.26 0.19 0.34 0.25 27564 Talc 17 0.39 0.40 0.20 0.10 0.17 27569 Talc 20 0.45 0.43 0.26 0.09 0.21 275760 Talc 21 2.44 1.56 1.44 1.06 1.75 27576 Talc 23 0.37 1.35 0.42 1.29 0.88 27576 Talc 26 1.00 0.76 0.71 0.72 1.75 27579 Talc 23 0.14 1.38 0.19 1.67 0.88 27572 Serpentine 32 0.14 1.38 0.19 1.00 1.00 28819 Nontronite 1 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
27563 Talc 14 0.39 0.26 0.19 0.34 0.25 27564 Talc 15 0.44 0.34 0.23 0.18 0.21 27566 Talc 17 0.39 0.40 0.20 0.10 0.17 27569 Talc 21 2.44 1.56 1.44 1.06 1.75 27573 Talc 23 0.37 1.35 0.42 1.29 0.88 27574 Talc 26 1.00 0.76 0.71 0.72 1.75 27579 Talc 29 0.65 0.63 0.50 0.60 0.35 27582 Serpentine 32 0.14 1.38 0.19 1.67 0.88 27574 Talc 29 0.65 0.63 0.50 0.60 0.35 27582 Serpentine 32 0.14 1.38 0.19 1.00 1.00 29819 Nontronite 1 0		Kaolinite-2						
27563 Talc 14 0.39 0.26 0.19 0.34 0.25 27564 Talc 15 0.44 0.34 0.23 0.18 0.21 27566 Talc 17 0.39 0.40 0.20 0.10 0.17 27569 Talc 21 2.44 1.56 1.44 1.06 1.75 27570 Talc 21 2.44 1.56 1.44 1.06 1.75 27574 Talc 23 0.37 1.35 0.42 1.29 0.88 27574 Talc 26 1.00 0.76 0.71 0.72 1.75 27576 Talc 29 0.65 0.63 0.50 0.60 0.35 27582 Serpentine 32 0.14 1.38 0.19 1.67 0.88 29819 Nontronite 1 0.24 0.19 0.04 0.18 1.14 29822 Nontronite 1 0.	27561	Talc	12	0.92	0.51	0.53	0.59	0.88
27564 Talc 15 0.44 0.34 0.23 0.18 0.21 27566 Talc 17 0.39 0.40 0.20 0.10 0.17 27569 Talc 20 0.45 0.43 0.26 0.09 0.21 27570 Talc 21 2.44 1.56 1.44 1.06 1.75 27573 Talc 23 0.37 1.35 0.42 1.29 0.88 27574 Talc 26 1.00 0.76 0.71 0.72 1.75 27579 Talc 29 0.65 0.63 0.50 0.60 0.35 27582 Serpentine 32 0.14 1.38 0.19 1.67 0.88 Serpentine* >33 1.00 1.00 1.00 1.00 1.00 28819 Nontronite 1 0.24 0.19 0.04 0.18 1.14 29824 Nontronite 1 0.24				0.39				
27569 Talc 20 0.45 0.43 0.26 0.09 0.21 27570 Talc 21 2.44 1.56 1.44 1.06 1.75 27573 Talc 23 0.37 1.35 0.42 1.29 0.88 27574 Talc 24 0.13 1.06 0.16 0.50 1.75 27576 Talc 26 1.00 0.76 0.71 0.72 1.75 27579 Talc 29 0.65 0.63 0.50 0.60 0.35 27582 Serpentine 32 0.14 1.38 0.19 1.67 0.88 Serpentine >33 1.00 1.00 1.00 1.00 1.00 29819 Nontronite 1 0.24 0.19 0.04 0.18 1.14 29822 Nontronite 3 0.25 0.15 0.03 0.14 0.29 29825 Saponite 7 0.54		Talc	15	0.44	0.34	0.23	0.18	
27570 Talc 21 2.44 1.56 1.44 1.06 1.75 27573 Talc 23 0.37 1.35 0.42 1.29 0.88 27574 Talc 24 0.13 1.06 0.16 0.50 1.75 27576 Talc 26 1.00 0.76 0.71 0.72 1.75 27579 Talc 29 0.65 0.63 0.50 0.60 0.35 27582 Serpentine 32 0.14 1.38 0.19 1.67 0.88 Serpentine* >33 1.00 1.00 1.00 1.00 1.00 29819 Nontronite 1 0.24 0.19 0.04 0.18 1.14 29821 Nontronite 4 0.38 0.19 0.04 0.07 0.14 29822 Nontronite 6 0.80 0.33 0.13 0.25 0.38 29825 Saponite 7 0.54	27566				0.40			0.17
27573 Talc 23 0.37 1.35 0.42 1.29 0.88 27574 Talc 24 0.13 1.06 0.16 0.50 1.75 27576 Talc 26 1.00 0.76 0.71 0.72 1.75 27579 Talc 29 0.65 0.63 0.50 0.60 0.35 27582 Serpentine 32 0.14 1.38 0.19 1.67 0.88 29819 Nontronite 1 0.24 0.19 0.04 0.18 1.14 29821 Nontronite 3 0.25 0.15 0.03 0.14 0.29 29824 Nontronite 6 0.80 0.33 0.13 0.25 0.38 29825 Saponite 7 0.54 0.28 0.07 0.10 1.14 29832 Saponite 12 0.49 0.47 0.07 0.10 1.14 29833 Serpentine 16<	27569	Talc	20	0.45	0.43	0.26	0.09	0.21
27574 Talc 24 0.13 1.06 0.16 0.50 1.75 27576 Talc 26 1.00 0.76 0.71 0.72 1.75 27579 Talc 29 0.65 0.63 0.50 0.60 0.35 27582 Serpentine* 32 0.14 1.38 0.19 1.67 0.88 Serpentine* >33 1.00 1.00 1.00 1.00 1.00 CBRC0783 Nontronite 1 0.24 0.19 0.04 0.18 1.14 29819 Nontronite 3 0.25 0.15 0.03 0.14 0.29 29822 Nontronite 4 0.38 0.19 0.04 0.07 0.14 29824 Nontronite 6 0.80 0.33 0.13 0.25 0.38 29830 Saponite 7 0.54 0.36 0.06 0.07 0.23 29833 Serpentine	27570	Talc	21	2.44	1.56	1.44	1.06	1.75
27576 Talc 26 1.00 0.76 0.71 0.72 1.75 27579 Talc 29 0.65 0.63 0.50 0.60 0.35 27582 Serpentine 32 0.14 1.38 0.19 1.67 0.88 27582 Serpentine* >33 1.00 1.00 1.00 1.00 1.00 29819 Nontronite 1 0.24 0.19 0.04 0.18 1.14 29822 Nontronite 3 0.25 0.15 0.03 0.14 0.29 29824 Nontronite 6 0.80 0.33 0.13 0.25 0.38 29825 Saponite 7 0.54 0.28 0.07 0.10 1.14 29830 Saponite 12 0.49 0.47 0.07 0.05 1.14 29833 Serpentine 14 0.56 0.52 0.07 0.05 1.14 29839 Mixed serp. 21	27573	Talc	23	0.37	1.35	0.42	1.29	0.88
27579 Talc 29 0.65 0.63 0.50 0.60 0.35 27582 Serpentine 32 0.14 1.38 0.19 1.67 0.88 Serpentine >33 1.00 1.00 1.00 1.00 1.00 CBRC0783 0.24 0.19 0.04 0.18 1.14 29819 Nontronite 1 0.24 0.19 0.04 0.18 1.14 29821 Nontronite 4 0.38 0.19 0.04 0.07 0.14 29824 Nontronite 6 0.80 0.33 0.13 0.25 0.38 29825 Saponite 7 0.54 0.28 0.07 0.10 1.14 29830 Saponite 12 0.49 0.47 0.07 0.05 1.14 29833 Serpentine 14 0.64 0.54 0.07 0.05 1.14 29839 Mixed serp. 20	27574	Talc	24	0.13	1.06	0.16	0.50	1.75
27582 Serpentine Serpentine* 32 0.14 1.38 0.19 1.67 0.88 29819 Nontronite 1 0.24 0.19 0.04 0.18 1.14 29819 Nontronite 3 0.25 0.15 0.03 0.14 0.29 29821 Nontronite 4 0.38 0.19 0.04 0.07 0.14 29822 Nontronite 6 0.80 0.33 0.13 0.25 0.38 29825 Saponite 7 0.54 0.28 0.07 0.10 1.14 29827 Saponite 9 0.54 0.36 0.06 0.07 0.23 29830 Saponite 12 0.49 0.47 0.07 0.10 1.14 29832 Saponite 13 0.58 0.52 0.07 0.05 1.14 29833 Serpentine 14 0.64 0.54 0.07 0.05 1.14 29838 Se	27576	Talc	26	1.00	0.76	0.71	0.72	1.75
Serpentine* >33 1.00 1.00 1.00 1.00 1.00 CBRC0783 29819 Nontronite 1 0.24 0.19 0.04 0.18 1.14 29821 Nontronite 3 0.25 0.15 0.03 0.14 0.29 29822 Nontronite 4 0.38 0.19 0.04 0.07 0.14 29824 Nontronite 6 0.80 0.33 0.13 0.25 0.38 29825 Saponite 7 0.54 0.28 0.07 0.10 1.14 29832 Saponite 12 0.49 0.47 0.07 0.10 1.14 29832 Saponite 13 0.58 0.52 0.07 0.06 1.14 29833 Serpentine 14 0.64 0.54 0.07 0.05 1.14 29839 Mixed serp. 20 0.80 0.93 0.21 0.12 1.14 29839 <td>27579</td> <td>Talc</td> <td>29</td> <td>0.65</td> <td>0.63</td> <td>0.50</td> <td>0.60</td> <td>0.35</td>	27579	Talc	29	0.65	0.63	0.50	0.60	0.35
CBRC0783 29819 Nontronite 1 0.24 0.19 0.04 0.18 1.14 29821 Nontronite 3 0.25 0.15 0.03 0.14 0.29 29822 Nontronite 4 0.38 0.19 0.04 0.07 0.14 29824 Nontronite 6 0.80 0.33 0.13 0.25 0.38 29825 Saponite 7 0.54 0.28 0.07 0.10 1.14 29827 Saponite 9 0.54 0.36 0.06 0.07 0.23 29830 Saponite 12 0.49 0.47 0.07 0.10 1.14 29832 Saponite 13 0.58 0.52 0.07 0.06 1.14 29833 Serpentine 16 2.14 0.55 0.09 0.04 1.14 29838 Serpentine 19 0.92 0.61 0.14 0.05 1.14	27582	Serpentine	32	0.14	1.38	0.19	1.67	0.88
29819Nontronite10.240.190.040.181.1429821Nontronite30.250.150.030.140.2929822Nontronite40.380.190.040.070.1429824Nontronite60.800.330.130.250.3829825Saponite70.540.280.070.101.1429827Saponite90.540.360.060.070.2329830Saponite120.490.470.070.101.1429833Serpentine140.640.540.070.051.1429835Serpentine162.140.550.090.041.1429838Serpentine190.920.610.140.051.1429839Mixed serp.200.800.930.210.121.1429840Mixed serp.211.070.580.100.071.1429841Mixed serp.231.070.600.170.511.1429842Mixed serp.262.140.660.140.591.1429850Mixed serp.301.070.630.150.641.1429850Mixed serp.310.800.780.290.830.3829853Mixed serp.341.610.630.150.681.1429858Mixed serp. <td></td> <td>Serpentine*</td> <td>>33</td> <td>1.00</td> <td>1.00</td> <td>1.00</td> <td>1.00</td> <td>1.00</td>		Serpentine*	>33	1.00	1.00	1.00	1.00	1.00
29819Nontronite10.240.190.040.181.1429821Nontronite30.250.150.030.140.2929822Nontronite40.380.190.040.070.1429824Nontronite60.800.330.130.250.3829825Saponite70.540.280.070.101.1429827Saponite90.540.360.060.070.2329830Saponite120.490.470.070.101.1429833Serpentine140.640.540.070.051.1429835Serpentine162.140.550.090.041.1429838Serpentine190.920.610.140.051.1429839Mixed serp.200.800.930.210.121.1429840Mixed serp.211.070.580.100.071.1429841Mixed serp.231.070.600.170.511.1429842Mixed serp.262.140.660.140.591.1429850Mixed serp.301.070.630.150.641.1429850Mixed serp.310.800.780.290.830.3829853Mixed serp.341.610.630.150.681.1429858Mixed serp. <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
29821Nontronite30.250.150.030.140.2929822Nontronite40.380.190.040.070.1429824Nontronite60.800.330.130.250.3829825Saponite70.540.280.070.101.1429827Saponite90.540.360.060.070.2329830Saponite120.490.470.070.101.1429832Saponite130.580.520.070.061.1429833Serpentine140.640.540.070.051.1429838Serpentine162.140.550.090.041.1429838Serpentine190.920.610.140.051.1429839Mixed serp.200.800.930.210.121.1429840Mixed serp.211.070.580.100.071.1429841Mixed serp.231.070.600.170.511.1429842Mixed serp.301.070.630.150.641.1429850Mixed serp.310.800.780.290.830.3829853Mixed serp.341.610.630.150.681.1429859Mixed serp.383.210.790.770.941.1429859Mixed serp.	CBRC0783							
29822Nontronite40.380.190.040.070.1429824Nontronite60.800.330.130.250.3829825Saponite70.540.280.070.101.1429827Saponite90.540.360.060.070.2329830Saponite120.490.470.070.101.1429832Saponite130.580.520.070.061.1429833Serpentine140.640.540.070.051.1429835Serpentine162.140.550.090.041.1429838Serpentine190.920.610.140.051.1429839Mixed serp.200.800.930.210.121.1429840Mixed serp.211.070.580.100.071.1429841Mixed serp.231.070.600.170.511.1429842Mixed serp.262.140.660.140.591.1429845Mixed serp.301.070.630.150.641.1429850Mixed serp.310.800.780.290.830.3829853Mixed serp.341.610.630.150.681.1429858Mixed serp.383.210.790.770.941.1429859Mixed serp. <td>29819</td> <td>Nontronite</td> <td>1</td> <td>0.24</td> <td>0.19</td> <td>0.04</td> <td>0.18</td> <td>1.14</td>	29819	Nontronite	1	0.24	0.19	0.04	0.18	1.14
29824Nontronite60.800.330.130.250.3829825Saponite70.540.280.070.101.1429827Saponite90.540.360.060.070.2329830Saponite120.490.470.070.101.1429832Saponite130.580.520.070.061.1429833Serpentine140.640.540.070.051.1429835Serpentine162.140.550.090.041.1429838Serpentine190.920.610.140.051.1429839Mixed serp.200.800.930.210.121.1429840Mixed serp.211.070.580.100.071.1429841Mixed serp.231.070.600.170.511.1429842Mixed serp.262.140.660.140.591.1429849Mixed serp.301.070.630.150.641.1429850Mixed serp.310.800.780.290.830.3829853Mixed serp.341.610.630.150.681.1429858Mixed serp.383.210.790.770.941.1429859Mixed serp.393.210.920.831.131.1429859Mixed serp.<	29821	Nontronite	3	0.25	0.15	0.03	0.14	0.29
29825Saponite70.540.280.070.101.1429827Saponite90.540.360.060.070.2329830Saponite120.490.470.070.101.1429832Saponite130.580.520.070.061.1429833Serpentine140.640.540.070.051.1429835Serpentine162.140.550.090.041.1429838Serpentine190.920.610.140.051.1429839Mixed serp.200.800.930.210.121.1429840Mixed serp.211.070.580.100.071.1429841Mixed serp.220.580.600.100.160.5729842Mixed serp.231.070.600.170.511.1429845Mixed serp.262.140.660.140.591.1429845Mixed serp.310.800.780.290.830.3829853Mixed serp.310.800.780.290.830.3829853Mixed serp.383.210.790.770.941.1429859Mixed serp.393.210.920.831.131.1429859Mixed serp.410.920.810.911.001.14	29822	Nontronite	4	0.38	0.19	0.04	0.07	0.14
29827Saponite90.540.360.060.070.2329830Saponite120.490.470.070.101.1429832Saponite130.580.520.070.061.1429833Serpentine140.640.540.070.051.1429835Serpentine162.140.550.090.041.1429838Serpentine190.920.610.140.051.1429839Mixed serp.200.800.930.210.121.1429840Mixed serp.211.070.580.100.071.1429841Mixed serp.231.070.600.170.511.1429845Mixed serp.262.140.660.140.591.1429849Mixed serp.301.070.630.150.641.1429850Mixed serp.310.800.780.290.830.3829853Mixed serp.341.610.630.150.681.1429859Mixed serp.383.210.790.770.941.1429859Mixed serp.393.210.920.831.131.1429851Mixed serp.393.210.920.831.131.1429851Mixed serp.393.210.920.831.131.1429859Mixed	29824	Nontronite	6	0.80	0.33	0.13	0.25	0.38
29830Saponite120.490.470.070.101.1429832Saponite130.580.520.070.061.1429833Serpentine140.640.540.070.051.1429835Serpentine162.140.550.090.041.1429838Serpentine190.920.610.140.051.1429839Mixed serp.200.800.930.210.121.1429840Mixed serp.211.070.580.100.071.1429841Mixed serp.220.580.600.100.160.5729842Mixed serp.231.070.600.170.511.1429849Mixed serp.262.140.660.140.591.1429849Mixed serp.301.070.630.150.641.1429850Mixed serp.310.800.780.290.830.3829853Mixed serp.341.610.630.150.681.1429859Mixed serp.393.210.920.831.131.1429859Mixed serp.393.210.920.831.131.1429851Mixed serp.410.920.810.911.001.14	29825	Saponite	7	0.54	0.28	0.07	0.10	1.14
29832Saponite130.580.520.070.061.1429833Serpentine140.640.540.070.051.1429835Serpentine162.140.550.090.041.1429838Serpentine190.920.610.140.051.1429839Mixed serp.200.800.930.210.121.1429840Mixed serp.211.070.580.100.071.1429841Mixed serp.220.580.600.100.160.5729842Mixed serp.231.070.600.170.511.1429845Mixed serp.262.140.660.140.591.1429845Mixed serp.301.070.630.150.641.1429849Mixed serp.310.800.780.290.830.3829853Mixed serp.341.610.630.150.681.1429858Mixed serp.383.210.790.770.941.1429859Mixed serp.393.210.920.831.131.1429851Mixed serp.410.920.810.911.001.14	29827	Saponite	9	0.54	0.36	0.06	0.07	0.23
29833Serpentine140.640.540.070.051.1429835Serpentine162.140.550.090.041.1429838Serpentine190.920.610.140.051.1429839Mixed serp.200.800.930.210.121.1429840Mixed serp.211.070.580.100.071.1429841Mixed serp.220.580.600.100.160.5729842Mixed serp.231.070.600.170.511.1429845Mixed serp.262.140.660.140.591.1429849Mixed serp.301.070.630.150.641.1429850Mixed serp.310.800.780.290.830.3829853Mixed serp.341.610.630.150.681.1429858Mixed serp.383.210.790.770.941.1429859Mixed serp.393.210.920.831.131.1429861Mixed serp.410.920.810.911.001.14	29830	Saponite	12	0.49	0.47	0.07	0.10	1.14
29835Serpentine162.140.550.090.041.1429838Serpentine190.920.610.140.051.1429839Mixed serp.200.800.930.210.121.1429840Mixed serp.211.070.580.100.071.1429841Mixed serp.220.580.600.100.160.5729842Mixed serp.231.070.600.170.511.1429845Mixed serp.262.140.660.140.591.1429849Mixed serp.301.070.630.150.641.1429850Mixed serp.310.800.780.290.830.3829853Mixed serp.341.610.630.150.681.1429859Mixed serp.393.210.920.831.131.1429851Mixed serp.393.210.920.831.131.1429851Mixed serp.341.610.620.911.001.14	29832	Saponite	13	0.58	0.52	0.07	0.06	1.14
29838Serpentine190.920.610.140.051.1429839Mixed serp.200.800.930.210.121.1429840Mixed serp.211.070.580.100.071.1429841Mixed serp.220.580.600.100.160.5729842Mixed serp.231.070.600.170.511.1429845Mixed serp.262.140.660.140.591.1429849Mixed serp.301.070.630.150.641.1429850Mixed serp.310.800.780.290.830.3829853Mixed serp.341.610.630.150.681.1429859Mixed serp.393.210.920.831.131.1429861Mixed serp.410.920.810.911.001.14	29833	Serpentine	14	0.64	0.54	0.07	0.05	1.14
29839Mixed serp.200.800.930.210.121.1429840Mixed serp.211.070.580.100.071.1429841Mixed serp.220.580.600.100.160.5729842Mixed serp.231.070.600.170.511.1429845Mixed serp.262.140.660.140.591.1429849Mixed serp.301.070.630.150.641.1429850Mixed serp.310.800.780.290.830.3829853Mixed serp.341.610.630.150.681.1429859Mixed serp.383.210.790.770.941.1429859Mixed serp.393.210.920.831.131.1429861Mixed serp.410.920.810.911.001.14	29835	Serpentine	16	2.14	0.55	0.09	0.04	1.14
29840Mixed serp.211.070.580.100.071.1429841Mixed serp.220.580.600.100.160.5729842Mixed serp.231.070.600.170.511.1429845Mixed serp.262.140.660.140.591.1429849Mixed serp.301.070.630.150.641.1429850Mixed serp.310.800.780.290.830.3829853Mixed serp.341.610.630.150.681.1429858Mixed serp.383.210.790.770.941.1429859Mixed serp.393.210.920.831.131.1429861Mixed serp.410.920.810.911.001.14	29838	Serpentine	19	0.92	0.61	0.14	0.05	1.14
29841Mixed serp.220.580.600.100.160.5729842Mixed serp.231.070.600.170.511.1429845Mixed serp.262.140.660.140.591.1429849Mixed serp.301.070.630.150.641.1429850Mixed serp.310.800.780.290.830.3829853Mixed serp.341.610.630.150.681.1429858Mixed serp.383.210.790.770.941.1429859Mixed serp.393.210.920.831.131.1429861Mixed serp.410.920.810.911.001.14	29839	Mixed serp.	20	0.80	0.93	0.21	0.12	1.14
29842Mixed serp.231.070.600.170.511.1429845Mixed serp.262.140.660.140.591.1429849Mixed serp.301.070.630.150.641.1429850Mixed serp.310.800.780.290.830.3829853Mixed serp.341.610.630.150.681.1429858Mixed serp.383.210.790.770.941.1429859Mixed serp.393.210.920.831.131.1429861Mixed serp.410.920.810.911.001.14	29840	Mixed serp.	21	1.07	0.58	0.10	0.07	1.14
29845Mixed serp.262.140.660.140.591.1429849Mixed serp.301.070.630.150.641.1429850Mixed serp.310.800.780.290.830.3829853Mixed serp.341.610.630.150.681.1429858Mixed serp.383.210.790.770.941.1429859Mixed serp.393.210.920.831.131.1429861Mixed serp.410.920.810.911.001.14	29841	Mixed serp.	22	0.58	0.60	0.10	0.16	0.57
29849Mixed serp.301.070.630.150.641.1429850Mixed serp.310.800.780.290.830.3829853Mixed serp.341.610.630.150.681.1429858Mixed serp.383.210.790.770.941.1429859Mixed serp.393.210.920.831.131.1429861Mixed serp.410.920.810.911.001.14	29842	Mixed serp.	23	1.07	0.60	0.17	0.51	1.14
29850Mixed serp.310.800.780.290.830.3829853Mixed serp.341.610.630.150.681.1429858Mixed serp.383.210.790.770.941.1429859Mixed serp.393.210.920.831.131.1429861Mixed serp.410.920.810.911.001.14	29845	Mixed serp.	26	2.14	0.66	0.14	0.59	1.14
29853Mixed serp.341.610.630.150.681.1429858Mixed serp.383.210.790.770.941.1429859Mixed serp.393.210.920.831.131.1429861Mixed serp.410.920.810.911.001.14	29849	Mixed serp.	30	1.07	0.63	0.15	0.64	1.14
29858Mixed serp.383.210.790.770.941.1429859Mixed serp.393.210.920.831.131.1429861Mixed serp.410.920.810.911.001.14	29850	Mixed serp.	31	0.80	0.78	0.29	0.83	0.38
29859 Mixed serp. 39 3.21 0.92 0.83 1.13 1.14 29861 Mixed serp. 41 0.92 0.81 0.91 1.00 1.14	29853	Mixed serp.	34	1.61	0.63	0.15	0.68	1.14
29861 Mixed serp. 41 0.92 0.81 0.91 1.00 1.14	29858	Mixed serp.	38	3.21	0.79	0.77	0.94	1.14
·	29859	Mixed serp.	39	3.21	0.92	0.83	1.13	1.14
Serpentine* >44 1,00 1,00 1,01 1,00 1,00	29861	Mixed serp.	41	0.92	0.81	0.91	1.00	1.14
		Serpentine*	>44	1.00	1.00	1.01	1.00	1.00

Appendix 8: Table A8.2	. Cp/Cw ratios for Zr, Fe, Ti, Cr and Nb for RC drill holes at MM3.
------------------------	---

124362 124364 124365 124370 124375 124375 124376 137426 137426 137429 137426 137429 137426 137429 137426 14 83613 14 83613 14 83620 18 83620 18 83623 18 83624 18 83624 19 837750 137755 137755 137756	Unit Kaolinite Kaolinite Kaolinite Nontronite Nontronite Nontronite Serpentine Serpentine Serpentine* Nontronite Nontronite Nontronite Serpentine* Kaolinite Kaolinite Kaolinite Nontronite Nontronite Nontronite Nontronite Nontronite Nontronite Nontronite Nontronite Nontronite Nontronite Nontronite Nontronite Nontronite Nontronite Nontronite	(m) 1 3 5 6 8 10 13 15 16 >18 1 2 3 5 >6 1 3 4 5 8 9 10	Zr 0.065 0.183 0.270 0.630 0.473 0.515 0.405 0.567 1.418 1.001 0.171 0.364 0.566 0.672 1.000 0.085 0.250 0.375 0.857 0.353 1.000	Fe 0.236 0.262 0.239 0.378 0.386 0.410 0.432 0.559 0.713 1.000 0.498 0.414 0.446 0.535 1.000 0.522 0.538 0.347 0.474 0.406	Ti 0.208 0.209 0.285 0.542 0.412 0.444 0.483 0.689 0.913 0.996 0.387 0.505 0.614 0.768 1.003 0.220 0.519 0.458 0.586 0.400	Cr 0.194 0.119 0.160 0.382 0.488 0.495 0.604 0.836 1.062 1.000 0.781 0.421 0.425 0.579 1.000 0.651 0.631 0.620 0.441 0.254	Nb 0.125 1.000 0.063 1.000 1.000 1.000 1.000 1.000 0.333 1.000 1.000 1.000 1.000 1.000 1.000
124360 124362 124365 124365 124370 124373 124375 124376 124376 124376 124376 124376 124376 137424 137425 137426 137426 137429 137429 ARC1008 83610 83612 83613 83614 83614 83617 83618 83619 83620 83623 83623 83623 83623 83623 83623 83623 83623 83623 837750 37750 37755 37755 37756	Kaolinite Kaolinite Nontronite Nontronite Nontronite Serpentine Serpentine Serpentine* Nontronite Nontronite Nontronite Serpentine* Kaolinite Kaolinite Nontronite Nontronite Nontronite Nontronite Nontronite Nontronite Nontronite Nontronite Nontronite	3 5 6 8 10 13 15 16 >18 1 2 3 5 >6 1 3 4 5 8 9	0.183 0.270 0.630 0.473 0.515 0.405 0.567 1.418 1.001 0.171 0.364 0.566 0.672 1.000 0.085 0.250 0.375 0.857 0.353	0.262 0.239 0.378 0.386 0.410 0.432 0.559 0.713 1.000 0.498 0.414 0.446 0.535 1.000 0.522 0.538 0.347 0.474 0.406	0.209 0.285 0.542 0.412 0.444 0.483 0.689 0.913 0.996 0.387 0.505 0.614 0.768 1.003 0.220 0.519 0.458 0.586	0.119 0.160 0.382 0.488 0.495 0.604 0.836 1.062 1.000 0.781 0.421 0.425 0.579 1.000 0.651 0.631 0.620 0.441	1.000 0.063 1.000 1.000 0.500 1.000 1.000 1.000 0.100 0.200 0.333 1.000 1.000 1.000
124362 124364 124365 124370 124375 124375 124376 137426 137426 137429 137426 14 83613 14 83613 14 83620 18 83623 18 83623 18 83624 18 83624 18 837750 137755 137755 137756	Kaolinite Kaolinite Nontronite Nontronite Nontronite Serpentine Serpentine Serpentine* Nontronite Nontronite Nontronite Serpentine* Kaolinite Kaolinite Nontronite Nontronite Nontronite Nontronite Nontronite Nontronite Nontronite Nontronite Nontronite	3 5 6 8 10 13 15 16 >18 1 2 3 5 >6 1 3 4 5 8 9	0.183 0.270 0.630 0.473 0.515 0.405 0.567 1.418 1.001 0.171 0.364 0.566 0.672 1.000 0.085 0.250 0.375 0.857 0.353	0.262 0.239 0.378 0.386 0.410 0.432 0.559 0.713 1.000 0.498 0.414 0.446 0.535 1.000 0.522 0.538 0.347 0.474 0.406	0.209 0.285 0.542 0.412 0.444 0.483 0.689 0.913 0.996 0.387 0.505 0.614 0.768 1.003 0.220 0.519 0.458 0.586	0.119 0.160 0.382 0.488 0.495 0.604 0.836 1.062 1.000 0.781 0.421 0.425 0.579 1.000 0.651 0.631 0.620 0.441	1.000 0.063 1.000 1.000 0.500 1.000 1.000 1.000 0.100 0.200 0.333 1.000 1.000 1.000
124364 124365 1 124368 1 124370 1 124373 1 124375 5 124376 5 124376 5 124376 5 124376 5 124376 5 124376 5 137424 1 137425 1 137426 1 137429 1 137429 1 137429 1 137429 1 137429 1 137429 1 83610 8 83612 8 83613 1 83614 1 83620 1 83623 1 83624 5 ARC0776 37750 37750 1 37751 1 37756 1	Kaolinite Nontronite Nontronite Nontronite Serpentine Serpentine Serpentine* Nontronite Nontronite Nontronite Serpentine* Kaolinite Kaolinite Nontronite Nontronite Nontronite Nontronite Nontronite Nontronite Nontronite Nontronite	5 6 8 10 13 15 16 >18 1 2 3 5 >6 1 3 4 5 8 9	0.270 0.630 0.473 0.515 0.405 0.567 1.418 1.001 0.171 0.364 0.566 0.672 1.000 0.085 0.250 0.375 0.857 0.353	0.239 0.378 0.386 0.410 0.432 0.559 0.713 1.000 0.498 0.414 0.446 0.535 1.000 0.522 0.538 0.347 0.474 0.406	0.285 0.542 0.412 0.444 0.483 0.689 0.913 0.996 0.387 0.505 0.614 0.768 1.003 0.220 0.519 0.458 0.586	0.160 0.382 0.488 0.495 0.604 0.836 1.062 1.000 0.781 0.421 0.425 0.579 1.000 0.651 0.631 0.631 0.620 0.441	0.063 1.000 1.000 1.000 1.000 1.000 1.000 0.100 0.200 0.333 1.000 1.000 1.000 1.000
124365 1 124368 1 124370 1 124373 1 124375 5 124376 5 124376 5 124376 5 124376 5 124376 5 124376 5 124376 5 137424 1 137425 1 137426 1 137429 1 137429 1 137429 1 137429 1 137429 1 137429 1 83612 8 83613 1 83614 1 83615 1 83616 1 83617 1 83620 1 83623 1 83624 5 ARC0776 37750 37750 1 37755 37756	Nontronite Nontronite Nontronite Nontronite Serpentine Serpentine Serpentine* Nontronite Nontronite Nontronite Serpentine* Kaolinite Kaolinite Nontronite Nontronite Nontronite Nontronite Nontronite Nontronite Nontronite	6 8 10 13 15 16 >18 1 2 3 5 >6 1 3 4 5 8 9	0.630 0.473 0.515 0.405 0.567 1.418 1.001 0.171 0.364 0.566 0.672 1.000 0.085 0.250 0.375 0.857 0.353	0.378 0.386 0.410 0.432 0.559 0.713 1.000 0.498 0.414 0.446 0.535 1.000 0.522 0.538 0.347 0.474 0.406	0.542 0.412 0.444 0.483 0.689 0.913 0.996 0.387 0.505 0.614 0.768 1.003 0.220 0.519 0.458 0.586	0.382 0.488 0.495 0.604 0.836 1.062 1.000 0.781 0.421 0.425 0.579 1.000 0.651 0.631 0.631 0.620 0.441	1.000 1.000 0.500 1.000 1.000 1.000 0.100 0.200 0.333 1.000 1.000 1.000
124368 1 124370 1 124370 1 124370 1 124375 5 124376 5 124376 5 124376 5 124376 5 124376 5 124376 5 124376 5 124376 5 137425 1 137426 1 137429 1 137429 1 137429 1 83610 83612 83613 1 83614 1 83613 1 83614 1 83619 1 83620 1 83623 1 83624 5 ARC0776 37750 37750 1 37755 1 37756 1	Nontronite Nontronite Nontronite Serpentine Serpentine* Nontronite Nontronite Nontronite Nontronite Serpentine* Kaolinite Kaolinite Nontronite Nontronite Nontronite Nontronite Nontronite	8 10 13 15 16 >18 1 2 3 5 >6 1 3 4 5 8 9	0.473 0.515 0.405 0.567 1.418 1.001 0.171 0.364 0.566 0.672 1.000 0.085 0.250 0.375 0.857 0.353	0.386 0.410 0.432 0.559 0.713 1.000 0.498 0.414 0.446 0.535 1.000 0.522 0.538 0.347 0.474 0.406	0.412 0.444 0.483 0.689 0.913 0.996 0.387 0.505 0.614 0.768 1.003 0.220 0.519 0.458 0.586	0.488 0.495 0.604 0.836 1.062 1.000 0.781 0.421 0.425 0.579 1.000 0.651 0.631 0.620 0.441	1.000 1.000 0.500 1.000 1.000 1.000 0.100 0.333 1.000 1.000 1.000 1.000
124370 1 124373 1 124373 1 124375 5 124376 5 124376 5 124376 5 124376 5 137426 1 137426 1 137426 1 137426 1 137427 1 137426 1 137427 1 137426 1 137426 1 83610 83612 83613 1 83614 1 83618 1 83620 1 83623 1 83624 5 ARC0776 37750 37750 1 37755 1 37756 1	Nontronite Nontronite Serpentine Serpentine* Nontronite Nontronite Nontronite Serpentine* Kaolinite Kaolinite Nontronite Nontronite Nontronite Nontronite Nontronite Nontronite	10 13 15 16 >18 1 2 3 5 >6 1 3 4 5 8 9	0.515 0.405 0.567 1.418 1.001 0.171 0.364 0.566 0.672 1.000 0.085 0.250 0.375 0.857 0.353	0.410 0.432 0.559 0.713 1.000 0.498 0.414 0.446 0.535 1.000 0.522 0.538 0.347 0.474 0.406	0.444 0.483 0.689 0.913 0.996 0.387 0.505 0.614 0.768 1.003 0.220 0.519 0.458 0.586	0.495 0.604 0.836 1.062 1.000 0.781 0.421 0.425 0.579 1.000 0.651 0.631 0.620 0.441	1.000 0.500 1.000 1.000 1.000 0.100 0.200 0.333 1.000 1.000 1.000 1.000
124373 1 124375 S 124376 S 124376 S 124376 S 124376 S 137424 I 137425 I 137426 I 137427 I 137426 I 137429 I S S ARC1008 83610 83612 S ARC1008 83612 83613 I 83614 I 83615 I 83620 I 83623 I 83624 S ARC0776 S 37750 I 37751 I 37755 I	Nontronite Serpentine Serpentine* Serpentine* Nontronite Nontronite Nontronite Serpentine* Kaolinite Kaolinite Nontronite Nontronite Nontronite Nontronite Nontronite	13 15 16 >18 1 2 3 5 >6 1 3 4 5 8 9	0.405 0.567 1.418 1.001 0.171 0.364 0.566 0.672 1.000 0.085 0.250 0.375 0.857 0.353	0.432 0.559 0.713 1.000 0.498 0.414 0.446 0.535 1.000 0.522 0.538 0.347 0.474 0.406	0.483 0.689 0.913 0.996 0.387 0.505 0.614 0.768 1.003 0.220 0.519 0.458 0.586	0.604 0.836 1.062 1.000 0.781 0.421 0.425 0.579 1.000 0.651 0.631 0.631 0.620 0.441	0.500 1.000 1.000 1.000 0.100 0.200 0.333 1.000 1.000 1.000 1.000
124375 S 124376 S 124376 S 124376 S 137424 I 137425 I 137426 I 137429 I 37429 I 83610 83612 83613 I 83614 I 83619 I 83620 I 83623 S ARC0776 S 37750 I 37751 I 37755 S	Serpentine Serpentine Serpentine* Nontronite Nontronite Nontronite Serpentine* Kaolinite Kaolinite Nontronite Nontronite Nontronite Nontronite Nontronite	15 16 >18 1 2 3 5 >6 1 3 4 5 8 9	0.567 1.418 1.001 0.171 0.364 0.566 0.672 1.000 0.085 0.250 0.375 0.857 0.353	0.559 0.713 1.000 0.498 0.414 0.446 0.535 1.000 0.522 0.538 0.347 0.474 0.406	0.689 0.913 0.996 0.387 0.505 0.614 0.768 1.003 0.220 0.519 0.458 0.586	0.836 1.062 1.000 0.781 0.421 0.425 0.579 1.000 0.651 0.631 0.620 0.441	1.000 1.000 1.000 0.100 0.200 0.333 1.000 1.000 1.000 1.000
124376 S ARC1478 S 137424 I 137425 I 137426 I 137429 I 137429 I 137429 I 33612 S 83613 I 83614 I 83618 I 83619 I 83620 I 83623 S ARC0776 S 37750 I 37755 I 37756 I	Serpentine Serpentine* Nontronite Nontronite Nontronite Serpentine* Kaolinite Kaolinite Nontronite Nontronite Nontronite Nontronite	16 >18 1 2 3 5 >6 1 3 4 5 8 9	1.418 1.001 0.171 0.364 0.566 0.672 1.000 0.085 0.250 0.375 0.857 0.353	0.713 1.000 0.498 0.414 0.446 0.535 1.000 0.522 0.538 0.347 0.474 0.406	0.913 0.996 0.387 0.505 0.614 0.768 1.003 0.220 0.519 0.458 0.586	1.062 1.000 0.781 0.421 0.425 0.579 1.000 0.651 0.631 0.631 0.620 0.441	1.000 1.000 0.100 0.200 0.333 1.000 1.000 1.000 1.000
ARC1478 137424 I 137425 I 137426 I 137429 I 137429 I 33612 83610 83612 83612 83613 I 83614 I 83614 I 83619 I 83620 I 83623 I 83623 I 83623 I 83624 S ARC0776 37750 I 37755 I 37756 I	Serpentine* Nontronite Nontronite Nontronite Serpentine* Kaolinite Kaolinite Nontronite Nontronite Nontronite Nontronite	>18 1 2 3 5 >6 1 3 4 5 8 9	1.001 0.171 0.364 0.566 0.672 1.000 0.085 0.250 0.375 0.857 0.353	1.000 0.498 0.414 0.535 1.000 0.522 0.538 0.347 0.474 0.406	0.996 0.387 0.505 0.614 0.768 1.003 0.220 0.519 0.458 0.586	1.000 0.781 0.421 0.425 0.579 1.000 0.651 0.631 0.631 0.620 0.441	1.000 0.100 0.200 0.333 1.000 1.000 1.000 1.000
ARC1478 137424 I 137425 I 137426 I 137429 I 137429 I 83610 83612 83613 I 83614 I 83614 I 83617 I 83618 I 83619 I 83620 I 83623 I 83623 I 83624 S ARC0776 37750 I 37755 I 37755 I	Nontronite Nontronite Nontronite Serpentine* Kaolinite Kaolinite Nontronite Nontronite Nontronite Nontronite	1 2 3 5 >6 1 3 4 5 8 9	0.171 0.364 0.566 0.672 1.000 0.085 0.250 0.375 0.857 0.353	0.498 0.414 0.446 0.535 1.000 0.522 0.538 0.347 0.474 0.406	0.387 0.505 0.614 0.768 1.003 0.220 0.519 0.458 0.586	0.781 0.421 0.425 0.579 1.000 0.651 0.631 0.631 0.620 0.441	0.100 0.200 0.333 1.000 1.000 1.000 1.000
137424 I 137425 I 137426 I 137429 I Sa610 83612 83613 I 83614 I 83618 I 83619 I 83620 I 83623 I 83624 S ARC0776 37750 37750 I 37755 I 37756 I	Nontronite Nontronite Nontronite Serpentine* Kaolinite Kaolinite Nontronite Nontronite Nontronite Nontronite	2 3 5 >6 1 3 4 5 8 9	0.364 0.566 0.672 1.000 0.085 0.250 0.375 0.857 0.353	0.414 0.446 0.535 1.000 0.522 0.538 0.347 0.474 0.406	0.505 0.614 0.768 1.003 0.220 0.519 0.458 0.586	0.421 0.425 0.579 1.000 0.651 0.631 0.620 0.441	0.200 0.333 1.000 1.000 1.000 1.000 1.000
137424 I 137425 I 137426 I 137429 I Sa610 83612 83613 I 83614 I 83618 I 83619 I 83620 I 83623 I 83624 S ARC0776 37750 37750 I 37755 I 37756 I	Nontronite Nontronite Nontronite Serpentine* Kaolinite Kaolinite Nontronite Nontronite Nontronite Nontronite	2 3 5 >6 1 3 4 5 8 9	0.364 0.566 0.672 1.000 0.085 0.250 0.375 0.857 0.353	0.414 0.446 0.535 1.000 0.522 0.538 0.347 0.474 0.406	0.505 0.614 0.768 1.003 0.220 0.519 0.458 0.586	0.421 0.425 0.579 1.000 0.651 0.631 0.620 0.441	0.200 0.333 1.000 1.000 1.000 1.000 1.000
137425 I 137426 I 137429 I 137429 I 137429 I S S ARC1008 83610 83612 S 83613 I 83614 I 83617 I 83618 I 83620 I 83623 I 83624 S ARC0776 S 37750 I 37751 I 37755 S	Nontronite Nontronite Nontronite Serpentine* Kaolinite Kaolinite Nontronite Nontronite Nontronite Nontronite	2 3 5 >6 1 3 4 5 8 9	0.364 0.566 0.672 1.000 0.085 0.250 0.375 0.857 0.353	0.414 0.446 0.535 1.000 0.522 0.538 0.347 0.474 0.406	0.505 0.614 0.768 1.003 0.220 0.519 0.458 0.586	0.421 0.425 0.579 1.000 0.651 0.631 0.620 0.441	0.333 1.000 1.000 1.000 1.000 1.000
137426 I 137429 I 137429 I S S ARC1008 83610 83612 83612 83613 I 83614 I 83617 I 83618 I 83619 I 83620 I 83623 S ARC0776 S 37750 I 37751 I 37755 I	Nontronite Nontronite Serpentine* Kaolinite Kaolinite Nontronite Nontronite Nontronite Nontronite	3 5 >6 1 3 4 5 8 9	0.566 0.672 1.000 0.085 0.250 0.375 0.857 0.353	0.446 0.535 1.000 0.522 0.538 0.347 0.474 0.406	0.614 0.768 1.003 0.220 0.519 0.458 0.586	0.425 0.579 1.000 0.651 0.631 0.620 0.441	0.333 1.000 1.000 1.000 1.000 1.000
137429 I S S ARC1008 83610 83612 S 83612 S 83613 I 83614 I 83617 I 83618 I 83619 I 83620 I 83623 S ARC0776 S 37750 I 37751 I 37755 I	Nontronite Serpentine* Kaolinite Kaolinite Nontronite Nontronite Nontronite Nontronite	5 >6 1 3 4 5 8 9	0.672 1.000 0.085 0.250 0.375 0.857 0.353	0.535 1.000 0.522 0.538 0.347 0.474 0.406	0.768 1.003 0.220 0.519 0.458 0.586	0.579 1.000 0.651 0.631 0.620 0.441	1.000 1.000 1.000 1.000 1.000
S ARC1008 83610 83612 83613 83614 83617 83618 83619 83620 83623 83623 83624 83624 S ARC0776 37749 37750 37755 37756	Serpentine* Kaolinite Kaolinite Nontronite Nontronite Nontronite Nontronite	>6 1 3 4 5 8 9	1.000 0.085 0.250 0.375 0.857 0.353	1.000 0.522 0.538 0.347 0.474 0.406	1.003 0.220 0.519 0.458 0.586	1.000 0.651 0.631 0.620 0.441	1.000 1.000 1.000 1.000
ARC1008 83610 83612 83613 83614 83617 83618 83619 83620 83623 83623 83624 S ARC0776 37750 37751 37755 37756	Kaolinite Kaolinite Nontronite Nontronite Nontronite Nontronite	1 3 4 5 8 9	0.085 0.250 0.375 0.857 0.353	0.522 0.538 0.347 0.474 0.406	0.519 0.458 0.586	0.631 0.620 0.441	1.000 1.000 1.000
83610 83612 83613 1 83614 1 83617 1 83619 83620 83623 83623 83624 5 ARC0776 37749 37750 37751 37755 37756	Kaolinite Nontronite Nontronite Nontronite Nontronite	3 4 5 8 9	0.250 0.375 0.857 0.353	0.538 0.347 0.474 0.406	0.519 0.458 0.586	0.631 0.620 0.441	1.000 1.000
83612 83613 83614 83617 83618 83620 83623 83623 83624 83624 837749 37750 37751 37755 37756	Kaolinite Nontronite Nontronite Nontronite Nontronite	3 4 5 8 9	0.250 0.375 0.857 0.353	0.538 0.347 0.474 0.406	0.519 0.458 0.586	0.631 0.620 0.441	1.000 1.000
83613 83614 83617 83618 83619 83620 83623 83623 83624 S ARC0776 37749 37750 37751 37755 37756	Nontronite Nontronite Nontronite Nontronite	4 5 8 9	0.375 0.857 0.353	0.347 0.474 0.406	0.458 0.586	0.620 0.441	1.000
83614 83617 83618 83619 83620 83623 83624 83624 83624 83624 83624 837756 1000 100	Nontronite Nontronite Nontronite	5 8 9	0.857 0.353	0.474 0.406	0.586	0.441	
83617 83618 83619 83620 83623 83624 83624 83624 83624 83624 83624 83624 8362776 37750 37755 37756	Nontronite Nontronite	8 9	0.353	0.406			1.000
83618 83619 83620 83623 83624 83624 83624 83624 837756 37755 37755 37756	Nontronite	9			0.400		
83619 83620 83623 83623 83624 5 83624 5 ARC0776 37749 37750 1 37751 1 37755 1 37756 1			1.000			0.354	0.250
83620 83623 83623 83624 8 83624 8 ARC0776 37749 37750 1 37751 1 37755 3	Nontronite	4 m		1.389	1.025	1.070	1.000
83623 83624 5 83624 5 ARC0776 37749 37750 3 37751 3 37755 3	· · · · · · · · · · · · · · · · · · ·	10	0.375	0.294	0.335	0.292	0.250
83624 S ARC0776 37749 37750 37751 37755 37756	Nontronite	11	0.231	0.248	0.228	0.277	0.167
ARC0776 37749 37750 37751 37755 37756	Nontronite	14	0.462	0.465	0.418	0.448	1.000
ARC0776 37749 37750 37751 37755 37756	Serpentine	15	0.522	0.739	0.586	0.629	0.167
37749 37750 37751 37755 37756	Serpentine*	>18	1.000	1.000	1.006	1.000	1.000
37749 37750 37751 37755 37756							
37750 37751 37755 37756	Kaolinite	1	0.185	0.208	0.218	0.213	0.111
37751 37755 37756	Nontronite	2	0.313	0.305	0.326	0.230	0.091
37755 37756 1	Nontronite	3	1.000	0.491	1.100	0.466	1.000
37756	Nontronite	6	0.500	0.418	0.377	0.128	1.000
	Nontronite	7	0.625	0.503	0.604	0.497	1.000
	Nontronite	9	0.455	0.710	0.753	0.769	1.000
	Serpentine*	>11	1.000	1.000	1.000	1.000	1.000
A DC0774							
ARC0774 37693	Nontronite	1	0.171	0.639	0.223	2.448	1.250
	Nontronite	2	0.171	0.639	0.225	2.446	1.250
	Nontronite	2 3	0.298	0.499	0.425 2.125	3.130	1.250
	Nontronite	3 4	2.500	1.503	4.857	4.679	1.250
	Nontronite	4 5	2.500 0.694	0.233	4.657	4.679 0.961	0.417
		с 8	0.694		0.374 0.810	1.607	1.250
	Nontronite			0.291			
	Nontronite	10	2.083	0.297	0.919	1.534	1.250
	Nontronite	11 12	2.083	1.845	22.667	8.820	1.250
	Nonirorite	13	2.500	1.686	22.667	8.308	1.250
37709	Nontronite Serpentine	16	2.083 1.000	0.953 1.000	1.360 1.000	1.225 1.000	1.250 1.000

e is

Appendix 8: Table A8.2. continued..

-

Hole ID	Regolith	Depth to			Cp/Cw		
	Unit	(m)	Zr	Fe	Ti	Cr	Nb
ARC0786							
37969	Talc	1	0.042	0.242	0.088	0.527	0.200
37970	Talc	2	0.042	0.380	0.100	0.719	0.111
37971	Talc	3	0.179	1.312	0.552	1.404	1.000
37974	Talc	6	1.000	1.141	1.176	1.057	1.000
37978	Talc	10	0.833	1.126	1.081	0.938	1.000
37979	Talc	11	0.556	0.987	0.976	0.879	0.500
37983	Serpentine	15	1.000	1.000	1.000	1.000	1.000
	5012011110						
ARC0782							
37888	Kaolinite	1	0.074	0.385	0.172	0.545	0.102
37890	Kaolinite	3	0.303	0.426	0.552	0.599	0.140
37893	Kaolinite	5	0.385	0.638	1.525	1.223	1.330
37894	Saponite	6	0.833	0.734	1.368	1.333	1.330
37896	Saponite	8	0.526	0.821	0.735	0.243	0.266
37898	Saponite	10	0.227	0.656	0.324	0.817	0.665
37900	Saponite	12	0.500	1.052	0.830	2.106	1.330
37903	Saponite	15	0.556	0.748	0.689	0.809	0.266
	Serpentine*	>16	1.000	1.000	1.000	1.000	0.998
ARC0783							
37910	Kaolinite	1	0.174	0.379	0.312	0.397	0.283
37913	Nontronite	4	0.370	0.452	0.378	0.491	0.566
37914	Nontronite	5	0.538	0.398	0.487	0.495	2.830
37915	Nontronite	6	0.696	0.535	0.873	0.703	0.566
37916	Serpentine	7	2.367	0.781	1.202	0.939	2.830
	Serpentine*	>9	1.000	1.000	1.003	1.000	0.999
ARC0793							
39374	Kaolinite	1	0.095	0.333	0.165	0.388	0.167
39375	Kaolinite	2	0.143	0.263	0.150	0.307	1.000
39378	Kaolinite	5	0.167	0.340	0.172	0.225	0.080
39380	Kaolinite	7	0.194	0.304	0.165	0.257	0.500
39383	Kaolinite	10	0.343	0.258	0.183	0.127	0.080
39385	Kaolinite	11	0.529	0.240	0.277	0.122	0.094
39386	Nontronite	12	0.632	0.420	0.458	0.173	0.667
39389	Nontronite	15	0.500	0.420	0.439	0.173	1.000
39390	Nontronite	15	0.500	0.923	0.439		1.000
39391	Nontronite	17		0.923	0.563	0.309	
39394	Nontronite	20	0.146			0.350	0.500
39396			1.500	0.971	1.149	0.209	1.000
39396 39401	Serpentine Serpentine*	22 27	3.000 1.000	1.069	1.500	0.235	1.000
JJ4U I	Serberune	<u> </u>	1.000	1.000	1.000	1.000	1.000
ARC0126							
106258	Saponite	1	0.260	3.290	0.815	2.573	0.33
106259	Saponite	2	0.762	1.193	1.161	1.340	0.167
106260	Saponite	3	1.067	1.677	1.263	1.080	1.000
106262	Saponite	5	0.889	1.179	0.962	0.919	1.000
106266	Serpentine	9	3.556	1.045	1.202	0.915	0.500
,00200	Serpentine*	9 >10	3.556				
	oerbeutitie .	-10	1.000	1.000	1.000	1.000	1.00

Appendix 8: Table A8.2. continued..

жż

Hole ID	Regolith	Depth to			Cp/Cw		
	Unit	(m)	Zr	Fe	Ti	Cr	Nb
ARC0128							
106294	Kaol+serp	1	0.085	0.330	0.165	0.606	3.000
106297	Kaolinite	4	0.136	0.315	0.189	0.510	0.353
106299	Kaolinite	6	0.472	0.251	0.392	0.702	0.500
106300	Nontronite	7	0.944	0.610	1.111	1.209	0.750
106301	Nontronite	8	0.472	0.474	0.390	0.653	3.000
106305	Nontronite	12	0.425	0.339	0.283	0.528	3.000
106306	Nontronite	13	0.425	0.399	0.328	0.436	3.000
106308	Nontronite	15	1.700	0.595	0.537	0.685	0.600
106309	Nontronite	16	1.417	0.758	0.597	0.702	3.000
106312	Nontronite	19	0.607	0.625	0.541	0.738	3.000
106236	Serpentine	20	1.000	1.000	1.000	1.000	1.000

Serpentine* = Indicates that Cp/Cw ratios have been calculated for averaged compositions of the serpentine regolith unit.

•

. 19

ŝ

** 6

31

Appendix 8: Table A8.3. Average composition of serpentine units in RC drill holes at MM2.

Hole ID		%Si02	%Si02 %AI203	%Fe2O3 %MgO %CaO %Na2O %K2O %TiO2	%MgO	%cao	%Na2U	%K20	%Ti02	%Ni	%C0	5	Мn	Zn	Zr	qN
												bpm	mdd	mdd	bpm	mdd
CBRC0780	Average	31.91	1.36	7.20	34.17	0.88	0.05	0.02	0.05	0.226 0	. 600,0	1677	790	42	5	e
	SD SD (N = 3)	3.42	0.31	1.34	1.05	0.08	0.01	0.00	0.02	0.036 0	0.002	306	199	10.8	2.2	ო
CBRC0744	Average	43.13	3.11	14.14	21.65	2.53	0.07	0.04	0.14	0.439 0	0.016	9521	1545	06	7	~~
	SD (N = 2)	6.36	0.91	2.48	6.63	3.22	0.04	0.01	0.07	0.099 0	0.003	1535	301	21.9	0.7	0
CBRC0747	Averade	51.97	2.50	12.78	21.74	0.08	0.07	0.06	0.10	0.387 0	0.021	2834	2370	56	ţ	N
	SD (N = 4)	9.42	0.73	4.88	11.88	0.05	0.04	0.03	0.04	0.072 0	0.010	1440	1697	8.0 8	2.2	~~
CBRC0783	Average	28.03	0.59	7.00	25.25	8.72	0.04	0.02	0.01	0.222 0	0.008	878	841	35	မ	~~
	SD (N = 7)	7.36	0.15	1.09	4.03	7.27	0.02	0.00	0.01	0.016 0	0.002	176	81	5.1	2.7	0

SD = Standard deviation. N = The number of one meter interval, composite samples, that comprise the serpentine unit of each drill hole, used to determine the average composition of the serpentine unit.

്ള്
MM
5
olei
its in RC drill h
,
Ř
. <u></u>
Average composition of serpentine units in
ē
ЩШ,
гре
se
10
itio
osi
d L
20
age
/eL
Ā
8.4.
A e
able
Ē
ŝ
ipi
ber
Ap
-

11

«د ...,

> 8 ()

t.,

¢į

Hole ID		7010%	22120	NPERO'S	- Rinner										Ì	
												bpm	bpm	mqq	mqq	mqq
ARC1257	Average	38.51	2.28	12.81	31.49	0.12	0.33	0.04	0.08	0.741	0.028	2865	2917	96	5.7	-
	SD M = 3V	0.27	0.19	0.66	0.98	0.18	0.09	0.01	0.01	0.154	0.013	138	1141	20.2	0.6	0
:	(c - N)		4			0	0		1	001		0007			0	٦
ARC1478	Average	39.43	3.12	13,92	27.20	1.63	0.46	0.08	0.17	0,590	0.020	4820	2027	92.75	10.8	, - -
	SD M = 20	0.48	0.20	0.71	0.11	0.77	0.01	00'0	0.08	0.086	0.001	221	129	9.5	4.6	0
	(7 - 11)		1		, , , , , , , , , ,			1			•			Ì	(•
ARC1008	Average	45.63	2.15	12.87	25.34	0.35	0.38	0.09	0.08	0.419	0.016	3029	1921	И	6.0	•
	SD	1.82	0.28	1.23	3.81	0.03	0.17	0.03	0.01	0.121	0.003	166	869	8.2	0.8	0
	(N = 4)															
ARC0776	Average	52.67	1.64	11.54	21.08	0.22	0.42	0.07	0.06	0.483	0.018	3544	1754	69.5	5.0	
	SD	3.25	0.18	2.44	5.66	0.01	0.13	0.03	0.01	0.019	0.001	83	378	7.8	1.4	0
	(N = 2)															
ARC0774	Average	28.20	1.06	6.09	32.94	1.18	0.27	0.07	0.03	0.248	0.010	5292	925	44.3	6.3	
	SD	5.70	0.55	0.93	2.20	0.93	0.11	0.02	0.03	0.050	0.002	382	237	7.5	3.1	-
	(N = 4)															
ARC0786	Average	36.36	2.34	8.67	31.32	1,9	0.14	0.09	0.08	0.221	0.011	3072	1030	55	5.0	-
	SD															
	(N = 1)															
ARC0782	Average	47.71	2.60	17.43	16.11	0.09	0.48	0.08	0.09	0.734	0.024	8477	5259	91.3	5.0	-
	SD	4.37	0.18	2.33	1.45	0.03	0.12	0.01	0.01	0.178	0.005	3274	2642	6.7	3.6	-
	(N = 3)															
ARC0783	Average	44.28	2.89	14,23	22.82	0.41	0.45	0.08	0.13	0.662	0.024	4077	3312	93.8	11.8	ო
	SD	2.09	0:30	1.94	3.30	0.12	0.04	0.01	0.02	0.163	0.010	567	798	6.3	3.3	ო
	(E = N)															
ARC0793	Average	41.46	1.57	13.87	28.86	0.16	0.07	0.02	0.054	0.509	0.019	3678	1634	70	6.0	
	SD															
	(N = 1)															
ARC0126	Average	42.37	2.60	20.20	17.09	0.17	0.93	0.13	0.10	0.742	0.025	4863	2804	99.3	10.7	.
	SD	1.54	0.34	0.39	0.65	0.05	0.04	0.00	0.01	0.035	0.003	688	1053	11.2	3.8	0
	(N = 3)															
ARC0128	Average	37.58	2.22	14.365	26.885	0.51	0.89	0.08	0.08	0.587	0.027	9040	2478	103.5	8.5	ო
	ŝ															
	(N=1)															

SD = Standard deviation. N = The number of one meter interval, composite samples, that comprise the serpentine unit of each drill hole, used to determine the average composition of the serpentine unit. For some drill holes, only a single one meter composite sample was available for analysis.