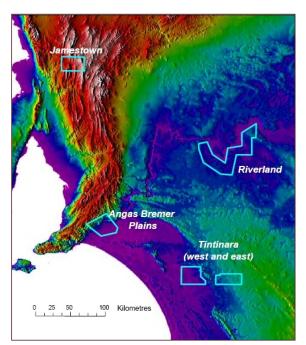


Cooperative Research Centre for

Landscape Environments Salinity & Water

ac



Australian Government Geoscience Australia

CALCULATION OF CONDUCTIVITY DEPTH IMAGES (CDI) FOR SA AEM DATA USING EMFLOW 5.30 (AMIRA-P407B): RESOLVE: RIVERLAND AND TINTINARA (EAST & WEST); TEMPEST: JAMESTOWN & ANGAS BREMER PLAINS

A. Fitzpatrick CRC LEME OPEN FILE REPORT 176 September 2004

CRC LEME is an unincorporated joint venture between CSIRO-Exploration & Mining, and Land and Water, The Australian National University, Curtin University of Technology, University of Adelaide, Geoscience Australia, Primary Industries and Resources SA, NSW Department of Mineral Resources and Minerals Council of Australia, established and supported under the Australian Government's Cooperative Research Centres Program.

Cooperative Research Centre for Landscape Environments and Mineral Exploration

CALCULATION OF CONDUCTIVITY DEPTH IMAGES (CDI) FOR SA AEM DATA USING EMFLOW 5.30 (AMIRA-P407B): RESOLVE: RIVERLAND AND TINTINARA (EAST & WEST); TEMPEST: JAMESTOWN & ANGAS BREMER PLAINS

A. Fitzpatrick

CRC LEME OPEN FILE REPORT 176

September 2004

Report prepared for the South Australia Salinity Mapping and Management Support Project. This project is jointly funded by the South Australian and Commonwealth Governments under the National Action Plan for Salinity and Water Quality.

© CRC LEME 2004

CRC LEME is an unincorporated joint venture between CSIRO-Exploration & Mining, and Land and Water, The Australian National University, Curtin University of Technology, University of Adelaide, Geoscience Australia, Primary Industries and Resources SA, NSW Department of Mineral Resources and Minerals Council of Australia.

© CRCLEME

Copies of this Publication can be obtained from : The publications Officer, CRCLEME, c/- CSIRO Exploration and Mining, PO Box 1130, Bentley WA 6120, Australia. Information on other publications in this series may be obtained from the above, or from <u>http://crcleme.org.au</u> Cataloguing-in-Publication: Name: Fitzpatrick, A. Title: Calculation of conductivity depth images (CDI) S.A. AEM data using EMFLOW 5.30 (AMIRA-P407B): RESOLVE: Riverland & Tintinara (East & West); TEMPEST: Jamestown & Angas Bremer Plains South Australia ISBN 1 921039 14 0 1. Riverland, Tintinara, Jamestown, Angas Bremer Plains South Australia 2. AEM 3. Calibration I. Name II. Title CRCLEME Open File Report 176 ISSN 1329-4768

Address and Affiliation of Authors

Andrew Fitzpatrick Cooperative Research Centre for Landscape Environments and Mineral Exploration Geoscience Australia GPO Box 378, Canberra, ACT 2601 Australia

> © Cooperative Research Centre for Landscapes, Environment and Mineral Exploration, 2004

1. INTRODUCTION

This report summarises the calculation of conductivity depth images (CDI) from airborne electromagnetic (AEM) surveys flown for the South Australian Salinity Mapping and Management Projects. Three areas, Riverland, Tintinara-east, and Tintinara-west were surveyed with the DIGHEM RESOLVE frequency domain helicopter electromagnetic system. Two areas, Jamestown and Angas Bremer Plains were surveyed with the TEMPEST fixed-wing, towed-bird time domain electromagnetic system. All surveys were conducted by Fugro Airborne Surveys (FAS). The location of the survey areas are shown in Figure 1.

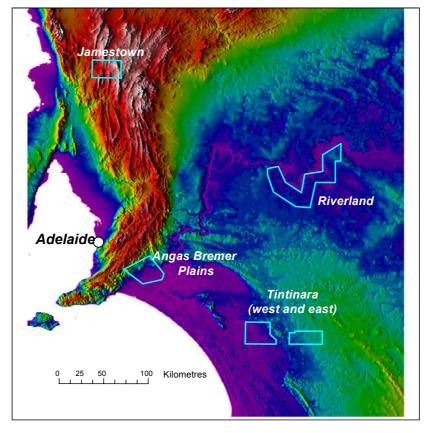


Figure 1. Location Map of South Australian Salinity investigation AEM surveys. Background image is a digital elevation model (DEM).

The survey acquisition and processing details for the RESOLVE Riverland and Tintinara surveys are reported by Cowey et al (2002). Survey details for the TEMPEST Angas Bremer Plains and Jamestown surveys are reported by Owers and Stenning (2002). Conductivity depth predictions were delivered as a product from the contractor produced using EMFlow version 4 for the TEMPEST surveys and version 5.10 for the RESOLVE surveys.

EMFlow was developed within the CRC AMET through several AMIRA research projects (Macnae et al, 1998, Macnae and Zonghou, 1998). The software has been commercialised by Encom Technology Pty Ltd. EMFlow is currently be upgraded through the AMIRA-P407B project, which CRCLEME sponsors.

The RESOLVE Riverland and Tintinara datasets were calibrated and subject to a constrained inversion to specifically map a near surface clay layer (Blanchetown Clay), reported by Brodie et al, (2003).

A new set of conductivity predictions for all the surveys have been produced using the proprietary research version of EMFlow (version 5.30) which CRCLEME has access to. This software has several features and improvements over the commercially available product (EMFlow 5.10).

The re-calculation of the conductivity depth images was considered necessary for several reasons;

- Independent borehole conductivity measurements were available, thereby allowing a direct comparison with conductivity predictions from the airborne data.
- Comparisons between forward models of borehole measurements and the real airborne response indicated calibration errors in the RESOLVE data. Subsequently the RESOLVE data was re-scaled using the appropriate factors. (Brodie et al, 2003).
- EMFlow v5.30 allows a greater number of discretised conductivity values to be used in calculating the CDI (upgraded from 20 to 250 values) than previous versions. This may increase resolution in conductivity models allowing more subtle conductivity features to be imaged.
- The original FAS derived CDI's utilised only the 5 coplanar frequencies of the RESOLVE system; EMFlow v5.30 allows all 6 frequencies of the RESOLVE system to be incorporated into the CDI calculation.

The discussion of the EMFLOW v5.30 processing will be subdivided into two sections based upon the type of system employed; RESOLVE and TEMPEST.

2. RESOLVE: Riverland and Tintinara

2.1. CDI generation with EMFlow v5.30

Brodie, et al (2003) produced scaling factors for the Riverland and Tintinara East RESOLVE HEM surveys. This was accomplished by comparing the forward models of the HEM response from borehole conductivity data with the RESOLVE survey data. The scaling factors for each frequency are listed in table 1.

Frequency (Hz)	385	1518	3323	6135	25380	106140
Calibration Factor	0.96	1.04	1.11	1.15	1.29	1.23

The scaling factors were applied to levelled data provided from FAS for input into EMFlow v5.30. The 3323Hz vertical coaxial coil was scaled by a further 2.76 in order to be treated as a horizontal coaxial planar coil (HCP@7.86m) for input into EMFlow. The system geometry for the EMFlow input is listed in Table 2.

Variable	Survey specification	Input for EMFLOW
Transmitter loop pitch	0	0
Transmitter roll	0	0
Transmitter-receiver height	As measured by bird altimeter	As measured by bird altimeter
Transmitter loop- receiver coil spacing		
385 HCP	7.86m	7.86m
1518 HCP	7.86m	7.86m
3323 VCX (rescaled to HCP@7.86m)	8.99m	7.86m
6135 HCP	7.86m	7.86m
25380 HCP	7.86m	7.86m
106140 HCP	7.86m	7.86m

 Table 2. System geometry of RESOLVE for input into EMFlow v5.30

The EMFlow descriptor file used for processing the Riverland and Tintinara survey areas is included in Appendix 1. An exponential approximation was used to create the basis function. Twenty-two time constants (Taus) ranging from 1μ s to 2ms were used in the decomposition, with normalisation completed using a global maximum and a smoothing factor of 0.4. The data weights were 1.0 for all frequencies.

Conductivity values were calculated down to 50 metres below the ground in 2 metre increments. The range of conductivity values were set to range between 1 and 2000 mS/m for Riverland and 1 to 1000 mS/m for the Tintinara areas. Conductivity predictions were output as ASCII files.

2.2. Gridding

Conductivity grids for each depth interval were created within INTREPID using a minimum curvature algorithm. The inputs to gridding were log10(conductivity) values. Grids were assigned an MGA54 projection and GDA94 datum. Grid settings are given in Table 3.

Gridding Parameters	Riverland	Tintinara
Grid Size	30 metres	60 metres
Line Orientation	0 degrees	90 degrees
Output Precision	IEEE4ByteReal	IEEE4ByteReal
Initial Method Mode	Nearest Neighbours	Nearest Neighbours
Spline Type Mode	Akima	Akima
Minimum Curvature	Yes	Yes
Honour Original	Yes	Yes
Honour 2Cells	No	No
Maximum Iterations	50	50
Maximum Residual	0.000001	0.000001
Minimum Curvature Tension	0.0	0.0
Relaxation Factor	1.375	1.375
Grid Conditioning		
Masking	Yes	Yes
Crew Cut	No	No
Clipping	Yes	Yes
Smoothing	No	No
Smoothing Iterations	6	6
Laplace Iterations	2	2
Cells2Extrapolate	200	200

 Table 3. Settings used for gridding the Riverland and Tintinara conductivity data

Grids were masked back to the survey boundary to avoid misrepresentation through extrapolation beyond the limits of the data.

Analysis of preliminary grids showed line artefacts attributed to minor levelling differences. The data were micro-levelled using a decorrugation filter in the INTREPID software. A number of trials were carried out to determine suitable settings for the filtering. In each case, the results were examined using ERMapper. The final settings for the de-corrugation filter are given in Table 4.

		4. De-corrugation se	U U			
	Riv	/erland	Tintinara			
Filter	High Pass	Naudy Filter	High Pass	Naudy Filter		
	Low Pass	Smoothed Fuller	Low Pass	TintinaraHigh PassNaudy FilterLow PassSmoothed FullerHigh PassMirror		
Extrapolator	High Pass	Mirror	High Pass	Mirror		
	Low Pass	Flipped mirror	Low Pass	Flipped mirror		
Minimum streak length	5	000 m	200	00m		
Streak width		300m	600m			
Minimum adjustment		-1	-	-1		
Maximum adjustment		1	1			

Table 4. De-corrugation settings

The de-corrugation corrections were applied to the point located data using the INTREPID micro-levelling tool. The micro-levelling settings are given in table 5.

	Table 5. Micro-	levelling settings.	
AREA	Secondary filter along along line correction	Nominal strike	Adjustments(LOG) Min/max
Riverland (0-6m)	5000m	0/180	-1/+1
Riverland (6m-50	5000m	0/180	-1/+1
Tintinara W	2000m	90/270	-1/+1
Tintinara E	2000m	90/270	-1/+1

An example of a conductivity grid from the reprocessed Riverland RESOLVE data is shown in Figure 2. The FAS supplied conductivity grid is also shown for comparison. A logarithmic colour stretch has been applied to the gridded data to optimise the interpretation of spatial patterns in the conductivity data for each depth slice. Although the two grids are of the same interval, the scaling factors applied to the reprocessed product have resulted in some significant differences in the observed conductivity patterns.

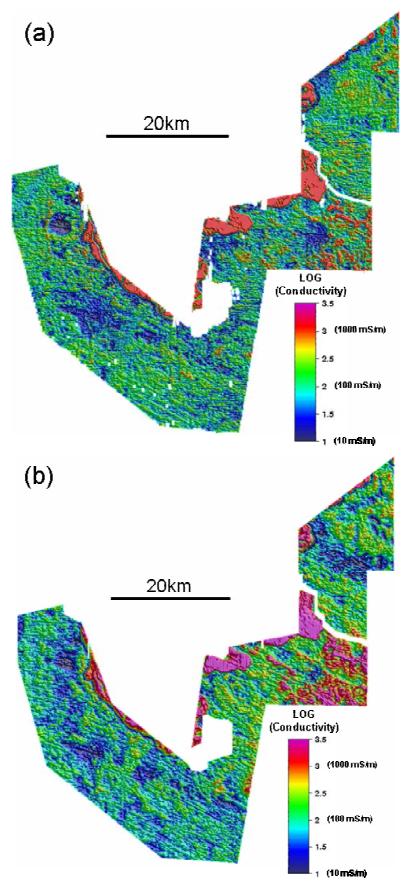


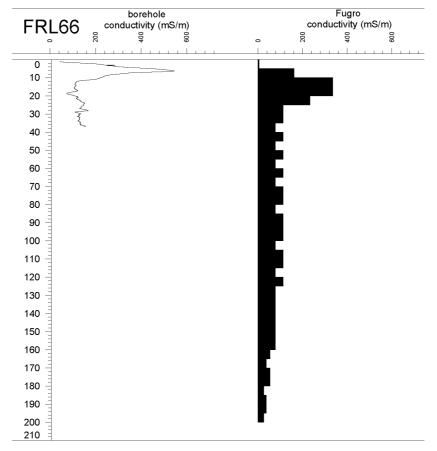
Figure 2. Conductivity grid (6-8 metres) of Riverland, (a) as supplied by FAS (b) reprocessed by CRC LEME.

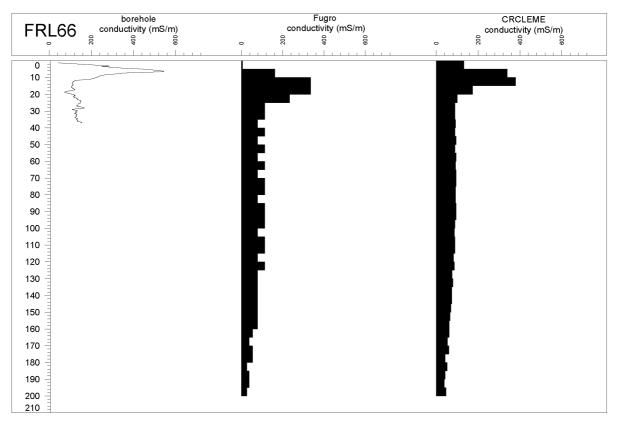
3. TEMPEST AEM Angas Bremer Plains and Jamestown

A number of boreholes were geophysical logged within the Angas Bremer Plains and Jamestown survey areas following the TEMEPEST AEM surveys. As a larger number of boreholes were provided for the Angas Bremer Plains area, this survey was chosen to approximately calibrate the airborne data. It was assumed the same calibration scaling could be applied to the Jamestown survey as it was flown immediately after the Angas Bremer Plains survey.

Simple calibration of TEMPEST AEM data is often achieved by adjusting the geometry of the system, until a suitable match is made between borehole measurements and the AEM conductivity model (in particular the transmitter loop height) (Brodie et al, 2002, Christensen, 2002, Lane et al, 2003).

Analysis of the borehole conductivity data revealed a shallow conductive "bulge" common across most of the survey area. This bulge was imaged by the contractor supplied AEM conductivity data; however it was offset from the borehole anomaly by approximately 5 metres (Figure 3).




Figure 3. Borehole conductivity log for FRL66 and measured AEM conductivity response over borehole. The shallow conductive bulge is displaced 5 metres deeper in the AEM data.

3.1. CDI generation with EMFlow v5.30

The final height-geometry corrected X component data as supplied by the contractor (FAS) was used as input for the EMFlow v5.30 processing. A number of trials were carried out to determine suitable settings for the system geometry, until the AEM conductivity model matched the

borehole conductivity measurements. This required a 5 metre offset to be added to the transmitter-loop height. The final system geometry for the EMFlow input is listed in Table 6. An example of the new AEM conductivity model as compared to the contractor supplied data and borehole is shown in Figure 4. Appendix 2 contains the comparison of AEM conductivity model derived by FAS and the reprocessed AEM data for all borehole measurements within the Angas Bremer Plains Area.

Table 6. System geometry of TEMPEST for input into EMFlow v5.30										
Variable	Survey specification	Input for EMFLOW								
Transmitter loop pitch	0	0								
Transmitter roll	0	0								
Transmitter loop height	120	125m								
Trasnsmitter loop-receiver coil horizontal spacing	128m behind aircraft	128m behind aircraft								
Transmitter loop- receiver coil vertical spacing	35m behind aircraft	35m behind aircraft								

Figure 4. Borehole measurements and conductivity predictions from TEMPEST data (Angas Bremer Plains) derived by FAS and reprocessed by CRC LEME. The new conductivity model displaces the conductive bulge to shallower depth coinciding with the borehole measurements.

The EMFlow descriptor file used for processing the Jamestown and Angas Bremer Plain is included in Appendix 3. An exponential approximation was used to create the basis function. Forty-two time constants (Taus) ranging from 5µs to 50ms were used in the decomposition with normalisation completed by applying a global maximum and a smoothing factor of 0.4. The data weights were 1.0 for all windows.

Conductivity values were calculated down to 200 metres below the ground in 5 metre increments for Angas Bremer Plains and down to 100 metres for Jamestown. The range of

conductivity values were set to range between 1 and 1000 mS/m. Conductivity predictions were output as ASCII files.

2.2. Gridding

Conductivity grids for each depth interval were created within INTREPID using a minimum curvature algorithm. The inputs to gridding were log10(conductivity) values. Grids were assigned an MGA54 projection and GDA94 datum. Grid settings are given in Table 7.

Gridding Parameters	Angas Bremer Plains	Jamestown
Grid Size	80 metres	60
Line Orientation	57 degrees	90 degrees
Output Precision	IEEE4ByteReal	IEEE4ByteReal
Initial Method Mode	Nearest Neighbours	Nearest Neighbours
Spline Type Mode	Akima	Akima
Minimum Curvature	Yes	Yes
Honour Original	Yes	Yes
Honour 2Cells	No	No
Maximum Iterations	50	50
Maximum Residual	0.000001	0.000001
Minimum Curvature Tension	0.0	0.0
Relaxation Factor	1.375	1.375
Grid Conditioning		
Masking	Yes	Yes
Crew Cut	No	No
Clipping	Yes	Yes
Smoothing	No	No
Smoothing Iterations	6	6
Laplace Iterations	2	2
Cells2Extrapolate	200	200

Table 7. Settings used for gridding the Riverland and Tintinara conductivity data

Grids were masked back to the survey boundary to avoid misrepresentation through extrapolation beyond the limits of the data.

Analysis of preliminary grids showed line artefacts attributed to minor levelling differences for Jamestown survey. No levelling problems were observed in the Angas Bremer Plains dataset. The Jamestown data were micro-levelled using a decorrugation filter using INTREPID software. A number of trials were carried out to determine suitable settings for the filtering. In each case, the results were visualised using ERMapper. The final settings for the de-corrugation filter are given in Table 8.

	Jamestown						
Filter	High Pass	Naudy Filter					
	Low Pass	Smoothed Fuller					
Extrapolator	High Pass	Mirror					
	Low Pass	Flipped mirror					
Minimum streak length	5	000 m					
Streak width	8	300 m					
Minimum adjustment		-1					
Maximum adjustment		1					

 Table 8. De-corrugation settings.

The de-corrugation corrections were applied to the point located data using the INTREPID micro-levelling tool. The micro-levelling settings are given in table 9.

		io-leveling settings.	
AREA	Secondary filter along along line correction	Nominal strike	Adjustments(LOG) Min/max
Jamestown	5000 m	90/270	-1/+1

Table 9. Micro-levelling settings.

An example of a conductivity grid from the reprocessed Angas Bremer Plains TEMPEST data is shown in Figure 5. The FAS supplied conductivity grid is shown for comparison. A linear colour stretch has been applied to the gridded data to optimise the interpretation of spatial patterns in the conductivity data for each depth slice. Although the two grids are of the same interval, the scaling factors applied to the reprocessed product have resulted in subtle differences in the observed conductivity patterns.

3. SUMMARY

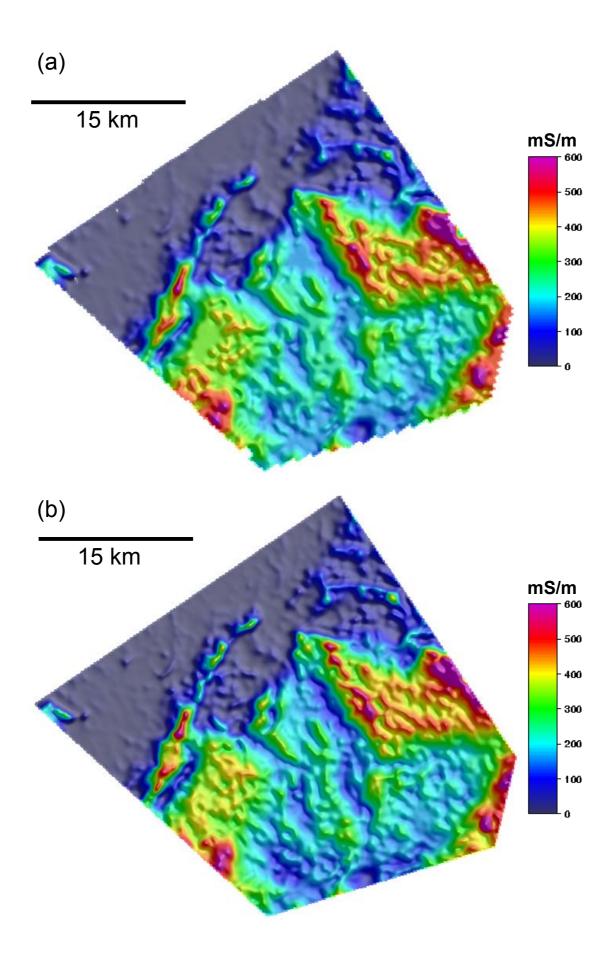
The reprocessing of the South Australian Salinity Mapping and Management Support Project airborne electromagnetic datasets have resulted in new datasets which accord better with conductivity structure as determined from electrical borehole logs. In addition, EMFlow v5.30 provides higher resolution conductivity models than current commercial versions of the software as used by the contractor (250 conductivity values vs 20 conductivity values).

4. REFERENCES

Brodie. R.C. Green, A.A. and Munday, T.J., 2003, Constrained inversion of RESOLVE airborne electromagnetic data, Riverland and Tintinara East. CRC LEME Restricted Report 152.

Brodie, R., Lane, R. and Gibson, D., 2002, Gilmore Project, Comparison of AEM and Borehole conductivity data: Report prepared for CRCLEME, June 2002.

Christensen, A., 2003, Calibration of Honeysuckle Creek Conductivity Depth Imaging, Preview, Australian Society of Exploration Geophysicists, 27-30.


Cowey, D., Garrie, D. and Tovey, A., 2002, Acquisition and processing reports, Riverland and Tintinara SA, RESOLVE Survey; Fugro Airborne Survey report to the Bureau of Rural Sciences for Job 912.

Lane R., Brodie R., & Fitzpatrick A. 2003, Constrained inversion of AEM data from St George, Queensland, Australia, unpublished report, CRC LEME, Geoscience Australia.

Macnae, J., King, A., Stolz, N., Osmakoff, A. and Blaha, A., 1998, Fast AEM data processing and inversion: Exploration Geophysics 29, 163-169.

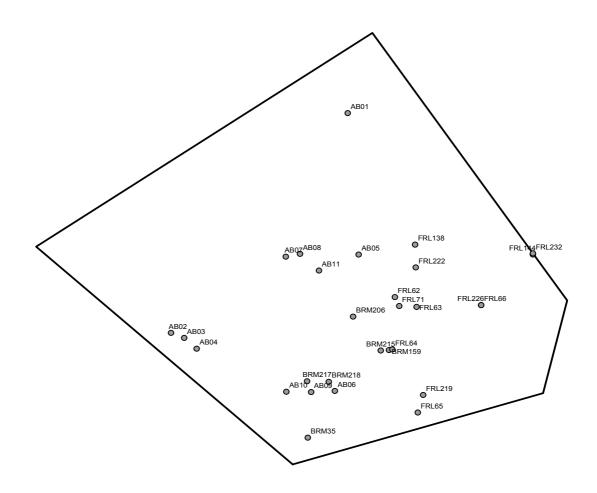
Macnae, J. and Xiong, Z., 1998, Block modelling as a check on the interpretation of stitched CDI sections from AEM data: Exploration Geophysics 29, 191-194.

Owers, M. and Stenning, L., 2002, Acquisition and processing reports, Jamestown and Angas Bremer Plains, TEMPEST Survey; Fugro Airborne Survey report to the Bureau of Rural Sciences for Job 900 & 901.

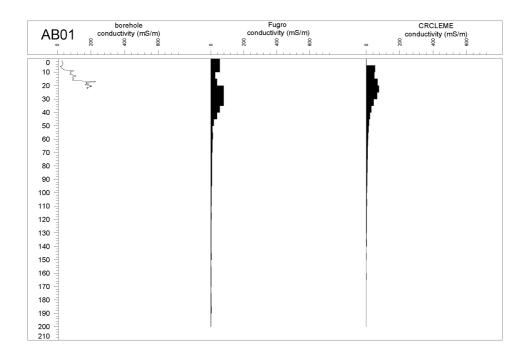
Figure 5. Conductivity grid (15-20 metre interval) of Angas Bremer Plains, (a) as supplied by FAS (b) reprocessed by CRC LEME.

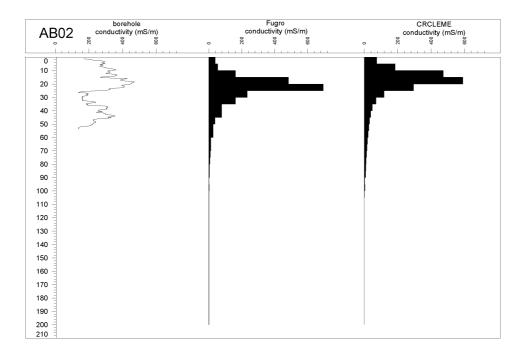
APPENDIX I: EMFlow descriptor files: Riverland and Tintinara

Riverland

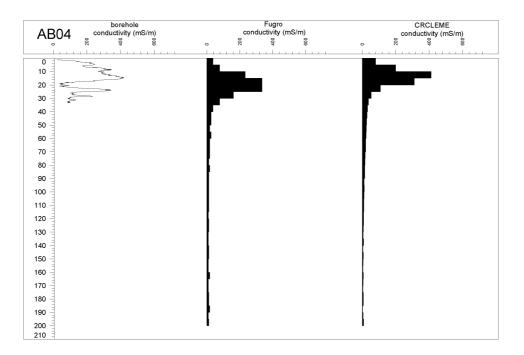

FILE FORMAT VERSION 9 SYSTEM NAME Dighem Resolve 2002 VERSION 1 DEFINED BY Andrew Fitzpatrick DATE DEFINED 10/04/03 TIME SCALING 1 1 [sec] WAVEFORM TYPE frequency domain WAVEFORM NORMALIZED BY component TxRx TxRy TxRz TyRx TyRy TyRz TzRx TzRy TzRz 0 0 0 0 0 0 0 0 5 +++++++ + TzRz + +++++++ FREQUENCIES 5 385 1 1518 1 6135 1 25380 1 106140 1 AMPLITUDE SCALING 1e+006 1 TRANSMITTER GEOMETRY moving dipole z 0 0 1 XYZ POSITION: 0 0 0 RECEIVER GEOMETRY moving dipole z 0 0 1 XYZ POSITION: -7.9 0 0 DATA FORMAT Geosoft format (1 yes, 0 no) 0 Sample file name (if available)

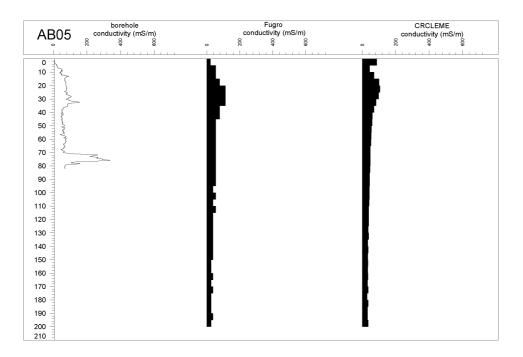
Number	of c	ommer	nt l	ines	at the	begin	ning o	f each	data	file	
1											
Number	of i	tems	in	each	data re	ecord					
19											
POSITI	ON (II	NDEX) OF	' IN P	HASE I	N EACH	DATA	RECORD			
freq	????	TxI	٢x	TxRy	TxRz	TyRx	TyRy	TyRz	TzRx	TzRy	TzRz
1		0	0	0	0	0	0	0	0	0	
2		0	0	0	0	0	0	0	0	0	1
3		0	0	0	0	0	0	0	0	0	1
4		0	0	0	0	0	0	0	0	0	1
5		0	0	0	-	0	0	-	0	0	1
POSITI	ON (II	NDEX) OF	' QUAD	RATURE	IN EA	CH DAT	A RECO	RD		
freq	????	TxI	λX	TxRy	TxRz	TyRx	TyRy	TyRz	TzRx	TzRy	TzRz
1		0	0	0	0	0	0	0	0	0	
2		0	0	0	0	0	0	0	0	0	1
3		0	0	0			0	0	0	0	_
4		0	0	0	0	0	0	0	0	0	1
5		0	0	0	0	0	0	0	0	0	1
line		1	1								
FID		3	1								
east		4	1								
north		5	1								
z_topo		7	1								
altitu	de	6	1								
Rx_pit	ch	0	0								
Rx_rol	1	0	0								
Rx_yaw		0	0								
Tx_pit	ch	0	0								
Tx_rol	1	0	0								
Tx_yaw		0	0								
z(ASL)		0	2								

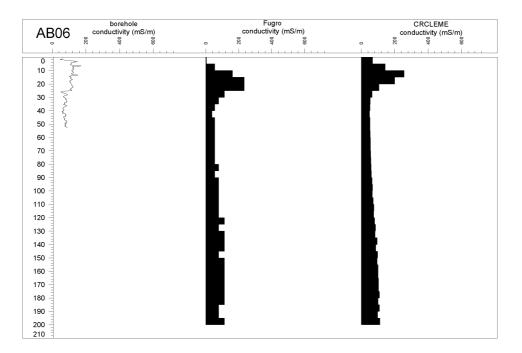

Tintinara East and Tintinara West FILE FORMAT VERSION 9 SYSTEM NAME Dighem Resolve 2002 VERSION 1 DEFINED BY Andrew Fitzpatrick DATE DEFINED 10/04/03 TIME SCALING 1 1 [sec] WAVEFORM TYPE frequency domain WAVEFORM NORMALIZED BY component TxRx TxRy TxRz TyRx TyRy TyRz TzRx TzRy TzRz 0 0 0 0 0 0 0 6 +++++++ + TzRz + +++++++ FREQUENCIES б 385 1 1518 1 3323 1 6135 1 25380 1 106140 1 AMPLITUDE SCALING 1e+006 1 TRANSMITTER GEOMETRY moving dipole z 0 0 1 XYZ POSITION: 0 0 0 RECEIVER GEOMETRY moving dipole z 0 0 1 XYZ POSITION: -7.9 0 0 DATA FORMAT Geosoft format (1 yes, 0 no) 0

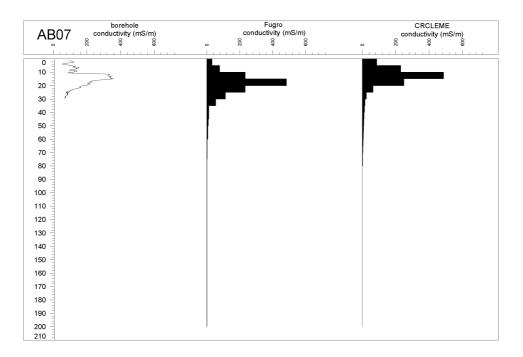

Number 1	of co	mment	: 1:	ines a	at the	begin	ning o	f each	data :	file	
Number	of it	ems :	in e	each d	data re	ecord					
31											
POSITIC	ON (IN	DEX)	OF	IN PH	HASE II	N EACH	DATA	RECORD			
freq	????	TxRz	k .	ГхRу	TxRz	TyRx	TyRy	TyRz	TzRx	TzRy	Τz
1	0		0	0	0	0	0	0	0	0	
2	0		0	0	0	0	0	0	0	0	
3	0		0	0	0	0	0	0	0	0	
4	0		0	0	0	0	0	0	0	0	
5	0		0	0	0	0	0	0	0	0	
б	0		0	0	0	0	0	0	0	0	
POSITIC	ON (IN	DEX)	OF	QUADI	RATURE	IN EA	CH DAT	A RECO	RD		
freq	????	TxRz	k .	ГхRу	TxRz	TyRx	TyRy	TyRz	TzRx	TzRy	Τz
1	0		0	0	0	0	0	0	0	0	
2	0		0	0	0	0	0	0	0	0	
3	0		0	0	0	0	0	0	0	0	
4	0		0	0	0	0	0	0	0	0	
5	0		0	0	0	0	0	0	0	0	
6	0		0	0	0	0	0	0	0	0	
line		2	1								
FID		3	1								
east		4	1								
north		5	1								
z_topo		7	1								
altitud	le	6	1								
Rx_pito	ch	0	0								
Rx_roll	L	0	0								
Rx_yaw		0	0								
Tx_pito	ch	0	0								
Tx_roll	L	0	0								
Tx_yaw		0	0								
z(ASL)		0	2								

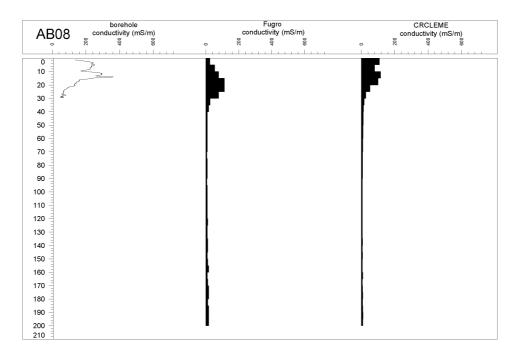
Appendix II: Borehole and AEM conductivity models for Angas Bremer Plains

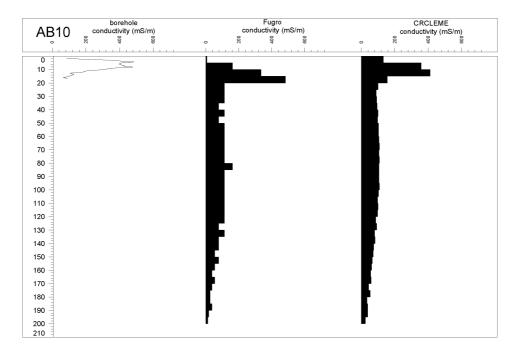


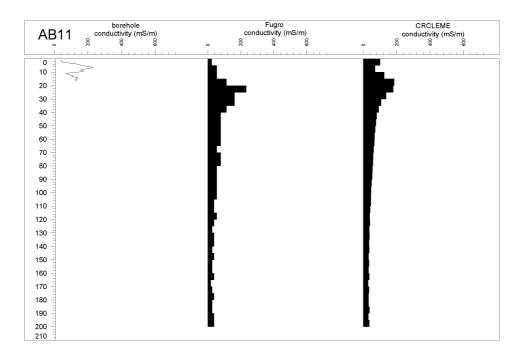

Borehole locations within Angas Bremer Plains AEM survey area.

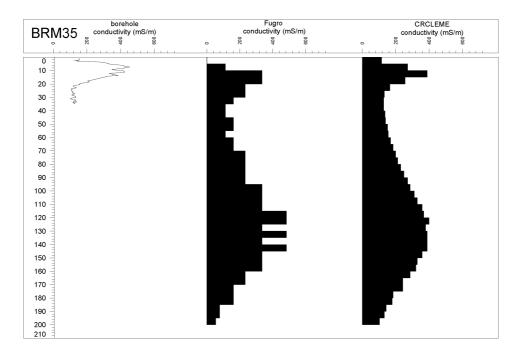


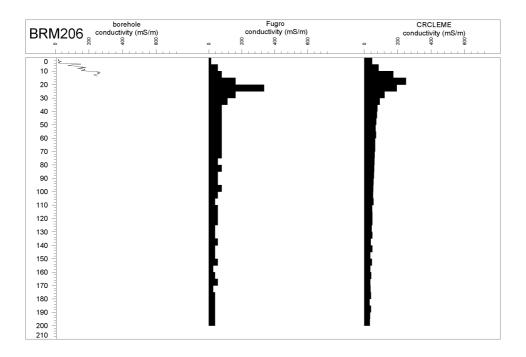


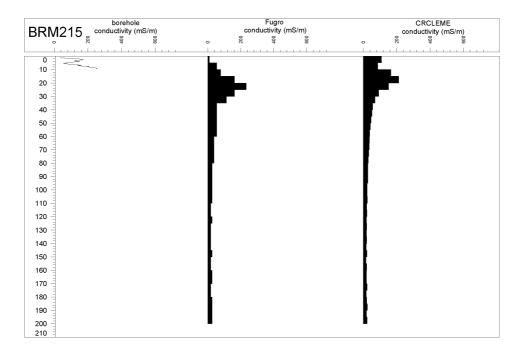

AB03 conductivity (mS/m)	Fugro conductivity (mS/m) ୁ ଝ୍ଟ୍ଞ୍ ୁ	CRCLEME conductivity (mS/m) ୁ ସ୍ଟ୍ରିଙ୍କୁ ଛି
20	F	E Contraction of the second se
40		
50		
60		
70 -		
80		
90		
100		
110 -		
130		
140		
150		
160		
170		
180	L	
190	L L	
200 - 210 -		

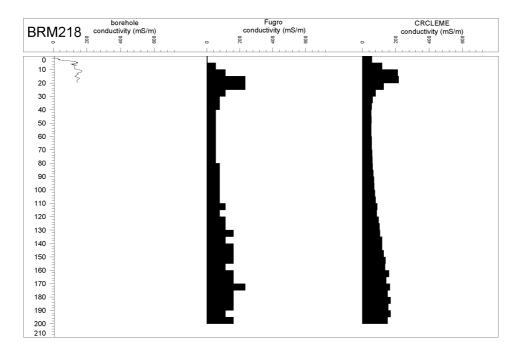


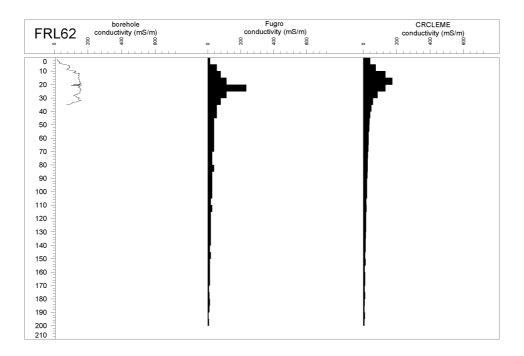


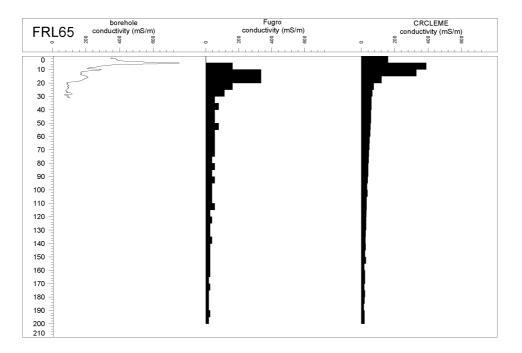


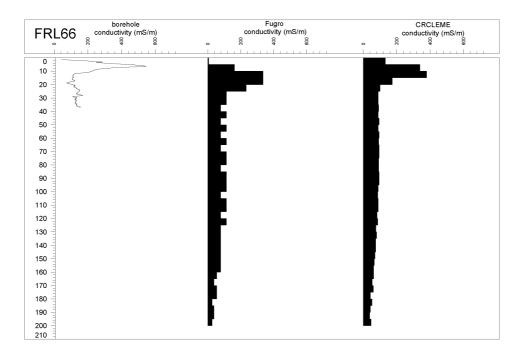


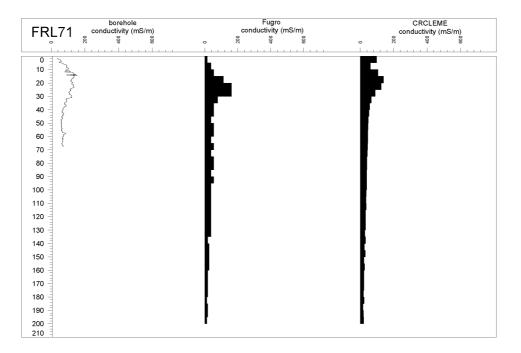

AB09 conductivity (mS/m)	Fugro conductivity (mS/m)	CRCLEME conductivity (mS/m) ୁ ଝୁ ଛୁ ହୁଁ
0		
20 5		
30		
40		
50		
60		
70		
80	-	
90		
100		
110		
120		
130		
140		
150		
160		
170		
180	E .	
190		
200 - 210 - 2	—	—

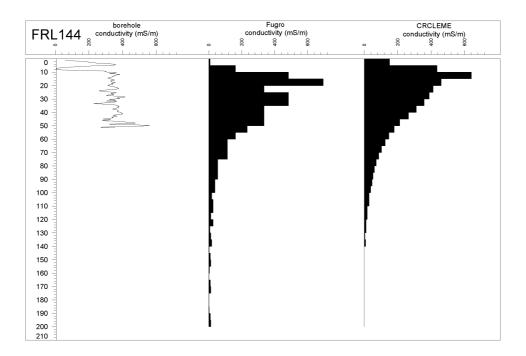


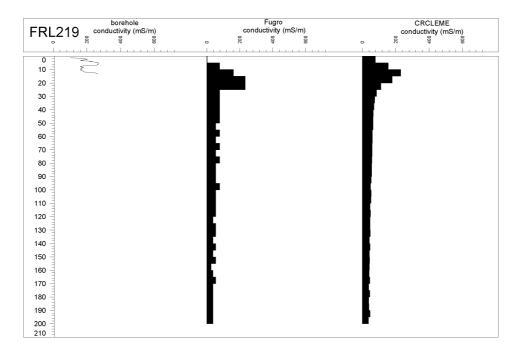











FRL64 borehole conductivity (mS/m)	Fugro conductivity (mS/m) 은 왕 육 중	CRCLEME conductivity (mS/m)
30		
50 -		
70		
90	F	
110 - 120 - 130 -		
140 -		
160 170	1	E
180	L	
200 210		

FRL222 conductivity (mS/m)	Fugro conductivity (mS/m)	CRCLEME conductivity (mS/m)
	- 200 - 400 - 600	conductivity (mS/m) ଟ୍
0	I	
0 10		
20		
30		
40		
50		
60		
70		
80		ľ
90		
100		ľ
110		
120		
130	T T	
140		
150		
160	ſ	
170		
180	ſ	
190		
200	Г	ſ
210		

borehole FRL226 conductivity (mS/m)	Fugro conductivity (mS/m)	CRCLEME conductivity (mS/m)
		conductivity (mS/m) ଟ୍
0		
10		
20		
30		
40		
50		
60 - 70 -		
80		
90		
100		
110		
120		
130		
140	- F	
150		
160		
170		
180	r	
190	1	
200 - 210 - 2	•	-

FRL232 conductivity (mS/	Fugro (m) conductivity (mS/m) ଜି ୁ ଝି କି	CRCLEME conductivity (mS/m) ୁ ଝି ଙ୍କି
		9 7 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 2		
10		
20		
30		
40		
50		
60		
70		
80		
90		
100		
110		
120		
130		
140		
150		
160		
170	l l	
180		
190	h h	
200 210	I	

Appendix III- EMFlow descriptor files: Angas Bremer Plains and Jamestown

FILE FORMAT VERSION ANGAS BREMER PLAINS SYSTEM NAME TEMPEST 25 Hz X component VERSION 1.0 DEFINED BY Andrew Fitzpatrick DATE DEFINED 24032003 TIME SCALING 1500 0.02 [sec] WAVEFORM TYPE halfperiod [sec] 0.02 WAVEFORM NORMALIZED BY total field TxRx TxRy TxRz TyRx TyRy TyRz TzRx TzRy TzRz 0 0 0 0 0 0 15 0 0 +++++++ + TzRx + +++++++ TRANSMITTER CURRENT WAVEFORM undefined RECEIVER PRIMARY FIELD calibrated AMPLITUDE SCALING 1 1 [] 4 CURRENT ERROR [ppm] TIME 0 0 0 26.79 1 0 1499 26.79 0 1500 0 0 RECEIVER SAMPLING 15

WEIGHT	END	START
1	1.5	0.5
1	3.5	2.5
1	5.5	4.5
1	9.5	6.5
1	15.5	10.5
1	25.5	16.5
1	41.5	26.5
1	65.5	42.5
1	101.5	66.5
1	157.5	102.5
1	245.5	158.5
1	383.5	246.5
1	599.5	384.5
1	929.5	600.5
1	1499.5	930.5

JAMESTOWN FILE FORMAT VERSION 9 SYSTEM NAME TEMPEST 25 Hz X component VERSION 1.0 DEFINED BY Andrew Fitzpatrick DATE DEFINED 24032003 TIME SCALING 1500 0.02 [sec] WAVEFORM TYPE halfperiod 0.02 [sec] WAVEFORM NORMALIZED BY total field TxRxTxRyTxRzTyRxTyRyTyRzTzRxTzRyTzRz0000001500 +++++++ + TzRx + ++++++++TRANSMITTER CURRENT WAVEFORM undefined RECEIVER PRIMARY FIELD calibrated AMPLITUDE SCALING 1 1 [] 4 TIME CURRENT ERROR [ppm] 0 0 0 23.5 0 1 1499 23.529 0 1500 0 0 RECEIVER SAMPLING 15 END WEIGHT START 1.5 0.5 1 3.5 5.5 2.5 1 4.5 1 6.5 9.5 1 15.5 10.5 1 16.5 25.5 1 41.5 26.5 1 42.5 65.5 1 66.5 101.5 1 102.5 157.5 1 158.5 245.5 1 383.5 246.5 1 599.5 384.5 1 929.5 600.5 1 1499.5

1

930.5