LATERITE GEOCHEMICAL DATABASE FOR THE WESTERN YILGARN CRATON, WESTERN AUSTRALIA

by M. Cornelius, I. D. M. Robertson, A. J. Cornelius, and P. A. Morris

Geological Survey of Western Australia
LATERITE GEOCHEMICAL DATABASE
FOR THE WESTERN YILGARN CRATON,
WESTERN AUSTRALIA

by
M. Cornelius¹, I. D. M. Robertson¹, A. J. Cornelius¹, and P. A. Morris

¹ CSIRO Exploration and Mining, PO Box 1130, Bentley, W.A. 6102

Perth 2007
DISCLAIMER
You accept all risks and responsibility for losses, damages, costs and other consequences resulting directly or indirectly from using the CD contained in this Record or any information or material available from it. To the maximum permitted by law, CRC LEME, GSWA and MERIWA exclude all liability to any person arising directly or indirectly from using the information and material on this CD.

CRC LEME Reference: Open File Report 116

REFERENCE
The recommended reference for this publication is:

National Library of Australia Card Number and ISBN 978 1 74168 102 4

Grid references in this publication refer to the Geocentric Datum of Australia 1994 (GDA94). Locations mentioned in the text are referenced using Map Grid Australia (MGA) coordinates, Zone 50. All locations are quoted to at least the nearest 100 m.

Cover image modified from Landsat data, courtesy of ACRES

Published 2007 by Geological Survey of Western Australia
This Record is published in digital format (PDF), as part of a digital dataset on DVD, and is available online at www.doir.wa.gov.au/GSWA/publications. Laser-printed copies can be ordered from the Information Centre for the cost of printing and binding.

Further details of geological publications and maps produced by the Geological Survey of Western Australia are available from:
Information Centre
Department of Industry and Resources
100 Plain Street
EAST PERTH, WESTERN AUSTRALIA 6004
Telephone: +61 8 9222 3459 Facsimile: +61 8 9222 3444
Contents

Abstract ... 1
Introduction ... 1
Background .. 1
Climate ... 2
Geology of the western Yilgarn Craton .. 2
Mineral deposits .. 6
Regolith–landform history .. 7
Geomorphology .. 7
Pre-Tertiary weathering .. 7
Early to mid-Tertiary erosion and sedimentation ... 7
Mid- to Late Tertiary weathering ... 8
Late Tertiary to Quaternary sedimentation and weathering ... 8
Vegetation .. 8
Regolith of the western Yilgarn Craton .. 8
Sampling .. 9
Terminology and classification of sample materials .. 9
Sample collection ... 9
Pisolith petrography .. 11
External appearance ... 11
Cutans .. 11
Cores ... 12
Pisoliths from residual profiles (LT) .. 12
Pisoliths developed on granitic rocks .. 12
Pisoliths developed on greenstones .. 13
Pisoliths from colluvial profiles (CV) .. 13
Pisoliths largely from granitic terrains ... 13
Pisoliths largely from greenstones .. 14
Sample preparation and analysis ... 14
Introduction ... 14
Sample preparation .. 14
Dissolution and analysis .. 15
Four-acid digest ... 15
Aqua regia ... 15
Fusion disc ... 15
Ni-fire assay ... 16
Quality control .. 16
Accuracy .. 16
Precision .. 17
Analytical results .. 17
Data presentation .. 17
Non-metals ... 17
Phosphorus .. 17
Sulfur .. 17
Selenium .. 21
Rare earth elements ... 21
Thorium ... 21
Uranium .. 21
Alkalis ... 21
Sodium .. 21
Potassium ... 22
Rubidium ... 22
Caesium .. 22
Alkaline earths ... 22
Beryllium .. 22
Magnesium and calcium ... 22
Strontium ... 22
Barium .. 22
Transition metals ... 23
Scandium .. 23
Vanadium ... 23
Titanium .. 23
Manganese .. 23
Iron ... 23
Appendices

1. Petrography and geochemical data ... 42
2. Summary statistics .. 42
3. Map .. 42
4. Site photographs .. 42

References .. 43

Figures

1. Contoured average rainfall for the Western Yilgarn Craton .. 3
2. Geology of the western Yilgarn Craton .. 4
3. Tectonic and structural provinces of the western Yilgarn Craton ... 5
4. Location of field sample sites and samples from pre-existing sample collections 10
5. Field photos .. 12
6. Rough and smooth pisoliths ... 13
7. Pisoliths with rasp surfaces ... 13
8. Petrography of cutans and cores ... 14
9. Petrography of pisoliths ... 15
10. Comparison of CSIRO XRF Zr data with that by Ultra Trace by XRF .. 17
11. Kriged image and bubble plot of Ti (as TiO₂) and abundances of mafic dykes .. 24
12. Kriged image and bubble plot of Cr abundances .. 25
13. Kriged image and bubble plot of Ni abundances .. 27
14. Kriged image and bubble plot of Cu abundances .. 28
15. Kriged image and bubble plot of Au abundances ... 31
16. Kriged image and bubble plot of Hg abundances .. 32
17. Fault distribution in the western Yilgarn Craton and areas with the most intense seismic activity 33
18. Kriged image and bubble plot of Al (as Al₂O₃) abundances .. 34
19. Scattergram of Ti and Mn .. 35
20. Kriged image and bubble plot of Pb abundances .. 36
21. Kriged image and bubble plot of As abundances .. 37
22. Kriged image and bubble plot of CHI₆⁺ scores ... 39
23. Kriged image and bubble plot of PEG₄⁺ scores .. 40
24. Map of typicality indices based on a six-element allocation procedure for the southwest Yilgarn Craton ... 41
Tables

1. Analytical methods and lower limits of detection...16
2. Summary statistics — lateritic residuum..18
3. Summary statistics — lag after lateritic residuum..19
4. Summary statistics — colluvium (nODULES AND PILOSITHS)...20
Laterite geochemical database for the western Yilgarn Craton, Western Australia

by

M. Cornelius1, I. D. M. Robertson1, A. J. Cornelius1, and P. A. Morris

Abstract

This Record is the final release of a 53-element dataset for approximately 3150 laterite samples (59-element dataset for selected samples) from the western Yilgarn Craton. Samples were taken at a nominal 9-km spacing on an approximately triangular grid, with each sample comprising about 1 kg of ferruginous nodules and pisoliths from lateritic residuum, lag formed from lateritic residuum, or of ferruginous gravel contained in locally derived colluvium. Some authigenic pisoliths and nodules formed in depositional regimes might have been included inadvertently.

The laterite geochemical database is designed to provide a regional geochemical framework at a sample spacing sufficiently close to recognize regional geochemical trends and major lithological differences. The wide-spaced sampling may also provide an indication of broad geochemical dispersion patterns from mineralized systems. However, the 9-km spacing was not designed to detect individual geochemical halos, for which 1-km or 500-m spacing is more appropriate. The sample spacing is wide enough to cover a substantial part of the Yilgarn Craton and still provide useful data for exploration and environmental purposes.

There are several significant results of the sampling completed in the southwest and northwest quadrants of the Yilgarn Craton. These include: a) increased Au abundances in the northeast part of the sampling area that cluster around known gold deposits; their extent might mean more widespread mineralization in these areas; b) the chalcophile element index (CHI6*) illustrates potential for Au and base metal mineralization in the westernmost part of the Yilgarn Craton; the pegmatophile PEG4* index shows a regional northwest trend north of the Saddleback greenstone belt; c) chromium abundances in nominally granitic terrain might indicate mafic–ultramafic remnants outside the known greenstone belts; d) a regional Hg anomaly (as yet unexplained) trends northwest over more than 500 km.

This final report, together with the release of the digital analytical data as a database, provides information about the sampling strategy, preparation methods, analysis, and some new element-distribution patterns with significance to exploration.

KEYWORDS: Archean, Yilgarn Craton, Western Australia, laterites, geochemistry.

Introduction

Background

The main objective of the laterite geochemical database is to stimulate mineral exploration in the Yilgarn Craton. Data for the western Yilgarn Craton (the ‘survey area’) are intended to demonstrate the feasibility and value of low-density geochemical maps of the whole Yilgarn Craton and adjacent terrains, using a consistent sample medium.

This Record accompanies the final release of ‘laterite’* geochemical data from the western Yilgarn Craton.

Data for the southwest Yilgarn Craton was released in February 2006 as an interim report (Cornelius et al., 2006). There was strong interest by industry in the first release and within four weeks of this release, approximately 25 exploration licences covering some 20,000 km² were applied for, representing an approximate three-fold increase in pegging compared to the month preceding the data release.

Statistical examination of laterite geochemistry data from the CSIRO–AGE database (Smith et al., 1992; Geological Survey of Western Australia, 1998), covering the southwest Yilgarn Craton, demonstrated that low-density sampling (9 × 9-km spacing or one sample per 70 km²) can outline regional geochemical trends (Cornelius et al., 2001) that are of value to the mineral exploration industry. This has important implications for mineral exploration as most of the western Yilgarn Craton can be sampled at this spacing because there are small remnants of lateritic residuum, even in largely eroded terrains. In colluvial–depositional terrains, ferruginous...
nodules and pisoliths can form part of the colluvium or might form lenses within it. This material, although no longer residual, has regional geochemical relevance at the sampling interval used.

The southwest Yilgarn Craton was selected as the starting point, as there is much existing data and access is relatively easy due to a well-developed road and track network. Apart from the world-class bauxite deposits, the Boddington Au mine, and the Greenbushes rare metal pegmatite, the southwest Yilgarn Craton has an apparent lesser mineral endowment than its eastern counterpart. This might, in part, reflect less intense exploration. Following completion of sampling in the southwest Yilgarn Craton, sampling progressed into the northwest Yilgarn Craton. There, access north and east of the agricultural areas was along tracks and fence lines, mainly on pastoral leases. Sampling progress was slower than in the southwest Yilgarn Craton and parts of the northwest Yilgarn Craton (Belele*, Murgoon, Byro, and Cue) were excised from the program due to shortage of funds and staff. Sampling is incomplete on Jackson, Southern Cross, Bencubbins, Ninghan, Barlee, Sandstone, and Youanmi.

The geochemical database will provide baseline data for comparison with both existing and new datasets. The data might also prove useful for bedrock identification, and for environmental purposes such as the regional distribution of Se for agriculture and geomedical studies.

The choice of analytes and analytical methods was based on the expected abundances and likely mineral hosts in this ferruginous sample medium. For a few elements, compromise was needed between the most suitable method and budget constraints. However, field reference material and pulps are stored with the Geological Survey of Western Australia for further analysis.

Climate

Inland, the western half of the Yilgarn Craton is semi-arid; whereas closer to the coast and in the southwest the climate is typically Mediterranean with dry summers and cool winters. Mean annual rainfall ranges from greater than 1000 mm near the coast and in the southwest to 200 mm inland (Fig. 1).

Geology of the western Yilgarn Craton

The western part of the Archean Yilgarn Craton consists of variably metamorphosed igneous and sedimentary rocks. Supracrustal sequences include metamorphosed mafic volcanic rocks, with less common ultramafic rocks, chemical and siliciclastic sedimentary rocks, and intermediate to felsic volcanic rocks (Fig. 2). Mineralization includes structurally controlled and, less commonly, stratabound gold deposits, stratabound nickel and base metal deposits, and supergene-enriched iron ore deposits. Gold mineralization, in particular, shows a strong spatial relationship with regional structures and greenstones, and areas of potential for platinum group element (PGE) and vanadium mineralization are also associated with greenstones.

A combination of detailed mapping, and new geochronological, isotopic, geophysical, and geochemical data has improved the understanding of the tectonic evolution of the Yilgarn Craton (Fig. 3), which has recently been summarized by Cassidy et al., (2006). They have used an hierarchical scheme to subdivide the Yilgarn Craton into six terranes (some of which contain domains), three of which are grouped into the Eastern Goldfields Supergretrane. This terminology follows Neuendorf et al. (2005), where a terrane is a series of regional-scale fault-bounded rock bodies with a different geological history to adjacent associations, and domains are fault-bounded geologically contiguous blocks within terranes (Cassidy et al., 2005). The western part of the Yilgarn Craton (i.e. the focus of this survey: west of latitude 120°E and south of longitude 28°S) comprises the West Terrane and part of the Youanmi Terrane, the latter consisting of the Southern Cross and Murchison Domains. This subdivision is similar to that of Tyler and Hocking (2001), although their Southern Cross and Murchison Granite–Greenstone Terranes have been recast as the Southern Cross and Murchison Domains respectively.

The South West Terrane, which largely comprises granitic rocks (including granitic gneiss) with crystallization ages of 2.75 to 2.72 Ga (Nemchin and Pidgeon, 1997), has undergone multiple phases of late-Archean deformation. Supracrustal rocks of the South West Terrane are mid- to late Archean (3.2 to 2.8 Ga; Chittering, Jimperding, Balingup belts), although older detrital zircons have been dated from quartzites in the Jimperding metamorphic belt (Wilde et al., 1996). Wilde et al. (1996) grouped these rocks into the Jimperding, Chittering and Balingup metamorphic belts, but Cassidy et al. (2006) did not continue this subdivision, arguing that the boundaries between the belts are poorly defined. These metamorphic rocks are dominated by ortho– and paragneiss, with localized gradations to quartzites, quartz–mica schists, and banded iron-formation (BIF), with pelitic rocks more common in some belts (Wilde et al., 1996). Small pockets of greenstones consist of volcanic and sedimentary rocks. The Wongan Hills greenstone belt, east of New Norcia, is dominated by mafic volcanic rocks, with less common felsic volcanic rocks, chemical sedimentary rocks, mica schists, and ultramafic intrusive rocks. Mafic rocks also dominate the Morangup greenstone belt near Toodyay, with intermediate volcanic rocks and some metasedimentary rocks. The Saddleback greenstone belt, near Boddington, is very poorly exposed due to deep weathering and a generally well-preserved residual regolith (Anand, 1994). According to a summary presented by Hassan (1998), it is dominated by mafic volcanic rocks, in addition to siliciclastic sedimentary rocks, acidic volcanic rocks, and high-level intrusive rocks. Geochronological data for the Saddleback greenstone belt indicates two periods of igneous activity at c. 2700 and 2675 Ma (Allibone et al., 1996). Wilde et al. (1996) argued that the Morangup greenstone belt was of a similar age.
Figure 1. Contoured average rainfall for the western Yilgarn Craton (after Australian Bureau of Meteorology website)
Figure 2. Geology of the western Yilgarn Craton (after Wilde et al., 1996; Myers and Hocking, 1998)
Figure 3. Tectonic and structural provinces of the western Yilgarn Craton (after Cassidy et al., 2006)
Granitic rocks and granitic gneiss are also found in both domains of the Youanmi Terrane. Both rock types are associated with more common and extensive, northeast-oriented, elongate greenstone belts (Cassidy et al., 2006). In the Murchison area, Watkins (1990) identified two greenstone successions and four granitoid suites. Granitic rocks comprise a granodiorite–monzogranite (metamorphosed to a pegmatite-banded gneiss), a deformed and metamorphosed monzogranite, and two compositionally variable suites of post-deformational granitic rocks. In a summary of greenstone belt lithologies, Watkins (1990) and Watkins and Hickman (1990) noted the dominance of mafic volcanic and intrusive rocks, with only small amounts of ultramafic rocks. They also noted that felsic volcanic and sedimentary rocks are generally found together, many forming thick successions. Although there is agreement that the lower parts of greenstone successions in the Murchison Domain have more BIF than the upper part (the latter being dominated by mafic volcanic rocks, with less common intermediate volcanic rocks and komatiitic basalt; e.g. Pidgeon and Hallberg, 2000), the more formalized approach to greenstone stratigraphy proposed by Watkins and Hickman (1990) has been disputed. They divided greenstones into the Luke Creek and Mount Farmer Groups (together making up the Murchison Supergroup), but Pidgeon and Hallberg (2000), amongst others, have argued that structural complexity and separation of greenstone successions by granitic rocks makes stratigraphic correlation unreliable. Instead, they proposed an informal stratigraphic subdivision based on packages of greenstones termed assemblages. The three stratigraphically lowest assemblages comprise ultramafic, mafic and intermediate volcanic rocks, with the overlying fourth assemblage consisting of felsic volcanic rocks, generally of a more limited extent. Zircon chronology indicates periods of emplacement at 3.0–2.9, 2.747, and 2.719 Ga (Cassidy et al., 2006).

Unlike the South West Terrane, depositional ages of greenstones in the Youanmi Terrane span a wider interval, including c. 3.05–2.93, 2.81, and 2.76–2.72 Ga (Cassidy et al., 2006, and references therein). Granitic rocks and granitic gneiss were emplaced in the mid- to late Archean (Cassidy et al., 2002; Geological Survey of Western Australia, 2005), and zircon ages as old as 4.3 Ga (Wyche et al., 2004) show that the Youanmi Terrane might contain some of the oldest known crustal components.

In terms of lithostratigraphy, greenstone belts generally consist of a lower succession dominated by mafic and less common ultramafic volcanic rocks (underlain by quartzite), BIF, and a minor felsic volcanic component. Localized younger greenstone successions (e.g. in the Marda–Diemals area of the Southern Cross Domain) have a larger felsic volcanic and sedimentary rock component.

Individual greenstone belts have been described by a variety of authors. The Wongan Hills greenstone belt was briefly described by Watkins (1990), largely based on the work of Carter and Lipple (1982) and Lipple (1982). These rocks comprise mafic and felsic volcanic rocks, in addition to siliciclastic and chemical sedimentary rocks. Pidgeon and Wilde (1985, 1986) report ages of c. 3.00 Ga and c. 2.70–2.60 Ga for porphyry and granitic rocks.

The regional geology of the Forrestania greenstone belt, which forms part of the Southern Cross greenstone belt (Fig. 2), is a series of six ultramafic belts comprising cumulate flow units, pyroxenitic and gabbroic rocks, quartz–mica schists (interpreted as metamorphosed tuffs), and mafic volcanic flows and tuffs (Perring et al., 1996).

Greenstones in the northern part of the Southern Cross greenstone belt have been described by Wyche et al. (2001), Riganti and Chen (2002), and Chen and Wyche (2003). The best exposed and most extensive is the Marda–Diemals greenstone belt that consists of a lower succession of mafic volcanic rocks and BIF, which can be subdivided into three lithostratigraphic packages and is dated at c. 3.0 Ga (Cassidy et al., 2006). The lower succession is unconformably overlain by a succession of intermediate to felsic volcanic rocks (Marda Complex), and siliciclastic sedimentary rocks (Diemals Formation), dated at 2.73 Ga (Cassidy et al., 2006). Chen and Wyche (2003) suggested other greenstone belts in this area (Hunt Range, Mount Manning, and the Yerilgee greenstone belts) could be stratigraphically correlated with parts of the Marda–Diemals greenstone belt.

Layered mafic intrusions (i.e. at Windimurra and Nambro) are located in the eastern part of the Murchison Domain. The disposition and lithological content of these intrusions have been described by Ahmat (1990) and Ruddock (1990) respectively. Both intrusions are located close to the margin of the Murchison and Southern Cross Domains. The Windimurra Complex is a layered gabbroic intrusion greater than 2300 km² in size. It contains vanadiferous and titaniferous magnetite bands up to 10 m thick, and localized chromite-rich segregations. According to Ahmat (1990), the complex represents an intrusion of tholeiitic magma at high levels during a period of crustal extension. The Nambro Complex comprises structurally disturbed peridotitic and pyroxenitic units exposed over a strike of 40 km, with a thickness of about 9 km (Ruddock, 1990). Although an igneous stratigraphy is difficult to determine, due to poor outcrop and deformation, the complex appears to represent multiple phases of intrusion of basic and more acidic magma.

Mineral deposits

The mineral resources in the northwest of the survey area were described by the Geological Survey of Western Australia (GWA; Flint et al., 2000) as part of a summary of the Mid West region. The region hosts a number of mineral commodities such as alumina, coal, gold, mineral sands, base metals, rare metals, silver, talc, chromite, petroleum products, lime sand, limestone, and clay. A review of the mineralization and mineral potential of southwest Western Australia is given in Hassan (1998).

In the western Yilgarn Craton, economic gold mineralization is associated with Archean greenstones and most gold deposits are structurally controlled, associated with faults, shears or fractures. In a summary of the spatial distribution of gold deposits in the Murchison area, Watkins and Hickman (1990) noted that most gold deposits were found within 1 km of structures hosted
by greenstones, and many deposits were within 2–3 km of granite–greenstone contacts. They also noted that mines with higher production were found in chemical sedimentary rocks. In addition to these bedrock deposits, chemical weathering has developed supergene ore. Flint et al. (2000) noted that dispersion of material from these bedrock and supergene deposits has also provided substantial geochemical halos that are targeted by exploration. At the Mount Gibson deposit, gold mineralization is, in part, hosted by laterite developed on a bedrock resource. The Boddington gold deposit (approximately 100 km south of Perth, with total contained gold estimated at 19.7 Moz with 790 kt of Cu; Flint and Abeyesinghe, 2006) is largely hosted in regolith that formed on mineralized bedrock of the Saddleback greenstone belt (Anand, 1994; Symons et al., 1990).

Although most known nickel-sulfide ore bodies are in the Kalgoorlie Terrane, there is significant primary nickel mineralization also in greenstones in the southeast part of the Southern Cross Domain, in particular the Forrestania region (Abeyesinghe and Flint, in prep.). Here, nickel sulfide mineralization is associated with ultramafic volcanic and sedimentary rocks.

Economic iron-ore deposits in the western part of the Yilgarn Craton are restricted to supergene hematite–goethite developed from weathering of magnetite in BIF. Resource assessments have been made at Koolanooka, Mungada, Tallering Peak, Nunierra Range, Weld Range, Mount Gibson, Robinson Range, Mount Hale, and Mount Taylor, with the first two having been utilized previously. Other deposits are known from Boolygoo and Windarling Range (Flint et al., 2000).

Platinum-group mineral and chromite mineralization have been reported from several areas in the survey area, including the Yornup area in the southwest (Cornelius et al., 1987) and the Yarawindah Brook area near New Norcia (Cornelius et al., 1987; Harrison, 1984), the latter in the Jimperring metamorphic belt. In the northwest part of the Yilgarn Craton, platinoid and chromite mineralization has been reported (Flint et al., 2000) in greenstones of the Weld Range greenstone belt (part of the Luke Creek Group). Flint et al. (2000) drew comparisons between the geology of the Narndee and Windimurra intrusions and that of the Darling Range separates it from the Phanerozoic rocks of the coastal plain to the west. The elevation of the Yilgarn Craton ranges from 300 to 650 m above mean sea level, with most of the terrain being of the order of 350–550 m, and a progressive decrease southwards. It is partitioned by a meridional continental divide.

Regolith–landform history

The present, relatively flat surface of the Yilgarn Craton indicates little of the complex regolith beneath that has now been revealed by mapping, drilling, and mining. Four broad stages of regolith–landform evolution have taken place since the Late Paleozoic (Anand and Paine (2002) and references therein).

Pre-Tertiary weathering

There appears to have been significant weathering in the Paleozoic but, despite substantial erosion, only small remnants of this regolith survive. The protolith from which the present landscape evolved was largely the ice-scoured terrain that emerged from the Permian–Carboniferous glaciation, when there was significant sedimentation. The Late Permian to Middle Jurassic was a period of weathering with little sedimentation, when hills and broad, shallow valleys formed with saprolites, lateritic residuum and ferricrete. These materials were later eroded and dispersed into younger (Triassic–Early Eocene) drainages as accumulations of ferruginous gravel. Some ferricretes in valleys were subject to relief inversion. Partial stripping of the regolith took place in the mid-Jurassic and Early Eocene, with uplift and incision leaving remnants of lateritic residuum and ferricrete. These materials were later eroded and dispersed into younger (Triassic–Early Eocene) drainages as accumulations of ferruginous gravel. Some ferricretes in valleys were subject to relief inversion. Partial stripping of the regolith took place in the mid-Jurassic and Early Eocene, with uplift and incision leaving remnants of lateritic residuum and ferricrete.

Early to mid-Tertiary erosion and sedimentation

By the Eocene, ‘younger’ channels, 1–3 km wide and many kilometres long had formed, set on broad paleovalleys. These filled with fluvial, estuarine, marine and lacustrine sediments. They included fluvial ‘sandy’ basal units and a thick upper ‘clay’ deposited in lacustrine to swampy
conditions, which ultimately choked the drainage system. The composition of the clay seems related to that of the surrounding local Archean basement. The development of the clay may be attributed, in part, to regional tilting in the Late Eocene or Jurassic.

The landscape, following sedimentation, comprised slightly elevated, dissected areas of pre-Tertiary terrain surrounded by lower elevation sediment-covered terrain. Deposition penetrated as far inland as the Yandal greenstone belt. The sediments are all quite similar throughout the Yilgarn Craton, implying similar regional conditions. The change from sandy to clay facies is probably related to a change in base level in the Middle Eocene.

Mid- to Late Tertiary weathering

Paleomagnetic data indicate weathering in the Miocene. Eocene sediments and the underlying bedrock were weathered, ferruginized and silicified to mottled duricrusts and silcretes under more contrasting seasons, resulting in paleosols, leaching and mottling. Dolocretes formed at the base of some paleochannel sediments.

Late Tertiary to Quaternary sedimentation and weathering

Tectonic uplift and a shift to semi-arid to arid conditions caused instability and erosion, dissecting the land surface. Fluvial, colluvial and eolian sediments were deposited. Some regolith units have been indurated and cemented to lateritic duricrust, silcrete and ferricrete, but many remained soft and unconsolidated. Existing superficial deposits inland were retained in the absence of competent drainage, but significant erosion has taken place nearer the coast. In the Darling Range, abundant duricrust has provided a barrier to erosion.

Patches of shallow, sandy clay to sandy sediments overlie paleochannel sediments and weathered basement. Inland, topographically low areas were cemented by Fe, Si, and Ca to form ferricrete, ferruginous saprolite, silcrete, red-brown hardpan and calcrete; some of this is now topographically inverted. With increased aridity, drainages became restricted and the ground-waters saline. Major valleys became chains of salt lakes with dunes and sandhills, and deflation has left pavements of lag.

Vegetation

The vegetation of the extreme southwest part of the western Yilgarn Craton and along the Darling scarp is dominated by open eucalypt forest. The Wheat Belt, from the Darling Range to southwest of a diagonal between Jerramungup in the southeast to Mullewa in the northwest, is largely cleared agricultural land interspersed with remnants of eucalypt woodland in the south and stands of acacia in the north. The remainder, to the northeast of the diagonal, is dominated by acacia woodland, largely on sandplain, and some eucalypts between and chenopod and samphire shrubs in the extreme north. Mallee woodlands grow in the southeast (Butt, 2005, fig. 1; and Australian Native Vegetation Assessment, 2001).

Regolith of the western Yilgarn Craton

Weathering, mainly during the Tertiary, produced a thick regolith that typically comprises weakly weathered bedrock or saprock, saprolite (commonly bleached in its upper part), and a clay-rich zone, in places mottled, that gives way to a ferruginous, siliceous or bauxitic upper zone. In the inland, particularly over granite–gneiss terrain, sandplain covers the residual profile; sands and silts forming the sandplain were largely derived from the residual profile (with some colluvial and eolian input) and vary in thickness from less than 1 m to tens of metres (Li Shu et al., 1998). In many parts of the craton, the regolith is more complex due to erosion, deposition, and multiple weathering events. However, this laterite sampling program generally targeted residual settings with a preserved or largely preserved profile. A discussion of the regolith geology of the Yilgarn Craton is given by Anand and Paine (2002).

The type of geochemical sampling used in this laterite sampling program targeted the important ferruginous upper part, the lateritic residuum. This comprises lateritic duricrust, and loose lateritic gravel composed of ferruginous nodules and pisoliths. The lateritic residuum forms a useful sample medium for detecting dispersion haloes in the regolith emanating from Au, base metal and rare metal deposits (Smith et al., 1992; Anand et al., 1993; Anand, 2001). The target and associated pathfinder elements are closely associated with the secondary Fe oxides and oxyhydroxides that are the main components of the lateritic residuum.

Ferruginous pisoliths and nodules are not only found on lateritic residuum, but can also form a lag on eroded, saprolite-dominated areas (Anand, 1998a) or become a part of colluvium and alluvium in depositional terrains. In these non-residual environments, the relationship between the ferruginous materials and the underlying bedrock and weathering profile is less direct than in a residual setting in which the regolith profile and the lateritic residuum are preserved. However, on the broad spacing and scale of this geochemical survey, some lateral movement of the nodules and pisoliths (for up to 1 km), is acceptable and even desirable. In contrast, lateritic duricrust might be more representative of the local bedrock and is generally more suitable for follow-up sampling.

Some depositional terrains contain small lenses of ferruginous material exposed in the colluvium by the erosion from small streams, or as a lag developed on degraded rabbit warrens. Gravely material is concentrated where current velocities were locally high or a small pocket has developed in the stream bed. The degraded warrens are very slight rises (100–200 mm) on flat, sandy depositional plains. The lateritic material is quite variable (mixed nodules and pisoliths), the cutans are severely

Cornelius et al.
worn, the nodules small and chipped and the material is scarce, requiring much patience to collect. Samples seldom weigh more than a few hundred grams at the most from such sites.

Pisoliths and nodules might also have formed in sediment, and this material might be difficult to distinguish from lateritic residuum in the field. A gravel of authigenic pisoliths developed in sediments will have little or no genetic relationship with the underlying or nearby bedrock (Anand and Paine, 2002) and therefore is not deliberately targeted as a sample medium.

Sampling

Terminology and classification of sample materials

The optimum sample medium for the laterite geochemical database is lateritic gravel, which consists of nodules and pisoliths that form the upper part of the lateritic residuum. These contributed 84% of the samples in the western Yilgarn Craton. Where this material is too scarce or absent, lag formed from this gravel is the next best option (10.4% of samples). In the absence of gravel, ferruginous duricrust was collected (2% of samples); these samples generally comprise nodules released from the duricrust and fragments of duricrust. Sample material was collected over an area of about 50 × 50 m. In depositional terrain, particularly colluvium, pisoliths and nodules were collected from around the roots of fallen trees, at the bases of trees, or from the surface. These samples are marked as ‘colluvium’ in the database and comprise 4% of all samples.

Lateritic gravel generally comprises pisoliths and nodules varying from approximately 5 to 30 mm diameter. The gravel shows a wide variation in colour from light brown through yellow and dark red to black. Its composition ranges from maghemite- or hematite- to goethite-rich. Those with very low Fe and Al contents are mainly composed of quartz grains and kaolinite. These are incipient nodules that are common in the central part of the South West Terrane and were described in more detail by Shu et al. (1998). Other samples have very high Fe contents (99th percentile: 62% Fe₂O₃) and might have formed from Fe-rich bedrock (such as a mafic dyke), or they might be authigenic. The majority, however, have Fe₂O₃ abundances between 11 and 39% (10–90th percentiles). Alumina abundances range from 14 to 36% (10–90th percentiles), with a strong positive correlation between annual rainfall and the Al content in ferruginous gravel in the western part of the Yilgarn Craton.

At a 9-km sample spacing (i.e. an area of influence of approximately 70 km²) it is critical to collect a representative sample. To interpret the data and assess the significance of subtle geochemical signatures, it is important to consider the setting of the sample (if it was from lateritic residuum, from lag or from colluvium). Lag derived from lateritic residuum generally has been dispersed and mixed, and is more suitable for a regional survey than residual lateritic duricrust and its gravel.

There are many other types of ferruginous materials on the Yilgarn Craton (Anand, 1998a; Anand and Paine, 2002) that have different chemical characteristics to those of lateritic residuum and the gravel formed from it. Iron-cemented gravel (ferricrete) formed on or within sediments would be expected to show no genetic relationship with the underlying mottled and saprolitic clays of the basement (Anand and Paine, 2002). Care was taken to avoid sampling ferricrete by understanding the regolith materials in their local landform setting. However, authigenic or partly authigenic pisoliths (nodules with an authigenic coating) might have been sampled inadvertently. A few samples in this dataset have high Ti and V abundances potentially indicating detrital enrichment of ilmenite, and possibly are derived from ferricrete rather than from lateritic residuum (Anand and Paine, 2002). However, for the purpose of this release, the analyses have been retained and the sample medium marked as ‘Ferruginous gravel?’ or LQ100 (see the standardized code of fig. 9.1 in Anand et al., 2002).

Care was taken to ensure that uniform and compatible sample media were collected and appropriately coded following the terminology and classification of Anand and Paine (2002) and Anand et al. (2002). However, more than ten samplers have contributed to this dataset, including the CSIRO–AGE and Astro Yilgarn Regolith collections, and minor inconsistencies in selection and classification of materials are inevitable.

Sample collection

Samples were sourced from two pre-existing collections of lateritic materials, but the majority of samples were collected during the course of the current program. Lateritic residuum from the CSIRO–AGE and the CRC LEME–Astro Yilgarn regolith collections were reanalysed in preference to collecting new samples, in order to reduce costs. The sample locations from collections were checked against a theoretical 9 km-spaced triangular grid and those samples within a radius of up to 4 km from the grid nodes were included for reanalysis, provided that the minimum weight of the available sample was greater than 400 g of unprepared sample or greater than 100 g of pulp. Where total sample and pulp were both available, a small sample of the original material was taken as a reference and approximately 100 g of the pulp was taken for geochemical analysis. The CSIRO–AGE collection yielded 616 samples and the Astro Yilgarn Regolith collection yielded 509 samples (together making up 36% of the total samples analysed).

A total of 2017 new samples were collected by fieldwork specifically for this project (Fig. 4). Some sites were excised due to access problems (e.g. mine sites, disease-risk areas, private property, or difficult terrain). Standardized sample and landform descriptions are available for all new sites, but not for some from the CSIRO–AGE and Astro collections.

All proposed new sample locations were plotted on GSWA 1:250 000 geological maps, with sites
Figure 4. Location of field sample sites and samples from pre-existing sample collections
preferentially located in areas of lateritic residuum (C_zl) or sandplain (C_2s). Outside the Wheat Belt, Thematic Mapper (TM) imagery was found to be invaluable in identifying likely sample sites. The imagery was processed using methods established by Tapley and Gozzard (1992) using ratios of bands 5/7:4/7:4/2 as R:G:B.

Sample locations in areas with extensive overburden or erosion were moved to the nearest suitable site within a radius of approximately 4 km. Sample teams were given some discretion to move the sample site slightly from areas of largely transported cover (generally in areas of broad drainage) or from areas that were clearly inaccessible, in order to maintain the sample spacing. In about 25% of all cases, no suitable sample material was available or access by vehicle was too difficult.

At the majority of new sites, two samples (each about 1 kg) were collected, one as a reference and the other for geochemical analysis. At about 2% of sites, an additional third sample was collected for analysis (i.e. field duplicate) to test within-site variability. Sampling strategies for regional laterite sampling are given in Cornelius et al. (2001).

In agricultural areas, sampling was mainly along public road reserves and tracks, to minimize the need to contact landowners. Care was taken to avoid areas of disturbance and contamination. Access to private property was sought where necessary. On pastoral or Crown land, samples were collected along roads, tracks, fences and grid lines. Permits were obtained to access all CALM-controlled land in the southwest Yilgarn Craton and permission was sought from the local CALM officer to enter specific nature reserves.

In the field, regolith–landform information was gathered at each sample site, together with representative digital photographs (Appendix 4 on DVDs at the back of this Record) to illustrate the landform and the disposition of the sampled material. Sample information was recorded on a standard form and subsequently entered into an Access database and linked to the analytical data. Extracts of this information are given in the database on the CD at the back of this Record.

Parts of the northwest Yilgarn Craton are covered with dense native bush and scrub, mainly north and northeast of the agricultural zone. Here, vehicle access was difficult and, in places, impossible. Some sites were reached on foot, but the time taken meant this approach was largely impractical, except over short distances (<1 km). For such inaccessible areas, sampling by helicopter is an alternative approach, but funding restrictions prevented this.

On weathered granite and gneissic terrain, the residual profile is covered by yellow sandplain soils and silts. These are gently inclined plains with abundant shardy quartz, generally with a low breakaway at one margin and a backslope leading to depositional tracts. Beneath the sandplain lies a layer of ferruginous pisoliths in sand, forming lateritic gravel, the optimal sample medium. This layer is readily masked by sandplain sands and it is generally necessary to sample the lateritic gravel from the bevelled edge of the sandplain (Fig. 5a). Options within the sandplain are pisoliths and nodules caught up in the roots of uprooted trees (tree throw), pisolithic material excavated by rabbit warrens (Fig. 5b) and by fence-post augers (Fig. 5c) where the sand is thin. Road-gravel pits are important, particularly in the agricultural areas.

Breakaways, where lateritic duricrust is exposed, also offer the opportunity for sampling, but material from some of these locations tends to be a nodular lag from the eroded duricrust rather than gravely lateritic residuum. If these breakaways are excessively eroded, only saprolite and the mottled zone are exposed. The adjoining lower edge of the sandplain or small ‘nests’ or accumulations of relict pisoliths, retained in pockets on the breakaway surface (Fig. 5d), might yield acceptable material.

Where weathered greenstones form hills, a thick weathered mantle is commonly absent, probably due to stripping, leaving only saprolite and saprock, but where the topography is muted, deposits of lateritic gravel might be developed. Careful search of extensive areas of lag on colluvial plains within or adjoining greenstone belts might provide sparse, worn pisoliths, giving a colluvial sample. A caution is that this might contain some authigenic pisoliths.

Pisolith petrography

External appearance

The external appearances of the nodules and pisoliths vary significantly from site to site (see Appendix 1). Colour is generally determined by the relative contents of clay (white) to Fe oxide (red, brown), the species of Fe oxides and oxyhydroxides (brown or yellow — goethite; red — hematite), the degree of preservation of cutans (cutans are generally lighter), and the occurrence of Mn minerals (black).

Cutans

Where an argillan is developed, the surfaces are smooth. Others are rough, where the cutan contains coarse quartz or the cutan is largely absent. Where cutans are largely absent, the pisolith is said to be ‘worn’, implying some transport. However, in places, pisoliths are scattered on the land surface with rough or ‘rasp’ surfaces and little or no cutans (Fig. 6a). Adjacent to these, pisoliths with well-developed, smooth cutans are found just below the surface (Fig. 6b). In addition to abrasion, solution might also play a part in the removal of cutans, especially where the pisolith reaches the surface due to downwasting. Here, the cutan that was stable within the soil profile, where it has developed, becomes unstable. The ‘rasp’ surface consists of sharp, protruding crystals, generally of shardy quartz of the pisolith core, giving the pisolith the appearance of a ‘Ferrero Rocher™’ chocolate confectionary (Figs 7a,b).

Most cutans are thin and add only a few percent to the radius of the core (Fig. 8a). A few are thick, making up 20% or more of the pisolith diameter (Fig. 8b). Most cutans are discontinuous (Fig. 8a) in that the core is exposed on some of the pisolith surface. Internally, well-structured cutans show distinct layers of goethite-
impregnated clay and very fine quartz, though small disconformities are developed within them. Other cutans are poorly structured, where the material is only very roughly layered. In these cases, the cutan materials are coarser and it can be difficult to distinguish cutan from core.

Cores

The cores are wholly or partly exposed where cutans are worn or dissolved away. Generally the cores are quartz-rich if derived from granitic rocks, or rich in ferruginous clay if derived from an array of greenstones (not necessarily mafic).

Pisoliths from residual profiles (LT)

The cores of pisoliths and nodules from residual profiles can be monomictic, although a few show slight variations indicating minor lateral movement and mixing. The sources of the materials are various layers within the upper regolith (lateritic residuum to mottled zone, with some retaining saprolitic fabrics).

Pisoliths developed on granitic rocks

The cores of these are rich in shardy quartz (2–4 mm; Fig. 8c). A few rather immature profiles contain, in addition to the shardy quartz, a few remnants of deeply weathered perthitic microcline. These clasts are all closely to moderately closely packed, with clay glaebules*, clay fragments, ferruginous granules, and books and expanded stacks of mica (in a few) in goethite-stained clay.

For some pisoliths, part of the clay matrix has been replaced with banded aluminosilicate cement, which also lines small voids. Many have rims in which the clays are stained yellow by goethite and this grades inwards

* Glaebule: a three-dimensional compound unit within the matrix of a soil material, or occurring as a discrete physical fabric element, generally approximately equant or prolate in shape, and with a sharp boundary (Brewer and Sleeman, 1988).
cracked and fragmented hematite. These are surrounded by goethite. Voids in the clay are lined or filled with weakly banded light-brown, aluminosilicate cement (Fig. 8d) or with layered goethite and hematite. The cutans are generally thin, delicately banded goethite-stained argillans (Fig. 9b).

Pisoliths from colluvial profiles (CV)

Some depositional terrains contain small lenses of lateritic material exposed in the colluvium by the action of small streams or as a lag developed on degraded rabbit warrens.

Pisoliths largely from granitic terrains

These are generally rich in Mn and are developed at the base of the colluvium as a concentration of black pisoliths, many of which are broken. The cores consist of close-packed shards of quartz and microcline, with some clay glaebules in a minimum of Fe-stained clay and aluminosilicate cement. A Mn mineral, probably hollandite (minor Ba and K), has permeated and hardened the clay matrix.

Pisoliths developed on greenstones

The cores of these pisoliths consist largely of ferruginous clay (yellow mottled with red) with some fretted quartz. Some contain goethite with fingerprint fabrics after saprolitic clays (kaolinite–smeectite); Fig. 9d), and some to brown hematite staining, implying hydration from the outside.

A few nodules, 30–50 mm in size, are shaped like a cup or jar. These are typical of the upper mottled zone rather than of lateritic duricrust. They are filled with pale-yellow, angular, quartz sand (Fig. 9a) and a few clay glaebules, all cemented by a pale, weakly banded aluminosilicate material. Many are loose at the surface in places, although some are seen within the mottled zone on some breakaways. These cup-shaped nodules are suspected to be related to insect activity. Tilley et al. (1997) described broadly similar structures in the Weipa bauxite, where they are called ‘mother pisoliths’ or ‘rattlers’. Lea (1925) noted similar but calcareous structures along 500 km of coast in South Australia and reaching up to 60 km inland. They are thought to be pupal chambers, the walls of which have been hardened since by calcification, bauxitization, or (in this case) ferruginization.

Pisoliths developed on greenstones

The cores of these pisoliths consist largely of ferruginous clay (yellow mottled with red) with some fretted quartz. Some contain goethite with fingerprint fabrics after saprolitic clays (kaolinite–smeectite); Fig. 9d), and some to brown hematite staining, implying hydration from the outside.

A few nodules, 30–50 mm in size, are shaped like a cup or jar. These are typical of the upper mottled zone rather than of lateritic duricrust. They are filled with pale-yellow, angular, quartz sand (Fig. 9a) and a few clay glaebules, all cemented by a pale, weakly banded aluminosilicate material. Many are loose at the surface in places, although some are seen within the mottled zone on some breakaways. These cup-shaped nodules are suspected to be related to insect activity. Tilley et al. (1997) described broadly similar structures in the Weipa bauxite, where they are called ‘mother pisoliths’ or ‘rattlers’. Lea (1925) noted similar but calcareous structures along 500 km of coast in South Australia and reaching up to 60 km inland. They are thought to be pupal chambers, the walls of which have been hardened since by calcification, bauxitization, or (in this case) ferruginization.
Pisoliths largely from greenstones

These pisoliths are worn and chipped, leaving minimal argillaceous cutans. The cores consist of mottled red-brown to yellow-brown ferruginous clay containing fretted quartz. Some show fingerprint fabrics (Fig. 9d) with books and stacks of phyllosilicates (mica, kaolinite, and smectite). In others, the ferruginous clay forms spherical structures (ooliths; Fig. 9c), which are, in turn, set in a later generation of ferruginous clay. Some ooliths contain smaller ooliths, indicating a multi-cyclic process of formation.

Sample preparation and analysis

Introduction

Samples were prepared and analysed by Ultra Trace Laboratories, Canning Vale, Western Australia, following a public tender. The analyte suite, digestions, methods and lower detection limits are listed in Table 1. The details of the digestions are given below from www.ultratrace.com.au/services/index.php (Ruane D., Ultra Trace Laboratories, 2006, personal comm.).

For all new samples, approximately 1 kg of reference material was retained. For most samples from the Astro Yilgarn Regolith and CSIRO–AGE collections, a small reference sample (0.1 – 0.4 kg) was kept, apart from approximately 260 samples from the Astro Yilgarn Regolith collection, where only pulp was available.

Sample preparation

For each of the newly collected samples, a 1–1.5 kg sample was milled to less than 75 μm in a robotic low-Cr steel ring mill. Some samples required crushing to reduce the particle size prior to milling. Crushing equipment and the ring mill were cleaned with compressed air and a barren quartz wash between each sample.

Samples previously analysed for the CSIRO–AGE project had been prepared at CSIRO using an agate mill. Samples from the Astro Yilgarn Regolith project were prepared at CSIRO using a low-Cr (K1045) case-hardened ring mill with a barren quartz wash between samples.
Dissolution and analysis

A suite of 53 elements, including Au, was analysed variously by X-ray fluorescence (XRF), inductively coupled plasma optical emission spectrometry (ICP-OES), and inductively coupled plasma mass spectrometry (ICP-MS). For cost reasons, instrumental neutron activation analysis (INAA) was not used in this project, although approximately 300 samples had been analysed previously by INAA (Beccquerel Laboratories) and XRF (CSIRO) for the Astro Yilgarn Regolith Project. These INAA analyses (Cornelius et al., 2005a) can be used for comparison. The following sample preparation and analytical procedures were used.

Sodium peroxide fusion

A 0.25 g aliquot of the sample was fused at 700°C in alumina crucibles with sodium peroxide. The fused material was dissolved in concentrated hydrochloric acid, diluted to 500 ml with water, and analysed by ICP-OES or ICP-MS.

Four-acid digest

A 0.3 g aliquot of the sample was taken up in nitric, perchloric, hydrochloric, and hydrofluoric acids. The digest temperature was raised steadily to dryness. The remaining solids were dissolved to a final volume of 50 ml in 10% hydrochloric acid and analysed by ICP-OES and ICP-MS. Although many silicates are destroyed by hot hydrofluoric acid, data from this multi-acid digest (MAD) must be interpreted with care. Cassiterite, rutile, monazite, ilmenite, garnet, wolframite, spinels, titanite, beryl, zircon, tourmaline and excess barite are resistant (Hall, 1999). They are also resistant to regolith processes. Thus, a few critical elements were also analysed after fusion (Ta, Sn) in case any of these minerals were present. However, fusion entails a degraded detection limit, as the sample must be diluted significantly before spectrometric analysis.

Aqua regia

A 40 g sample was digested in concentrated mixed nitric and hydrochloric acids in plastic bottles. The digest was diluted and mixed. Analysis was by ICP-MS for Au, Hg and Cd (and semi-quantitatively for Pt). The plastic bottles were discarded after use, thus ensuring no cross contamination.

(Robertson et al., 1996). Ignition loss was determined for all samples at 1000°C using thermal gravimetric analysis.
Table 1. Analytical methods and lower limits of detection

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Digest</th>
<th>Method</th>
<th>Lower detection limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>fusion disc</td>
<td>XRF</td>
<td>0.01</td>
</tr>
<tr>
<td>TiO₂</td>
<td>fusion disc</td>
<td>XRF</td>
<td>0.001</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>fusion disc</td>
<td>XRF</td>
<td>0.01</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>fusion disc</td>
<td>XRF</td>
<td>0.01</td>
</tr>
<tr>
<td>MnO</td>
<td>fusion disc</td>
<td>XRF</td>
<td>0.01</td>
</tr>
<tr>
<td>MgO</td>
<td>fusion disc</td>
<td>XRF</td>
<td>0.01</td>
</tr>
<tr>
<td>CaO</td>
<td>fusion disc</td>
<td>XRF</td>
<td>0.01</td>
</tr>
<tr>
<td>Na₂O</td>
<td>fusion disc</td>
<td>XRF</td>
<td>0.01</td>
</tr>
<tr>
<td>K₂O</td>
<td>fusion disc</td>
<td>XRF</td>
<td>0.01</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>fusion disc</td>
<td>XRF</td>
<td>0.001</td>
</tr>
<tr>
<td>Ag</td>
<td>4 acid</td>
<td>ICP-MS</td>
<td>0.5</td>
</tr>
<tr>
<td>As</td>
<td>4 acid</td>
<td>ICP-MS</td>
<td>0.5</td>
</tr>
<tr>
<td>Au (ppb)</td>
<td>aqua regia</td>
<td>ICP-MS</td>
<td>0.2</td>
</tr>
<tr>
<td>Ba</td>
<td>sodium peroxide fusion</td>
<td>ICP-MS</td>
<td>10</td>
</tr>
<tr>
<td>Be</td>
<td>4 acid</td>
<td>ICP-MS</td>
<td>0.1</td>
</tr>
<tr>
<td>Bi</td>
<td>4 acid</td>
<td>ICP-MS</td>
<td>0.1</td>
</tr>
<tr>
<td>Cd</td>
<td>aqua regia</td>
<td>ICP-MS</td>
<td>0.05</td>
</tr>
<tr>
<td>Ce</td>
<td>4 acid</td>
<td>ICP-MS</td>
<td>0.05</td>
</tr>
<tr>
<td>Cl</td>
<td>fusion disc</td>
<td>XRF</td>
<td>20</td>
</tr>
<tr>
<td>Co</td>
<td>4 acid</td>
<td>ICP-MS+AES</td>
<td>1+2</td>
</tr>
<tr>
<td>Cr</td>
<td>fusion disc</td>
<td>XRF</td>
<td>10</td>
</tr>
<tr>
<td>Cs</td>
<td>4 acid</td>
<td>ICP-MS</td>
<td>1</td>
</tr>
<tr>
<td>Cu</td>
<td>4 acid</td>
<td>ICP-AES</td>
<td>1</td>
</tr>
<tr>
<td>Eu</td>
<td>4 acid</td>
<td>ICP-MS</td>
<td>0.02</td>
</tr>
<tr>
<td>Ga</td>
<td>4 acid</td>
<td>ICP-MS</td>
<td>0.2</td>
</tr>
<tr>
<td>Hg (ppb)</td>
<td>aqua regia</td>
<td>ICP-MS</td>
<td>10</td>
</tr>
<tr>
<td>Ir (ppb)</td>
<td>Ni_fire assay</td>
<td>ICP-MS</td>
<td>0.2-1</td>
</tr>
<tr>
<td>La</td>
<td>4 acid</td>
<td>ICP-MS</td>
<td>0.05</td>
</tr>
<tr>
<td>Lu</td>
<td>4 acid</td>
<td>ICP-MS</td>
<td>0.02</td>
</tr>
<tr>
<td>Mo</td>
<td>4 acid</td>
<td>ICP-MS</td>
<td>0.2</td>
</tr>
<tr>
<td>Nb</td>
<td>sodium peroxide fusion</td>
<td>ICP-MS</td>
<td>1</td>
</tr>
<tr>
<td>Ni</td>
<td>4 acid</td>
<td>ICP-AES</td>
<td>1</td>
</tr>
<tr>
<td>Os (ppb)</td>
<td>Ni_fire assay</td>
<td>ICP-MS</td>
<td>0.2-1</td>
</tr>
<tr>
<td>Pb</td>
<td>4 acid</td>
<td>ICP-MS</td>
<td>1</td>
</tr>
<tr>
<td>Pd (ppb)</td>
<td>Ni_fire assay</td>
<td>ICP-MS</td>
<td>0.2-1</td>
</tr>
<tr>
<td>Pt (ppb)</td>
<td>Ni_fire assay</td>
<td>ICP-MS</td>
<td>0.2-1</td>
</tr>
<tr>
<td>Rb</td>
<td>sodium peroxide fusion</td>
<td>ICP-MS</td>
<td>0.2</td>
</tr>
<tr>
<td>Rh (ppb)</td>
<td>Ni_fire assay</td>
<td>ICP-MS</td>
<td>0.2-1</td>
</tr>
<tr>
<td>Ru (ppb)</td>
<td>Ni_fire assay</td>
<td>ICP-MS</td>
<td>0.2-1</td>
</tr>
<tr>
<td>S</td>
<td>fusion disc</td>
<td>XRF</td>
<td>10</td>
</tr>
<tr>
<td>Sb</td>
<td>4 acid</td>
<td>ICP-MS</td>
<td>0.1</td>
</tr>
<tr>
<td>Sc</td>
<td>4 acid</td>
<td>ICP-AES</td>
<td>1</td>
</tr>
<tr>
<td>Se</td>
<td>4 acid</td>
<td>ICP-MS</td>
<td>1</td>
</tr>
<tr>
<td>Sm</td>
<td>4 acid</td>
<td>ICP-MS</td>
<td>0.05</td>
</tr>
<tr>
<td>Sn</td>
<td>4 acid</td>
<td>ICP-MS</td>
<td>1</td>
</tr>
<tr>
<td>Sn_fus</td>
<td>sodium peroxide fusion</td>
<td>ICP-MS</td>
<td>10</td>
</tr>
<tr>
<td>Sr</td>
<td>4 acid</td>
<td>ICP-MS</td>
<td>0.1</td>
</tr>
<tr>
<td>Ta</td>
<td>4 acid</td>
<td>ICP-MS</td>
<td>0.05</td>
</tr>
<tr>
<td>Ta_fus</td>
<td>sodium peroxide fusion</td>
<td>ICP-MS</td>
<td>0.5</td>
</tr>
<tr>
<td>Te</td>
<td>4 acid</td>
<td>ICP-MS</td>
<td>0.2</td>
</tr>
<tr>
<td>Th</td>
<td>sodium peroxide fusion</td>
<td>ICP-MS</td>
<td>0.5</td>
</tr>
<tr>
<td>Tl</td>
<td>4 acid</td>
<td>ICP-MS</td>
<td>0.1</td>
</tr>
<tr>
<td>Tm</td>
<td>4 acid</td>
<td>ICP-MS</td>
<td>0.02</td>
</tr>
<tr>
<td>U</td>
<td>4 acid</td>
<td>ICP-MS</td>
<td>0.05</td>
</tr>
<tr>
<td>V</td>
<td>fusion disc</td>
<td>XRF</td>
<td>10</td>
</tr>
<tr>
<td>W</td>
<td>sodium peroxide fusion</td>
<td>ICP-MS</td>
<td>5</td>
</tr>
<tr>
<td>Y</td>
<td>sodium peroxide fusion</td>
<td>ICP-MS</td>
<td>0.1</td>
</tr>
<tr>
<td>Yb</td>
<td>4 acid</td>
<td>ICP-MS</td>
<td>0.05</td>
</tr>
<tr>
<td>Zn</td>
<td>4 acid</td>
<td>ICP-AES</td>
<td>1</td>
</tr>
<tr>
<td>Zr</td>
<td>fusion disc</td>
<td>XRF</td>
<td>5</td>
</tr>
</tbody>
</table>

Fusion disc

Fused discs for X-ray fluorescence analysis were made on a Labtec Essa robotic fused-bead system using 1.5 g sample and 10.5 g of Li borate flux (12 parts lithium metaborate and 22 parts lithium tetraborate) that were fused at 1050°C. Analysis was by Philips PW2404/2440 X-ray spectrometer using a 4 kW end window Rh X-ray tube.

Ni fire assay

A 25 g sample was mixed with a Ni-carbonate–sulfur-based flux and fused. The resultant Ni-sulfide button was pulverized and a portion was digested to remove the Ni-sulfide base. Recovery of the platinoïds was undertaken in a reducing environment coupled with Te coprecipitation. The insoluble platinoïd sulfides were separated by filtration, digested and the resulting solution was analysed by ICP-MS for Pt, Pd, Rh, Ru, Os and Ir, with a detection limit of less than 1 ppb.

Quality control

Quality control was maintained throughout the program by analysing recognized standards (5% of total analyses), duplicates (5% of total analyses), and blanks (5% of total analyses) provided by the analytical laboratory. Thus, in any batch of forty analyses, 34 samples were unknowns, two were a recognized standard, two were duplicates of unknowns, and two were blanks. In addition to field and sample duplicates, two specifically prepared laterite reference materials were submitted with each batch as unknowns. Approximately 300 samples that were previously analysed for the Astro Yilgarn Regolith program by INAA and XRF (Cornelius et al., 2005a) are available for comparison with ICP-MS and XRF (Ultra Trace Laboratory) analyses. A systematic discrepancy exists between Zr results by XRF (CSIRO) compared with Zr by XRF (Ultra Trace Laboratories) for concentrations ranging from 50 to 500 ppm. Measurements by Ultra Trace were, on average, about 10% higher than those by CSIRO (Fig. 10). This is due to differing calibrations. No correction was applied to Zr results as all samples, including the former Astro ones, were re-analysed by Ultra Trace. There were no significant differences for other analytes.

Approximately 150 samples from the CSIRO–AGE collection were analysed by Ultra Trace Laboratories as part of a preliminary survey in early 2002, prior to the commencement of the main sampling and analytical program for this project. To integrate these analyses into the main dataset with confidence, approximately 10% of the analyses were repeated as part of this analytical program, and deemed acceptable using the above criteria for duplicates.

Accuracy

Independent verification of the data was provided by repeat analyses of two specially prepared regolith samples.
and six international standards. Two 100 kg amounts of lateritic nodules and pisoliths from the western Yilgarn Craton were crushed and pulped to less than 75 μm and homogenized by Gannett Holdings, Perth (New Norcia NEWN305 and Gidgeganup GG305). NEWN305 has elevated PGE and base metal abundances, whereas GG305 has the composition of lateritic residuum developed on granite–gneiss of the Darling Range. Analyses for all analytes were obtained from six international and national laboratories and consensus elemental abundances calculated. In general, analyses of recognized standards provided by Ultra Trace Laboratories and of the two CSIRO reference materials were accepted if the analysed elemental abundance and the consensus abundance agreed to within 20%, providing the analyte abundance is at least ten times the lower limit of detection.

Insufficient accuracy was recorded for the measurement of Nb in fusion discs by XRF and these measurements were repeated using a sodium-peroxide fusion digest with ICP-MS finish.

Precision

For all analytes, the precision should be better than 20% \([(2 \times \text{standard deviation/mean}) \times 100] \) at 10 times the lower limit of detection. Duplicate analyses were acceptable if the half relative difference (HRD; \(\text{((assay #1-assay#2)/((assay #1 + assay#2)/2)} \times 100) \)) is less than 10, provided the analyte abundance is greater than 10 times the lower limit of detection. Blank results were acceptable if they were less than three times the lower limit of detection.

Copper and Zn showed insufficient precision in two batches and these were reanalysed for these elements by the same method with a satisfactory result.

Analytical results

Data presentation

All analytical results are listed in Appendix 2 (see CD in back pocket) in tab-delimited .txt and in MS-Access file formats. The file also contains information on the sample type and material. Reference material analyses and original laboratory reports are included in Appendix 2. Comparisons may be made between statistics of the total data set, those over granitic rocks, and those over greenstone belts in Appendix 2.

Summary statistics for all analytes are listed in Tables 2–4 and Appendix 2. Results for all analytes and two cumulative indices, the CHI6* (Smith et al., 1989) and the PEG4* index (Smith et al., 1987), are shown as bubble plots with the size of the bubbles proportional to the element abundance superimposed on contoured images, thus combining a summary of regional trends with objectivity of raw data. Contour plots are not shown due to a majority of the results being less than the lower limit of detection. The normalized element abundances were imaged using indicator kriging* (based on 90th percentiles, subjectively chosen based on the best visual presentation of regional trends) in ArcGIS 8.2 to highlight regional trends ranging from red-orange indicating high abundances to blue indicating low abundances (see Appendix 3). Single high points are downgraded by the smoothing effect of kriging, but can be identified on the bubble plot. In places, there are single points with high elemental abundances surrounded by generally low abundances. Statistically, these are ‘nuggety’ and are referred to as ‘isolated concentrations’. In other places, groups of samples with generally high abundances are clustered together. These are referred to as ‘regional concentrations’. Typicality indices have been used to distinguish samples with an affinity towards alkaline ultramafic rocks and high-Mg basalts and ultramafic rocks.

Non-metals

Phosphorus

The distribution of P shows two regional features. A large regional P concentration in the northern part coincides with high Ba and Cs and a second regional P concentration extends along the west margin of the Yilgarn Craton and east to a line extending from Moora to Jerramungup. Between the northern and the southwest regional concentrations is a 50–250 km-wide zone with predominantly low-P abundances, isolated concentrations, and small clusters of high-P abundances.

Sulfur

On a broad scale, the distribution of S resembles that of P, with several regional S concentrations in the north and...
Table 2. Summary statistics — lateritic residuum

<table>
<thead>
<tr>
<th>5th</th>
<th>10th</th>
<th>25th</th>
<th>50th</th>
<th>75th</th>
<th>90th</th>
<th>95th</th>
<th>97th</th>
<th>98th</th>
<th>99th</th>
<th>Mean</th>
<th>Std dev.</th>
<th>Min.</th>
<th>Max.</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage</td>
<td></td>
</tr>
<tr>
<td>SiO<sub>2</sub></td>
<td>13.22</td>
<td>19.30</td>
<td>34.20</td>
<td>46.50</td>
<td>53.90</td>
<td>60.57</td>
<td>63.80</td>
<td>66.18</td>
<td>68.17</td>
<td>70.14</td>
<td>43.11</td>
<td>15.25</td>
<td>2.53</td>
<td>85.10</td>
</tr>
<tr>
<td>TiO<sub>2</sub></td>
<td>0.34</td>
<td>0.39</td>
<td>0.48</td>
<td>0.65</td>
<td>1.02</td>
<td>1.51</td>
<td>1.93</td>
<td>2.27</td>
<td>2.51</td>
<td>3.15</td>
<td>0.84</td>
<td>0.60</td>
<td>0.10</td>
<td>6.72</td>
</tr>
<tr>
<td>Al<sub>2</sub>O<sub>3</sub></td>
<td>12.12</td>
<td>14.10</td>
<td>17.10</td>
<td>20.45</td>
<td>24.60</td>
<td>31.67</td>
<td>40.46</td>
<td>45.21</td>
<td>49.00</td>
<td>52.24</td>
<td>22.05</td>
<td>8.33</td>
<td>5.14</td>
<td>60.60</td>
</tr>
<tr>
<td>Fe<sub>2</sub>O<sub>3</sub></td>
<td>9.47</td>
<td>11.50</td>
<td>15.40</td>
<td>20.60</td>
<td>30.80</td>
<td>42.10</td>
<td>50.37</td>
<td>55.90</td>
<td>60.10</td>
<td>63.92</td>
<td>24.23</td>
<td>12.72</td>
<td>4.84</td>
<td>81.40</td>
</tr>
<tr>
<td>MnO</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
<td>0.010</td>
<td>0.030</td>
<td>0.040</td>
<td>0.060</td>
<td>0.080</td>
<td>0.147</td>
<td>0.018</td>
<td>0.095</td>
<td>0.015</td>
<td>0.018</td>
<td>0.015</td>
</tr>
<tr>
<td>MgO</td>
<td>0.02</td>
<td>0.03</td>
<td>0.04</td>
<td>0.06</td>
<td>0.08</td>
<td>0.12</td>
<td>0.14</td>
<td>0.15</td>
<td>0.17</td>
<td>0.20</td>
<td>0.07</td>
<td>0.06</td>
<td>0.01</td>
<td>1.85</td>
</tr>
<tr>
<td>CaO</td>
<td>0.005</td>
<td>0.005</td>
<td>0.010</td>
<td>0.020</td>
<td>0.030</td>
<td>0.050</td>
<td>0.070</td>
<td>0.080</td>
<td>0.100</td>
<td>0.140</td>
<td>0.030</td>
<td>0.064</td>
<td>0.005</td>
<td>2.480</td>
</tr>
<tr>
<td>Na<sub>2</sub>O</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
<td>0.020</td>
<td>0.040</td>
<td>0.070</td>
<td>0.110</td>
<td>0.140</td>
<td>0.167</td>
<td>0.220</td>
<td>0.033</td>
<td>0.061</td>
<td>0.000</td>
<td>1.200</td>
</tr>
<tr>
<td>K<sub>2</sub>O</td>
<td>0.01</td>
<td>0.02</td>
<td>0.03</td>
<td>0.06</td>
<td>0.13</td>
<td>0.21</td>
<td>0.31</td>
<td>0.45</td>
<td>0.65</td>
<td>0.81</td>
<td>1.46</td>
<td>0.14</td>
<td>0.32</td>
<td>0.01</td>
</tr>
<tr>
<td>P<sub>2</sub>O<sub>5</sub></td>
<td>0.011</td>
<td>0.013</td>
<td>0.018</td>
<td>0.026</td>
<td>0.036</td>
<td>0.050</td>
<td>0.060</td>
<td>0.069</td>
<td>0.076</td>
<td>0.091</td>
<td>0.029</td>
<td>0.018</td>
<td>0.004</td>
<td>0.282</td>
</tr>
</tbody>
</table>

Parts per million (unless otherwise indicated)

- **Ag**: 0.25 to 0.25
- **As**: 7.5 to 9.5
- **Au**: 0.10 to 0.10
- **Cd**: 0.05 to 0.1
- **Ce**: 0.08 to 0.08
- **Cu**: 0.05 to 0.05
- **Eu**: 0.06 to 0.06
- **Ga**: 0.03 to 0.03
- **Hg**: 0.08 to 0.08
- **La**: 1.75 to 2.20
- **Lu**: 0.01 to 0.01
- **Mo**: 0.22 to 0.22
- **Nb**: 0.06 to 0.06
- **Ni**: 0.37 to 0.37
- **Pb**: 0.16 to 0.16
- **Tl**: 0.05 to 0.05
- **Th**: 4.00 to 4.00
- **Tm**: 0.01 to 0.01
- **Tl**: 0.05 to 0.05
- **Te**: 0.01 to 0.01
- **Sn**: 0.01 to 0.01
- **Sm**: 0.03 to 0.03
- **Sc**: 0.02 to 0.02
- **S**: 100 to 100
- **Ba**: 10 to 10
- **As**: 7.5 to 7.5
- **Cl**: 10 to 10
- **Ce**: 6 to 6
- **Co**: 2 to 2
- **Cs**: 0.05 to 0.05
- **Cr**: 90 to 90
- **Cu**: 33 to 33
- **Eu**: 0.06 to 0.06
- **Ga**: 23 to 23
- **Hg**: 5 to 5
- **La**: 1.75 to 1.75
- **Lu**: 0.01 to 0.01
- **Mo**: 2.2 to 2.2
- **Nb**: 67 to 67
- **Ni**: 11 to 11
- **Pb**: 16 to 16
- **Rb**: 1.2 to 1.2
- **S**: 100 to 100
- **Sb**: 0.2 to 0.2
- **Sc**: 6 to 6
- **Se**: 0.5 to 0.5
- **Sm**: 0.35 to 0.35
- **Sn**: 0.5 to 0.5
- **Sr**: 2 to 2
- **Ta**: 0.35 to 0.35
- **Te**: 0.1 to 0.1
- **Th**: 18 to 18
- **Tl**: 0.05 to 0.05
- **Tm**: 0.01 to 0.01
- **U**: 1.75 to 1.75
- **V**: 160 to 160
- **W**: 2.5 to 2.5
- **Y**: 2.4 to 2.4
- **Zn**: 0.02 to 0.02
- **Zr**: 195 to 195
- **LOI**: 5.16 to 5.16

NOTES:
- ARL1–3 are original and Au repeat analyses
- Fus: fusion
- MAD: Mixed-acid digest
- LOI: Ignition loss at 1000°C
<table>
<thead>
<tr>
<th></th>
<th>5th</th>
<th>10th</th>
<th>25th</th>
<th>50th</th>
<th>75th</th>
<th>90th</th>
<th>95th</th>
<th>97th</th>
<th>99th</th>
<th>Mean</th>
<th>Std dev</th>
<th>Min.</th>
<th>Max.</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>10.28</td>
<td>15.85</td>
<td>26.50</td>
<td>46.25</td>
<td>55.30</td>
<td>61.75</td>
<td>67.05</td>
<td>69.74</td>
<td>71.48</td>
<td>74.75</td>
<td>42.26</td>
<td>17.58</td>
<td>2.63</td>
<td>79.80</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.37</td>
<td>0.42</td>
<td>0.50</td>
<td>0.68</td>
<td>0.96</td>
<td>1.42</td>
<td>2.01</td>
<td>2.73</td>
<td>3.23</td>
<td>3.50</td>
<td>0.87</td>
<td>0.68</td>
<td>0.05</td>
<td>6.34</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>8.70</td>
<td>11.15</td>
<td>14.90</td>
<td>18.65</td>
<td>21.90</td>
<td>27.30</td>
<td>34.95</td>
<td>38.09</td>
<td>41.60</td>
<td>45.15</td>
<td>19.13</td>
<td>7.36</td>
<td>3.36</td>
<td>49.20</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>8.90</td>
<td>11.35</td>
<td>15.48</td>
<td>22.00</td>
<td>38.70</td>
<td>57.05</td>
<td>62.58</td>
<td>70.67</td>
<td>71.88</td>
<td>74.27</td>
<td>28.60</td>
<td>17.78</td>
<td>4.88</td>
<td>84.20</td>
</tr>
<tr>
<td>MnO</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
<td>0.010</td>
<td>0.020</td>
<td>0.040</td>
<td>0.080</td>
<td>0.120</td>
<td>0.160</td>
<td>0.200</td>
<td>0.264</td>
<td>0.076</td>
<td>0.005</td>
<td>1.1400</td>
</tr>
<tr>
<td>MgO</td>
<td>0.02</td>
<td>0.03</td>
<td>0.04</td>
<td>0.08</td>
<td>0.12</td>
<td>0.15</td>
<td>0.19</td>
<td>0.23</td>
<td>0.33</td>
<td>0.07</td>
<td>0.07</td>
<td>0.01</td>
<td>0.83</td>
<td>456</td>
</tr>
<tr>
<td>CaO</td>
<td>0.005</td>
<td>0.010</td>
<td>0.020</td>
<td>0.030</td>
<td>0.040</td>
<td>0.070</td>
<td>0.100</td>
<td>0.120</td>
<td>0.180</td>
<td>0.215</td>
<td>0.039</td>
<td>0.052</td>
<td>0.005</td>
<td>0.0000</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.005</td>
<td>0.005</td>
<td>0.010</td>
<td>0.030</td>
<td>0.060</td>
<td>0.100</td>
<td>0.130</td>
<td>0.178</td>
<td>0.314</td>
<td>0.030</td>
<td>0.062</td>
<td>0.005</td>
<td>0.780</td>
<td>456</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.18</td>
<td>0.47</td>
<td>0.01</td>
<td>4.04</td>
<td>456</td>
<td>0.11</td>
<td>0.30</td>
<td>0.68</td>
<td>1.51</td>
<td>2.41</td>
<td>0.18</td>
<td>0.47</td>
<td>0.01</td>
<td>4.04</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.014</td>
<td>0.017</td>
<td>0.022</td>
<td>0.030</td>
<td>0.047</td>
<td>0.076</td>
<td>0.098</td>
<td>0.123</td>
<td>0.141</td>
<td>0.193</td>
<td>0.042</td>
<td>0.047</td>
<td>0.009</td>
<td>0.511</td>
</tr>
</tbody>
</table>

Table 3. Summary statistics — lag after laterite residuum

<table>
<thead>
<tr>
<th>Percentage</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LOI Ignition loss at 1000°C</td>
<td></td>
</tr>
<tr>
<td>MAD Mixed-acid digest</td>
<td></td>
</tr>
<tr>
<td>FUS fusion</td>
<td></td>
</tr>
</tbody>
</table>

Parts per million (unless otherwise indicated)

NOTES:
- ARL1–3 are original and Au repeat analyses
- FUS fusion
- MAD Mixed-acid digest
- LOI Ignition loss at 1000°C

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>19</td>
</tr>
</tbody>
</table>
Table 4. Summary statistics — colluvium (nodules and pisoliths)

<table>
<thead>
<tr>
<th>Element</th>
<th>Mean</th>
<th>Min.</th>
<th>Max.</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag</td>
<td>0.75</td>
<td>0.25</td>
<td>2.45</td>
<td>201</td>
</tr>
<tr>
<td>As</td>
<td>7.5</td>
<td>1.20</td>
<td>32.0</td>
<td>201</td>
</tr>
<tr>
<td>Au ARL1 (ppb)</td>
<td>0.10</td>
<td>0.10</td>
<td>0.40</td>
<td>201</td>
</tr>
<tr>
<td>Au ARL2 (ppb)</td>
<td>0.10</td>
<td>0.10</td>
<td>0.40</td>
<td>201</td>
</tr>
<tr>
<td>Au ARL3 (ppb)</td>
<td>0.31</td>
<td>0.52</td>
<td>0.80</td>
<td>201</td>
</tr>
<tr>
<td>Ba</td>
<td>20</td>
<td>40</td>
<td>80</td>
<td>201</td>
</tr>
<tr>
<td>Be</td>
<td>0.4</td>
<td>0.6</td>
<td>1.2</td>
<td>201</td>
</tr>
<tr>
<td>Bi</td>
<td>0.05</td>
<td>0.20</td>
<td>0.60</td>
<td>201</td>
</tr>
<tr>
<td>Cd</td>
<td>0.025</td>
<td>0.025</td>
<td>0.025</td>
<td>201</td>
</tr>
<tr>
<td>Ce</td>
<td>6</td>
<td>9</td>
<td>13</td>
<td>201</td>
</tr>
<tr>
<td>Co</td>
<td>3</td>
<td>5</td>
<td>9</td>
<td>201</td>
</tr>
<tr>
<td>Cr</td>
<td>70</td>
<td>110</td>
<td>170</td>
<td>201</td>
</tr>
<tr>
<td>Cs</td>
<td>0.05</td>
<td>0.10</td>
<td>0.40</td>
<td>201</td>
</tr>
<tr>
<td>Cu</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>201</td>
</tr>
<tr>
<td>Eu</td>
<td>0.10</td>
<td>0.12</td>
<td>0.16</td>
<td>201</td>
</tr>
<tr>
<td>Ga</td>
<td>19</td>
<td>21</td>
<td>29</td>
<td>201</td>
</tr>
<tr>
<td>Hg (ppb)</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>201</td>
</tr>
<tr>
<td>In</td>
<td>0.06</td>
<td>0.10</td>
<td>0.16</td>
<td>201</td>
</tr>
<tr>
<td>La</td>
<td>2.10</td>
<td>2.65</td>
<td>4.10</td>
<td>201</td>
</tr>
<tr>
<td>Lu</td>
<td>0.04</td>
<td>0.06</td>
<td>0.12</td>
<td>201</td>
</tr>
<tr>
<td>Mo</td>
<td>2.2</td>
<td>2.8</td>
<td>5.4</td>
<td>201</td>
</tr>
<tr>
<td>Nb</td>
<td>6</td>
<td>10</td>
<td>13</td>
<td>201</td>
</tr>
<tr>
<td>Ni</td>
<td>13</td>
<td>16</td>
<td>20</td>
<td>201</td>
</tr>
<tr>
<td>Pb</td>
<td>17</td>
<td>22</td>
<td>32</td>
<td>201</td>
</tr>
<tr>
<td>Rb</td>
<td>1.4</td>
<td>1.8</td>
<td>3.4</td>
<td>201</td>
</tr>
<tr>
<td>Sr</td>
<td>90</td>
<td>120</td>
<td>200</td>
<td>201</td>
</tr>
<tr>
<td>Sb</td>
<td>0.2</td>
<td>0.2</td>
<td>0.7</td>
<td>201</td>
</tr>
<tr>
<td>Sc</td>
<td>5</td>
<td>7</td>
<td>10</td>
<td>201</td>
</tr>
<tr>
<td>Se</td>
<td>0.5</td>
<td>0.5</td>
<td>2.0</td>
<td>201</td>
</tr>
<tr>
<td>Sn</td>
<td>0.40</td>
<td>0.55</td>
<td>0.75</td>
<td>201</td>
</tr>
<tr>
<td>Sn_FUS</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>201</td>
</tr>
<tr>
<td>Sr</td>
<td>3.0</td>
<td>5.1</td>
<td>9.1</td>
<td>201</td>
</tr>
<tr>
<td>Ta_MAD</td>
<td>0.25</td>
<td>0.35</td>
<td>0.50</td>
<td>201</td>
</tr>
<tr>
<td>Ta_FUS</td>
<td>0.25</td>
<td>0.50</td>
<td>1.0</td>
<td>201</td>
</tr>
<tr>
<td>Te</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>201</td>
</tr>
<tr>
<td>Th</td>
<td>16</td>
<td>21</td>
<td>36</td>
<td>201</td>
</tr>
<tr>
<td>Tl</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>201</td>
</tr>
<tr>
<td>Tm</td>
<td>0.03</td>
<td>0.03</td>
<td>0.12</td>
<td>201</td>
</tr>
<tr>
<td>U</td>
<td>1.55</td>
<td>1.90</td>
<td>2.90</td>
<td>201</td>
</tr>
<tr>
<td>V</td>
<td>170</td>
<td>200</td>
<td>300</td>
<td>201</td>
</tr>
<tr>
<td>W</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>201</td>
</tr>
<tr>
<td>Y</td>
<td>2.6</td>
<td>3.6</td>
<td>4.7</td>
<td>201</td>
</tr>
<tr>
<td>Yb</td>
<td>0.3</td>
<td>0.3</td>
<td>0.4</td>
<td>201</td>
</tr>
<tr>
<td>Zn</td>
<td>5</td>
<td>6</td>
<td>10</td>
<td>201</td>
</tr>
<tr>
<td>Zr</td>
<td>160</td>
<td>220</td>
<td>315</td>
<td>201</td>
</tr>
<tr>
<td>Zn</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>201</td>
</tr>
<tr>
<td>Pb</td>
<td>17</td>
<td>22</td>
<td>25</td>
<td>201</td>
</tr>
</tbody>
</table>

NOTES: ARL1–3 are original and Au repeat analyses
FUS fusion
MAD Mixed-acid digest
LOI Ignition loss at 1000°C
a distinct S regional concentration along the southwest margin of the Yilgarn Craton. Sulfur abundances are high on granitic bedrock as well as on greenstone sequences; however, the 90th percentile of S abundances on greenstone (780 ppm) is 25% greater than on granite (620 ppm).

High-S abundances in the northern part of the survey area appear to reflect more greenstone compared with the southern Yilgarn Craton. However, S abundances over greenstone in the Southern Cross region do not show equally elevated concentrations. Environmental factors (e.g. bushfires) therefore appear equally possible. Derivation of S from sea spray is considered unlikely, due to the limited extent of high-S abundances in the southwest Yilgarn Craton and the long distance from the coast in the case of high-S abundances in the northern Yilgarn Craton. Barite (BaSO₄) is developed in red-brown hardpan (Mahizhnan, 2004); hardpans are common north of the Menzies line, in the north part of the survey area. Barite and gypsum contribute to a late regolith cement affecting all upper parts of the regolith profile; residual or depositional parts alike.

Selenium

The distribution of Se shows a number of patchy regional concentrations extending along a line from approximately Mullewa in the northwest to Southern Cross in the southeast. South of this line (i.e. throughout most of the Wheat Belt), Se abundances are generally low. Likewise, Se abundances in the northeast of the survey area are less than along the northwest regional trend. Most concentrations of high Se (90th percentile is 5 ppm) are within granitic terrains, with few high abundances coincident with greenstone sequences. Given the chalcophile affinity of Se, this might indicate widespread finely distributed bedrock sulfides in parts of the granitic terrains, possibly hosted by mafic inliers or melanocratic gneiss. Two distinct concentrations of high Se within the general trend are centred on an area south of Mullewa and northeast of Southern Cross, with abundances of 5–15 ppm Se.

Rare earth elements

The rare earth elements (REE) La, Ce, Eu, Sm, Yb, and Lu are, in general, more abundant in lateritic residuum on granitic rocks (90th percentile for La is 16.3 ppm) than on greenstone sequences (90th percentile for La is 9.95 ppm). Abundances are also high over pegmatite dykes (e.g. around Bridgetown–Greenbushes) and alkaline ultramafic rocks such as in an area northeast of Muckinbudin (Cornelius et al., 2005b), with some REE concentrations above the respective 99th percentiles. The regional distribution varies between light REE (La and Ce), medium REE (Sm and Eu), and heavy REE (Yb and Lu). The light REE are elevated in all granitic domains of the survey area. Cerium is more enriched in the central part, whereas La is equally enriched in the southern and northern parts of the survey area. The medium REE show a similar distribution to that of the light REE, but the clusters of high abundances are more confined. Along the south margin of the Yilgarn Craton, north of the Proterozoic rocks, medium REE abundances are high, corresponding with high Na, K, Mg, and Sr abundances. The distribution of high-Yb and -Lu abundances resembles that of Sm, but is less extensive. The heavy REE show concentrations in the northern part (south of Meekatharra) and the eastern part (east of Lake Barlee) of the survey area that are more distinct than the corresponding abundances for light REE and medium REE. These regional differences in REE abundances and interelement ratios might indicate different bedrock suites within the felsic terrain.

Thorium

The 90th percentiles vary significantly between granite terrain (194 ppm) and greenstone terrain (86 ppm). There are several patchy regional concentrations of Th in granite gneiss terrain in the central part of the survey area. The most prominent ones are west-southwest and northwest of Merredin, with abundances of 400–850 ppm. Although Th abundances in the northern survey area are generally less than in the south, a large cluster of high-Th abundances is centred on Paynes Find (200–700 ppm), possibly indicating a Th-rich granite intrusion. Thorium is also commonly associated with goethite.

Uranium

The regional distribution of U shows three distinct domains. Generally low abundances are in the northern part of the survey area, with a few scattered single-point concentrations (including the maximum U abundance of 51.7 ppm southwest of Paynes Find). There are a number of regional concentrations of high U in the central part, and generally low abundances in the southeast part. The conspicuous absence of concentrations of high U in the northern part of the survey area coincides with the presence of valley calcrites anomalous in U (Butt et al., 1984; Cameron, 1984; French and Allen, 1984). The high-U domain in the central Yilgarn Craton and the low-U domain in the northern Yilgarn Craton are separated, broadly, along the Menzies line. It remains open whether environmental factors such as summer rainfall associated with cyclonic depressions or primary U abundances in bedrock (i.e. different granite types) control the distribution of U in lateritic residuum. Where there has been an antithetical relationship between Th and U in granite areas, this might indicate different granite types. In the north Yilgarn, it would appear that U has been leached from the regolith, concentrated in the trunk drainage, and is consequently depleted in the upper residual regolith.

Alkalis

Sodium

Strong leaching during weathering depletes the alkalis in lateritic residuum. The 90th percentile for Na (as %Na₂O) in granitic terrains is 0.08%, and in greenstone terrains
is 0.06%. The main feature of the Na distribution in the Yilgarn Craton is a regional concentration of Na in the southern part of the survey area, extending approximately 370 × 80 km and trending east from Bridgetown to Ravensthorpe. The position of the regional concentration, approximately 50 km inland from the coast, does not appear to be related to eolian derivation of Na from the Southern Ocean. Instead, incomplete decomposition of feldspar has resulted in remnant feldspar particles in lateritic residuum and this is confirmed by petrographic examination. In the northern part of the survey area, there are small clusters of increased Na abundances within the granitic terrain, possibly related to very coarse grained bedrock.

Potassium

The dominant regional K trend is a concentration in the southern part of the survey area, approximately 270 × 90 km, trending east-northeast along the Proterozoic rocks overlying and adjacent to the Yilgarn Craton. Petrographic work reveals small quantities of weathered microcline perthite in the lateritic residuum of this region (compare with Na).

North of the regional concentration, K (as %K₂O) forms several clusters of relatively high-K abundance such as a 20 × 40 km cluster approximately 35 km southeast of the Saddleback greenstone belt. The irregular distribution of K abundances in the northern part of the survey area makes it more likely that differences in the K content of the bedrock and differences in the completeness of weathering are the causes of the variation in K abundance in the regolith.

Rubidium

The Rb distribution shows several clusters within granitic terrain (90th percentile 19.8 ppm), whereas abundances in greenstone terrain are generally low (90th percentile 9.9 ppm); there are no significant craton-scale trends. Regional clusters of elevated Rb abundances might be related to specific granite types as well as the presence of Proterozoic rocks along the margin of Archaean rocks. There is a noteworthy regional enrichment of Rb east of Lake Barlee in granites adjacent to greenstone, where a cluster of Rb abundances ranging from 35 to 45 ppm might indicate a particular granite intrusion or regional alteration. Other elements enriched in this area are Be, Cs and REE.

Caesium

The Cs distribution is very similar to that of Rb. It shows several regional concentrations of high Cs in the northern part of the survey area, along the southern margin of the Yilgarn Craton within Proterozoic rocks overlying the Yilgarn Craton. As with Rb, Cs abundances generally are greater in granitic terrain (90th percentile 1.1 ppm) compared with greenstone terrain (90th percentile 0.8 ppm).

Alkaline earths

Beryllium

Although naturally associated with fluid-rich rocks such as pegmatites, greisens and skarns, Be abundances are similar in granitic and greenstone terrains (90th percentiles 1.6 and 1.4 ppm respectively). There are a few clusters of elevated Be abundances in the northern part of the survey area (such as east of Lake Barlee, with a maximum abundance of 3.7 ppm) that might correspond to regional hydrothermal alteration.

Magnesium and calcium

Both Mg (as %MgO) and Ca (as %CaO) are strongly depleted in lateritic residuum compared with their respective abundances in bedrock, and comprise only a minor part of the oxides (90th percentiles 0.12 and 0.13% respectively). However, secondary carbonate introduced to lateritic residuum by hydromorphic processes can significantly increase both the Mg and, particularly, the Ca contents. On a craton scale, Mg abundances are high north of the Albany–Fraser Orogen, extending for approximately 300 km in an east–west and 75 km in a north–south direction. The origin of this concentration might indicate a less intensely weathered regolith and, potentially, the presence of mica.

Samples with Ca (as %CaO) at greater than 2% have been excluded from the dataset, as they probably represent calcrete rather than lateritic residuum. A distinct Ca concentration in the northern part of the survey area is due to the introduction of calcite to the colluvium and calcite impregnation of ferruginous materials. Other Ca concentrations are located within or close to greenstone sequences and might reflect incomplete weathering of calcic feldspar and amphibole in the bedrock.

Strontium

There is little difference between Sr abundances on granitic and greenstone terrains (90th percentiles 18 and 17 ppm respectively). Regionally, there are two areas of elevated Sr in laterite, one north of the Albany–Fraser Orogen (230 × 100 km) and the other in the northern part of the survey area (to the west of Mount Magnet) of approximately 160 km in diameter. There are several isolated concentrations and small clusters throughout the survey area. In lateritic residuum, Sr abundances appear to reflect differences in bedrock composition. Where samples are dominantly from colluvium, such as west of Mount Magnet, Sr strongly correlates with Ca, indicating hydromorphic carbonate enrichment. There is a correlation with Na, particularly in the north and south, which probably reflects incomplete feldspar weathering.

Barium

There is a major difference between the Ba distribution in the north and south of the survey area that is significantly stronger than that between granitic and greenstone terrains.
(90th percentiles 360 and 315 ppm respectively). The boundary between the two groups approximately follows the so-called Menzies line, an environmental divide based on a number of factors including soil and climate (Anand et al., in press). To the south of the boundary, tall eucalypt open woodlands dominate, whereas north of it acacia trees and shrub dominate. Barite (BaSO₄) is developed in red-brown hardpan (Mahizhnan, 2004); hardpans are common north of the Menzies Line, in the north part of the survey area. Barite contributes to a late regolith cement and affects all upper parts of the regolith profile; residual or depositional parts alike.

Transition metals

Scandium

Scandium is associated with Fe- and Mg-rich rocks, hence its greater abundance in laterite developed on greenstones and greenstone remnants of the western Yilgarn Craton (90th percentile 114 ppm) compared to granitic rocks (90th percentile is 39 ppm). It is concentrated in some residual rocks and is abundant in some pegmatites.

There are two major Sc trends outside known greenstone belts. The first is approximately 130 km long, extending southeast along the Saddleback greenstone belt and extending 40 km south of the greenstone sequence. A second trend extends approximately 400 km south-southeast along the western margin of the Yilgarn Craton from Toodyay to Mullewa. Both trends might indicate the presence of mafic remnants within these regions.

Vanadium

Vanadium is mainly associated with mafic rocks in the Yilgarn Craton and hence its far greater abundance in greenstone sequences (90th percentile 1370 ppm) than in the granite–gneiss terrains (90th percentile 780 ppm). Two noticeable exceptions are an association of high V and Ti in parts of the southwest Yilgarn Craton (see **Titanium**) and in the Jimperding metamorphic belt, and a distinct regional V concentration (approximately 70 km across) also associated with Sc in an area south of Mullewa near the western boundary of the Yilgarn Craton. On a craton-scale, the abundance of V is greater in the northern Yilgarn Craton where elevated V in laterite over some greenstone belts could indicate a higher proportion of mafic rocks, such as at Diemals–Mount Jackson, Rothsay–Golden Grove, and Windimurra.

Titanium

Although the Ti abundance (as %TiO₂) over greenstones exceeds that over granitic rocks (90th percentiles 2.3 and 1.5% respectively), high-Ti abundances are developed in the southwest Yilgarn Craton over an area bounded by the Darling escarpment in the west and a line from Perenjori in the north to Bremer Bay in the south. Titanium concentrations in this area are generally 1–3% (maximum 12.9%), and probably reflect the relatively high proportion of mafic dykes (Fig. 11). In the northern Yilgarn Craton, high Ti is associated with the Windimurra and Narndee intrusions.

Manganese

On a craton scale, there are increased Mn abundances (as %MnO) on greenstone sequences (90th percentile 0.08 compared to 0.03% in granitic terrain), with some localized Mn concentrations due to secondary Mn enrichment in hardpanized colluvium with Mn up to 3.9%. Black staining on the outside of ferruginous gravel is an indication of highly anomalous Mn. This type of Mn-rich gravel, which generally occurs at the base of the colluvium, was avoided during sampling and was only collected where no other material was available. All elements closely associated with Mn oxides and hydroxides (e.g. Co, Ti, Cd, and Zn) must be treated with caution in manganiferous samples.

Iron

The regional distribution of Fe (as %Fe₂O₃) is a good proxy for the abundance of mafic rocks and banded iron-formation in the bedrock; lateritic residuum on greenstone sequences generally has more Fe (90th percentile 66.5%) than that on granitic terrain (90th percentile 40.9%). Thus, Fe abundances are, overall, greater in the north and northeast of the survey area than in the south, reflecting abundant greenstones and intrusive complexes.

Cobalt

In bedrock, Co is strongly associated with sulfides, whereas in the regolith there is a strong association between Ni and Co (such as in nickel laterites) and Co and Mn in the case of secondary Mn coatings and infusions. The regional distribution of high Co is primarily controlled by the presence of mafic–ultramafic volcanic and intrusive rocks. Beyond greenstone successions, isolated high-Co abundances are commonly associated with secondary Mn in colluvium and lag such as west of Mount Magnet and around Meekatharra. A regional high-Co concentration (10–45 ppm) outside known greenstone belts is located over an area of approximately 130 × 70 km, 100 km north-northeast of Albany. Some of these Co concentrations appear to coincide with the intersections of northwest faults (e.g. Dumbleyung Fault) and east-southeast dykes.

Chromium

Chromium is a reliable indicator of mafic–ultramafic rocks in the regolith, due to the weathering resistance of chromite. High-Cr abundances not only outline the extent of greenstone belts (90th percentile 6380 ppm), but also show remnants of greenstones, sills, and layered intrusions within areas of granite–gneiss (90th percentile 550 ppm). The Cr distribution (Fig. 12) clearly outlines the main greenstone belts in the western Yilgarn Craton as well as mafic–ultramafic intrusions such as at Narndee and Windimurra. Concentrations of chromium also indicate greenstone remnants near Lake Grace, and scattered mafic
Figure 11. Kriged image and bubble plot of Ti (as TiO$_2$) and abundances of mafic dykes
Figure 12. Kriged image and bubble plot of Cr abundances
or ultramafic rocks in the southwest Yilgarn Craton such as near Bridgetown, and in the Jimperding metamorphic belt northeast of Perth.

Nickel
In Archean bedrock, Ni is concentrated in ultramafic rocks. Accordingly, Ni abundances are greater in greenstone belts (90th percentile 303 ppm) than in felsic-dominated terrains (90th percentile 55 ppm).

Outside known greenstone belts (Fig. 13), there is a Ni concentration in the Jimperding metamorphic belt south of Wongan Hills, with a maximum of 270 ppm Ni in sample 103191. Greater Ni (and Cr) abundances confirm the presence of mafic and ultramafic rocks within the Jimperding metamorphic belt, such as the Coates Gabbro. Some isolated high-Ni abundances throughout the western Yilgarn Craton, both within and beyond known greenstone belts, might be due to secondary enrichment of Ni, but could also indicate small ultramafic remnants. A peak Ni abundance of 2150 ppm (sample 101655) is related to a mafic–ultramafic complex south of the Windimurra Complex.

Copper
On a regional scale, Cu abundances are significantly greater in greenstone belts (90th percentile 180 ppm) than in granite–gneiss terrains (90th percentile 38 ppm), with a few noticeable exceptions. Regional concentrations of high Cu in the southwest of the craton (Fig. 14), along strike from the Saddleback greenstone belt, extend from approximately 20 km south of the Saddleback greenstone belt to the southern edge of the craton, a distance of approximately 120 km. A series of high-Cu concentrations, south of the Wongan Hills greenstone belt in the Jimperding metamorphic belt, trend approximately 300 km northwest and extend approximately 300 km towards Mullewa. This trend might reflect abundant mafic rocks in this part of the metamorphic belt, with a small amount of associated base metal sulfide such as at Yarawindah Brook, southeast of New Norcia. A sample near the Yarawindah Brook mafic–ultramafic body has a Cu abundance of 140 ppm. Localized high-Cu concentrations around Bridgetown might be associated with mafic–ultramafic intrusive rocks.

The Mount Gibson–Golden Grove, Diemals–Mount Jackson, and Meekatharra greenstone belts all show high-Cu abundances, with one sample reaching 2080 ppm approximately 40 km southeast of Golden Grove. In the Mount Gibson belt, several Cu-rich Au deposits and the Golden Grove Cu–Zn–Au deposits are evidence of this trend. In the Diemals–Mount Jackson greenstone belt, high Cu in lateritic residuum might indicate the presence of more widespread base metal sulfides.

Zinc
At a regional scale, Zn abundances in greenstone belts (90th percentile 56 ppm) exceed those in granitic terrain (90th percentile 24 ppm) due to the Zn content of contained base metal sulfides, black shales, and minor sulfides in mafic igneous rocks. Outside greenstone belts, most concentrations of Zn are associated with secondary Mn oxides and hydroxides. In the southwest of the Yilgarn Craton, high-Zn abundances are associated with the Jimperding metamorphic belt, and small greenstone remnants near Griffins Find. A peak of 408 ppm Zn (sample 100970) lies northeast of the Mullewa greenstone belt and is unexplained.

Yttrium
In the granitic and greenstone terrains of the northwest Yilgarn Craton (90th percentiles 13.3 and 13.2 ppm respectively), high-Y abundances form several small clusters. In the southwest Yilgarn Craton, elevated Y forms a broad, regional trend along the Darling Range, extending inland to Corrigin, with a cluster of very high abundances (52–116 ppm) near Bridgetown and Greenbushes. As Y is associated with rare earth elements (e.g. in pegmatite and carbonatite), these concentrations might indicate further pegmatite in the area. Another regional Y trend, extending east-northeast and parallel to the Albany–Fraser Orogen, is also associated with elevated REE and alkali elements. A base metal concentration east of Lake Barlee also is associated with high Y.

Zirconium
Zirconium is more abundant in felsic rocks and hence abundances in the granite–gneiss terrains (90th percentile 614 ppm) significantly exceed those in greenstone terrains (90th percentile 390 ppm). The regional distribution shows a group of high-Zr samples south of Mullewa covering an area of approximately 100 × 90 km, with Zr abundances ranging between 500 and 1700 ppm. Other high-Zr samples are scattered throughout granitic rocks of the western Yilgarn Craton and might characterize specific granite populations, although some may have been incorporated from eolian materials.

Niobium
As with Zr, Nb is mostly associated with felsic rocks (90th percentile in granitic terrain is 25 ppm; in greenstone terrain it is 16 ppm), with the exception of alkaline ultramafic rocks. The distribution pattern shows several regional concentrations of high Nb, particularly in the western half of the survey area. Abundances are generally low over greenstones. Several clusters of anomalous Nb abundances are developed within the regional concentrations and the areas of low abundances. The source of such enrichment might be either a large granitic body with high-Nb content, pegmatite dykes, or alkaline rocks (see sample 102689 and Cornelius et al., 2006). One sample southeast of Meekatharra contains 221 ppm Nb and is probably related to pegmatites.

Molybdenum
There are clusters and isolated high-Mo abundances throughout the survey area. Most are in granitic
Figure 13. Kriged image and bubble plot of Ni abundances
Figure 14. Kriged image and bubble plot of Cu abundances
presence of mafic–ultramafic bedrock and associated Ni—with greenstone sequences and are indicative of the Ru, Os, Ir, and Rh are generally more closely associated with greenstone belts. Platinum group elements (PGE)

The six platinum group elements Os, Ir, Ru, Rh, Pt, and Pd were included in the analytical suite following preliminary studies that showed many laterite samples with high-Cr, -Ni, and -Co abundances also have PGE concentrations above 1 ppb (i.e. at measurable levels). These concentrations can now be reliably and cost-effectively analysed using Ni fire assay techniques with a 0.1 – 1 ppb lower limit of detection. For cost reasons, only those samples with detectable Pt abundances in the aqua regia digestion were selected for Ni fire assay digestion and analysis for Os, Ir, Ru, Rh, Pt, and Pd.

A total of 449 samples were analysed for PGE at Ultra Trace Laboratories. Results show combined PGE abundances of up to 186 ppb in regional laterite samples and a 95th percentile for combined PGE of 68 ppb.

Regions with an overall higher abundance of total PGE in the laterite are, naturally, all greenstone belts, but particularly include the Diemals–Mount Jackson and the Mount Gibson–Yalgoo greenstone belts. Platinum and Pd, however, are also anomalous in many gneissic terrains throughout the western Yilgarn Craton and the metamorphic belts near the western margin of the craton. A typical example of such enrichment is the Yarawindah Brook PGE prospect near New Norcia in the northern Jimperding metamorphic belt (not sampled as part of the Laterite Database program).

In contrast to the widespread Pt and Pd enrichment, Ru, Os, Ir, and Rh are generally more closely associated with greenstone sequences and are indicative of the presence of mafic–ultramafic bedrock and associated Ni–sulfide mineralization.

Silver

Most Ag analyses (>98.9%) are less than the detection limit of 0.5 ppb. Results one to two times the lower limit of detection form several clusters in the northern half of the survey area, particularly in the Mount Gibson–Golden Grove–Yalgoo area. It is unclear whether these results have much significance, as even these abundances are close to the limit of detection. However, the close spatial relationship of high Ag with known mineralization might indicate a subtle mineralization signature.

Cadmium

All high-Cd abundances are located in the northern part of the survey area. Cadmium shows a very strong affinity with Mn oxides, and all Cd abundances greater than 0.1 ppm are in weakly to moderately manganiferous samples. Thus, Cd abundances in such samples probably have little relevance to bedrock Cd abundances.

Tantalum

Tantalum abundances are generally greater in granitic (90th percentile 2 ppb by fusion digest) than in greenstone terrains (90th percentile 1.5 ppm by fusion digest) and show several high regional and single point concentrations. In the northeast, several clusters of high-Ta abundance are located in granitic terrains between greenstone sequences; however, sampling is incomplete. The Greenbushes area, host to the world-class Greenbushes Sn–Ta mine, demonstrates the limitations of this 9 km-spaced survey. There is a strong regional Ta signature in the southwest part of the Yilgarn Craton that extends over 280 km from Toodyay in the north to Bridgetown in the south, and from the Darling escarpment in the west to approximately 70 km inland. However, on a local scale, the 9-km sampling does not show a Ta dispersion halo around the Greenbushes mineral deposit due to a small area with background-level Ta near the mine that was coincidentally sampled by this survey. An additional sample, taken within one kilometre of the mine, contained 21 ppm Ta (four-acid digest).

In the northern half of the survey area, a 30 × 30 km area of relatively high Ta (max. 8 ppm Ta by fusion) is located approximately 70 km west of Mount Magnet. Isolated high abundances southeast of Meekatharra show a maximum of 34 ppm (fusion digest). Limited follow-up sampling by Astro Mining Ltd with a focus on pegmatite or Ta-rich granite did not find any significant anomalies (Astro Mining Ltd, 2001, personal comm.).

Tungsten

The most prominent features on a regional scale in the north are a series of north-northeasterly trending high-W concentrations from Mount Gibson to Yalgoo, and a northeasterly trending belt from Paynes Find to Mount Magnet, which together form an annular structure with a diameter of approximately 200 km around a region of low-W abundance. Other prominent but patchy concentrations of high W are in the southwest, centred on the Greenbushes Sn–Ta deposit, and a regional northwest trend in the Jimperding metamorphic belt near Coates and in the Saddleback greenstone belt. The diameter of the W halo in lateritic residuum around the Greenbushes Sn–Ta mineralization is 10–20 km and reaches 15 ppm.

The maximum W abundance is 135 ppm in the Marvel Loch area, south of Southern Cross. Abundances of W in greenstone (90th percentile 5 ppm) generally exceed those in granitic terrain (90th percentile 2.5 ppm) and may reflect hydrothermal alteration.

Gold

Gold abundances in greenstone (90th percentile 10.6 ppb) exceed those in granitic terrain (90th percentile 0.8 ppb). Most Au concentrations correspond, on a broad scale,
with areas of known Au mineralization (Fig. 15) around Meekatharra, Mount Magnet, Sandstone, Yalgoo, Mount Gibson, Gullewa, Golden Grove, Westonia, Southern Cross, the Mount Dimer greenstone belt, Bullock Pool, and Griffins Find (36 ppb approximately 20 km northwest of Griffins Find). A high value of 1460 ppb at Golden Grove is from over the orebody (sample 101504_3). In the Jimperding metamorphic belt, a cluster of samples (max. 17 ppb Au) is located approximately 30 km north of the Wundowie Au deposit. The Boddington Au mine, the largest Au deposit in the southwest Yilgarn Craton, only shows a very weak Au signature (4.4 ppb), due to the intense leaching of Au from the nodular–pisolitic gravel at the surface (Anand, 1998b).

In the high rainfall areas, it is imperative to include chalcophile elements as well as Au in regional Au exploration using lateritic nodules and pisoliths (Anand, 1998b, 2001). The significance of several single-point high-Au concentrations throughout the southwest Yilgarn Craton needs to be established by close-spaced follow-up sampling of lateritic residuum and other sample media.

Mercury

Mercury displays one of the most distinct craton-scale trends unrelated to greenstone sequences (Fig. 16). High-Hg abundances extend for over 500 km from northwest of Wongan Hills to Jerramungup in the south. There, the trend continues to the northeast along the Archean–Proterozoic boundary. Mercury abundances range between 100 and 500 ppb, with a maximum abundance of 820 ppb approximately 30 km east of Wongan Hills. The origin and significance of this spatially massive Hg trend remains unclear, but it appears broadly aligned with the southeasterly trending gneiss–migmatite zone along the eastern boundary of the South West Terrane. There is also a spatial relationship with sites of seismic activity (Fig. 17), as shown on the Geoscience Australia website (www.ga.gov.au/urban/projects/nrap/perth_earthquake.jsp), broadly parallel to regional southeast faults in the southwest Yilgarn Craton (Fig. 17). To our knowledge, this is the first time this regional Hg trend has been revealed. There is an absence of any high-Hg abundances in the western Yilgarn Craton.

In concentrations up to 0.6 ppm are developed throughout the western Yilgarn Craton.

Tin

On a craton scale, most of the high Sn is concentrated within 90–100 km of the southwest margin of the Yilgarn Craton, with a 90th percentile for Sn in granitic terrain of 4 ppm and 3 ppm in greenstone terrains (mixed acid digest). The maximum Sn is 130 ppm (fusion) in lateritic gravel near Gossan Hill, Golden Grove. There is 110 ppm Sn (fusion) in lateritic residuum from the Wongan Hills greenstone belt. A cluster of high-Sn abundances (7–20 ppm Sn by fusion) is located northwest of the Saddleback greenstone belt. One location (100258) southeast of Meekatharra has a Sn concentration of 40 ppm (fusion). Seventy kilometres northwest of Mount Magnet, high-Sn abundances of 10–20 ppm (fusion) are associated with high As (55 ppm).

Thallium

Most Tl enrichments in ferruginous gravel are associated with secondary Mn oxides (Fig. 19), and therefore have limited significance for bedrock interpretation. Non-manganiferous material such as 100263, 101494 and 103281 (see red circle in Figure 19), with Tl abundances of 1.5 ppm, might indicate primary Tl-rich bedrock, possibly Cu–Pb–Zn sulfides or black shale.

Lead

Lead (Fig. 20) abundances are very similar across felsic and mafic–ultramafic terrains in the Yilgarn Craton (90th percentile in granitic terrain 67 ppm compared with 51 ppm in greenstone sequences). High-Pb abundances, particularly in the northern half of the Yilgarn Craton, are generally associated with Mn-rich colluvial samples. It is likely that soluble Pb was scavenged by Mn oxides and hydroxides, in a similar fashion to Cd. In general, high Pb in the southern Yilgarn Craton is not associated with high Mn. High Pb inland from Bremer Bay is associated with high REE and Na.
Figure 15. Kriged image and bubble plot of Au abundances

- 0.1
- 0.5
- 1
- 5
- 10
- > 20

Probability of exceeding 90th percentile (1 ppb)

- 65%
- 0%

Detection limit 0.2 ppb

100 km

20000000mE

Figure 15. Kriged image and bubble plot of Au abundances
Figure 16. Kriged image and bubble plot of Hg abundances and fault distribution in the western Yilgarn Craton (after Myers and Hocking, 1998)
Figure 17. Fault distribution in the western Yilgarn Craton (after Myers and Hocking, 1998) and areas with the most intense seismic activity (after Geoscience Australia website)
Figure 18. Kriged image and bubble plot of Al (as Al₂O₃) abundances
Bismuth abundances are greater in the northeast of the survey area than in the southwest, and appear spatially associated with greenstone belts (90th percentile 1.3 ppm compared with the 90th percentile of 0.9 ppm in granitic terrain). There are four significant regional clusters of concentrated Bi. These are east of the Gullewa greenstone belt (maximum 9.1 ppm Bi) and around the Golden Grove base metal district (maximum 86.8 ppm; Smith and Perdrix, 1983); the southern part of the Kirkalocka greenstone belt (maximum 11.2 ppm Bi); southeast of Meekatharra (maximum 65.9 ppm Bi — the highest concentration outside the Golden Grove base metal district); and along the Southern Cross greenstone belt (maximum 19.1 ppm Bi). In the southwest Yilgarn Craton, Bi concentrations reach 8–9 ppm in the Jimperding metamorphic belt and the Wongan Hills greenstone belt, but are low elsewhere.

Metalloids

Silica

There is a distinct region of low Si in the southwest part of the Yilgarn Craton (west of a line from Moora to Albany) that corresponds with an enrichment in Al and reflects leaching of silica in areas of high rainfall. East of the Moora to Albany line, Si abundances (as %SiO₂) are relatively high, with notable areas east of the Wongan Hill greenstone belt (150 km across) and north of the Proterozoic Albany–Fraser Orogen. The northeast part of the survey area shows local clusters of high Si. High Si in lateritic residuum could indicate coarse-grained granitic rocks with large quartz crystals that resist weathering, or silicification of the regolith.

Arsenic

Arsenic is one of the most important pathfinder elements for gold and base metal mineralization and shows wide dispersion, due to its mobility in the regolith (Fig. 21).

Antimony

The regional distribution of Sb broadly resembles that of As, with a marked increase in the background abundance from the southwest to the northeast. There are two areas
Figure 20. Kriged image and bubble plot of Pb abundances
Figure 21. Kriged image and bubble plot of As abundances
of elevated Sb. One is southwest of Lake Barlee, broadly coincident with high As, and the other is a distinct trend from Yalgoo in the northwest to Mount Gibson in the southeast, and includes parts of the Gullewa greenstone belt over a distance of approximately 180 km. One sample reached 960 ppm Sb at the Brandy Hill Au mine. Again, there is similarity between this and the As trend; however, Sb abundances in greenstone sequences (90th percentile 6.6 ppm) are significantly greater than those in granitic terrains (90th percentile 1.1 ppm). Small clusters of high-Sb concentrations characterize the other Au-mining centres. In the southwest of the survey area, Sb is locally high near Bridgetown, north of the Boddington gold mine, in the Jimpending and Chittering metamorphic belts, at Wongan Hills, and along the southern margin of the Yilgarn Craton.

Tellurium

In a similar fashion to As and Sb, Te shows a craton-scale general increase from the southwest to the northeast of the western Yilgarn Craton. However, regional trends are less well defined than for As and Sb. There is a weak (0.2–0.4 ppm) trend southwest of Lake Barlee that coincides with high As and Sb. Elsewhere, single-point Te concentrations are scattered and show less spatial relationship with known mining centres than high As and Sb. The Te 90th percentiles for both granitic and greenstone terrains are 0.2 ppm.

CHI6* (or chalcophile) index

The CHI6* index (As+3.56Sb+1.33Bi+3Mo+30Ag+30Sn+10W+3.5Se), first introduced by Smith and Perdrix (1983), provides a useful summary and highlights areas with anomalous concentrations of one or many of the eight chalcophile elements that make up the index. It is a weighted sum of critical pathfinder elements (which overcomes the bias towards abundant elements that a simple sum would provide) and allows neighbouring high abundances in different elements to reinforce one another. However, as with the related PEG4* index discussed below, extreme concentrations of a single element can bias the index and caution is required with interpretation.

The most significant feature of the kriged and contoured CHI6* (Fig. 22) data is a cluster of anomalous scores in the Southern Cross greenstone belt, an area of known Au deposits. Most significant contributors to the high CHI6* scores are As and Sb, followed by Bi, Mo, Se, Sn, and W.

There are smaller, less anomalous clusters around Bridgetown–Yornup in the southwest (As, Bi, Sb, Sn and W), in the Westonia region west of Southern Cross (As, Bi, and Sb) and within and along strike of Proterozoic rocks overlying the southeastern part of the craton (As and Sb). The clusters in the southwest Yilgarn Craton broadly correlate with the ‘chalcophile corridors’ of Smith et al. (1989), but the present survey lacks resolution due to significantly wider sample spacing. However, the broader regional cover of this survey shows a weak concentration north of the Saddleback greenstone belt that had not been previously recognized. This geochemical signature (Sn, As, Mo, and Bi) extends into the Chittering and Jimpending metamorphic belts. Because some elements in the CHI6* index are shared with the PEG4* index (As, Sb, and Sn), the patterns here are similar.

PEG4* (or pegmatophile) index

The rare metals are of particular interest because of the world-class Sn-Ta ore body at Greenbushes in the southwest Yilgarn Craton. The PEG4* index, a sum of element abundances multiplied by empirical factors (0.09 As+1.33Sb+Sn+0.6Nb+Ta) was first introduced by Smith et al. (1987) to identify multi-element anomalies associated with the Sn-Ta pegmatite systems at Greenbushes. The index is used here to highlight regional rare-metal trends and to compare these to the earlier work mentioned above. Smith et al. (1987) showed PEG4* scores for lateritic gravel from the mineralized area at Greenbushes that reached up to 4300, with the 200 contour outlining the immediate mine area. Scores of greater than 45 delineate the broad footprint of the pegmatite system.

The data from this survey (Fig. 23) show a cluster of PEG4* scores greater than 46 (98th percentile) centred on the Bridgetown–Greenbushes area. However, there are two larger trends with similar PEG4* scores to the north, southwest, and northwest of the Saddleback greenstone belt. These trends appear to have a southeast–northwest orientation and the most significant concentration is located along strike of the Saddleback greenstone belt, with abundances of 19 ppm Sn, 6.6 ppm Ta, and 32 ppm Nb. This might indicate Sn-Ta pegmatites along strike of the Saddleback greenstone belt. Single anomalies and small clusters (groupings of 2–3 samples with PEG4* scores of greater than 33) are common throughout the southwest and might indicate less extensive swarms of pegmatite dykes.

The association of Au at the Boddington mine with As, Sb, and Sn (Anand, 1998b) suggests the pegmatophile signature northwest of Boddington might also have significance as a possible indicator of further Au mineralization along strike of the Saddleback greenstone belt, with one location (103881) showing 2.4 ppm Sb, 14 ppm As, and 40 ppm Mo.

The strength of these two additive indices is that the weighting factors and the element lists can be modified and thresholds (once established) could be subtracted (Robertson et al., 1994) to tailor them to particular commodities, ore types, or regions and this could be optimized by canonical analysis.

Potential for alkaline ultramafic rocks (kimberlite, lamproite, and lamprophyre)

The potential of the Astro Yilgarn Regolith data to show the geochemical signature of alkaline ultramafic rocks was evaluated using a typicality index (for explanation see Cornelius et al., 2005b). The results of multivariate
Figure 22. Kriged image and bubble plot of CHI6* scores

Chalcophile index

- 100
- 250
- 500
- 1000
- 5000

Probability of exceeding 90th percentile (229)

- 67%
- 0%

Perth
Yilgarn Craton
Western Australia

118°
100 km

08.05.07
Figure 23. Kriged image and bubble plot of PEG4* scores

Pegmatite index

- ≤ 5
- 50
- 100
- 500
- 1000

Probability of exceeding 90th percentile (23.7)

- 85%
- 0%

Western Australia
Yilgarn Craton

Perth

Yilgarn Craton
Western Australia

Figure 23. Kriged image and bubble plot of PEG4* scores
Figure 24. Map of typicality indices (in % next to sample point) based on a six-element allocation procedure for the southwest Yilgarn Craton.
statistical analysis showed ferruginous gravel formed on or near small bodies of alkaline ultramafic rock at Nabberu, and near Errabiddy in the northeast Yilgarn Craton, have typicality scores of 10–30%.

Data from the samples newly acquired in this survey have been evaluated by the same multivariate statistical treatment using the same set of Kimberlite target data and six elements (P, Nb, Co, Cr, La, and Sm), but a different granite-training dataset. In the southwestern Yilgarn Craton, the results (Fig. 24) show five anomalies (typicality score > 0.5%), with the highest score (9.1%) at 46 Gate Road, northeast of Mukinbudin, and a new anomaly (104123) approximately 30 km west-northwest of Lake Grace, with a typicality score of 3.9%. The anomalies occur along an approximately 350-km long north-northeast trend. With the exception of the 46 Gate Road locality, where the source of the anomaly appears to be lamprophyre as indicated by saprolite analyses, the source(s) of these low-priority anomalies remain unidentified. Another anomaly in this dataset, with a typicality score of 3.5%, is located 15 km east-northeast of Manjimup (locality 104800). The results show a small likelihood for further occurrences of alkaline ultramafic rocks in the southwest Yilgarn Craton and, based on the results of previous work, the source of the anomalous scores (>0.5%) is likely to be lamprophyre. In the northwestern Yilgarn Craton, five localities show a typicality greater than 0.5%. Locality 101225, approximately 18 km west of Yalgoo, has a score of 1.9%. Two localities 70 km east-northeast (100096) and 45 km southeast (100299) of Meekatharra have scores of 1.4 and 1% respectively. A group of three samples (100987, 100989, and 101136) approximately 50 km west of Mount Magnet show typicality scores of 0.8%, 0.9%, and 0.8% respectively. Some samples (101225 and 100299) are located in granitic terrain close to greenstone. Their scores are therefore unlikely to indicate nearby alkaline ultramafic source rocks and instead may result from mixing of greenstone and granitic signatures.

Conclusions

An evaluation of the laterite geochemical dataset for the western Yilgarn Craton reveals the following regional patterns:

- In the northeast part of the southwest Yilgarn Craton, the regional sampling shows clusters of elevated Au around greenstones and known Au occurrences. The size of these clusters appears larger than would be expected from lateral dispersion of detrital material from these occurrences alone. Therefore, there is potential for additional Au mineralization east-northeast and southeast of Merredin.
- The regional distribution of PGE shows a large number of as yet unexplained and generally untested PGE anomalies throughout the western Yilgarn, including the gnissic terrains along the western margin of the craton.
- Multivariate statistics can assist in detecting target-specific geochemical signatures in lateritic residuum in deeply weathered terrain (e.g. alkaline ultramafic rocks in the southwest Yilgarn). This has potential for kimberlite exploration and the detection of greenstone remnants and extensions covered beneath thick regolith.
- The westernmost part of the Yilgarn Craton contains elevated abundances of several elements. In the northern part, corresponding to the Jimperding metamorphic belt, south of the Wongan Hills greenstone belt, high regional-scale Cu concentrations are locally associated with anomalous As, Au, Bi, Hg, Mo, and Sb. Elevated Cr and Ni concentrations indicate the presence of mafic and ultramafic rocks within this metamorphic belt.
- A cluster of high CHI6* scores in the Bridgetown–Manjimup–Greenbushes area might be associated not only with Sn–Ta pegmatites at Greenbushes, but could also indicate massive sulfides due to anomalous As, In, and Bi.
- Northwest of the Saddleback greenstone belt, anomalous Sb, Sn, Ta, and Nb abundances might indicate pegmatites along strike of the greenstone sequence and, potentially, further Au mineralization.
- There are anomalous As, Bi, Mo, and Sb abundances in Proterozoic rocks along the southern margin of the Yilgarn Craton indicating potential for Au mineralization.
- In the Katanning–Lake Grace area, clusters of weakly anomalous Cr abundances indicate likely mafic remnants. Some of these contain anomalous Au.
- An as yet unexplained craton-scale southeast trend in Hg abundances, locally associated with anomalous Au, might indicate potential for Au mineralization at depth.

Acknowledgements

The project was financially supported by CSIRO EM, CRC LEME, GSWA, and MERIWA. CALM kindly granted access to nature reserves and other CALM-controlled land. Numerous private landowners and farmers granted access to their properties for sampling.

Ultra Trace Laboratories, Perth, provided all analytical data to exacting standards; Mr D. Ruane and Mr A. Christ provided analytical details and valuable discussions on analytical aspects. Mr A. Knowles of Gannett Holdings prepared two standards for the project.

Drs M. Pain, D. Hunter, F. Itzstein-Davy, and J. Cunneen, and Ms A. Riesz, Mrs J. Johnston and Mrs P. Foster, Ms M. Smith, Mr A. Riesz, Mr A. Hacket, and Mr C. Palmer assisted with the field sampling. Oxiana Ltd provided accommodation at their Golden Grove mine site. D. Wilkinson prepared sections of difficult regolith materials.

Drs R. E. Smith, C. R. M. Butt, R. R. Anand, S. Rogers, and D. J. Gray reviewed this report. All this support is acknowledged with appreciation.
References

AHMAT, A. L, 1990, Windimurra Complex, in Geology and mineral resources of Western Australia: Western Australia Geological Survey, Memoir 3, p. 120–124.

ANAND, R. R., CORNELIUS, M., and PHANG, C., in press, Use of biota and soils in mineral exploration in areas of transported cover, Yilgarn Craton, Western Australia: a contribution towards understanding mechanisms of anomaly formation: Geochemistry: Exploration, Environment, Analysis.

FRENCH, R. R., and ALLEN, J. H., 1984, Lake Way uranium deposit, Wiluna, Western Australia: calcrites and associated sediments in
Laterite geochemical database for the western Yilgarn Craton, Western Australia

This Record is published in digital format (PDF) and is available online at: www.doir.wa.gov.au/GSWA/publications. Laser-printed copies can be ordered from the Information Centre for the cost of printing and binding.

Further details of geological publications and maps produced by the Geological Survey of Western Australia can be obtained by contacting:

Information Centre
Department of Industry and Resources
100 Plain Street
East Perth WA 6004
Phone: (08) 9222 3459 Fax: (08) 9222 3444
Table of Data

<table>
<thead>
<tr>
<th>Element</th>
<th>Au Rept</th>
<th>Ta</th>
<th>MAD</th>
<th>MnO</th>
<th>Au</th>
<th>Ru</th>
<th>Ba</th>
<th>As</th>
<th>Te</th>
<th>W</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>Element</td>
<td>12.94</td>
<td>3.35</td>
<td>0.40</td>
<td>0.48</td>
<td>0.65</td>
<td>1.61</td>
<td>1.13</td>
<td>1.96</td>
<td>2.94</td>
<td>4.90</td>
<td>297</td>
</tr>
<tr>
<td>Element</td>
<td>7.29</td>
<td>1.41</td>
<td>0.13</td>
<td>0.21</td>
<td>0.47</td>
<td>1.15</td>
<td>1.16</td>
<td>1.97</td>
<td>2.94</td>
<td>4.90</td>
<td>297</td>
</tr>
<tr>
<td>Element</td>
<td>12.94</td>
<td>3.35</td>
<td>0.40</td>
<td>0.48</td>
<td>0.65</td>
<td>1.61</td>
<td>1.13</td>
<td>1.96</td>
<td>2.94</td>
<td>4.90</td>
<td>297</td>
</tr>
</tbody>
</table>

Additional Data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>All analyses</td>
<td>0.019</td>
</tr>
<tr>
<td>0.019</td>
<td>0.04</td>
</tr>
<tr>
<td>0.019</td>
<td>0.019</td>
</tr>
</tbody>
</table>

This table provides detailed elemental data alongside other relevant parameters for analysis.
PETROGRAPHY - DESCRIPTIONS AND PHOTOS
<table>
<thead>
<tr>
<th>Number</th>
<th>Mineralogy</th>
<th>Reason</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CV</td>
<td>101181</td>
<td>Ka,qz,fs</td>
<td>Typical "black balls" in colluvium Most of the pisoliths have a cutan, though some are broken, revealing the sandy core. The cores of the pisoliths consist of close-packed angular to shardy fragments of quartz and microcline, reaching 3 mm in size. The quartz is strained and some contains minute laths of green tourmaline. There are a few variably goethite-stained clay glaebules and some hematite granules in the core. These are set in a minimum of iron-stained kaolinite matrix. The cutan (5-10%) consists of similar, but more loosely packed, angular quartz and microcline with clay glaebules, set in a brown aluminosilicate cement that is banded with brown goethite and black hematite. GRANITE-DERIVED</td>
</tr>
<tr>
<td>CV</td>
<td>101184</td>
<td>Colluvium. Depositional sandplain with weak rise. High Mn.</td>
<td>The pisoliths are worn, exposing the sandy cores. The cores consist of loosely packed angular, strained quartz and minor microcline and ferruginous clay glaebules, set in several generations of goethite-stained clay matrix and aluminosilicate cement. This is permeated by patches of Mn minerals, probably hollandite (small Ba content). The cutans vary in thickness (20-30%), have a similar mineralogy but the Mn minerals form discontinuous layers. GRANITE DERIVED.</td>
</tr>
<tr>
<td>CV</td>
<td>101238</td>
<td>Ka,qz,gt,ru</td>
<td>Colluvium. Edge of depositional plain. High Mn The pisoliths are worn. Partly exposing the sandy cores. The cores consist of angular, strained quartz and minor microcline and some clay glaebules. These are loosely packed in a matrix of goethite-stained clay. Voids have been filled with brown, slightly banded aluminosilicate cement and Mn minerals have penetrated the matrix. The cutans are minor (<5%), partly developed and consist of fine-grained angular quartz set in gothic clay and banded with Mn minerals. GRANITE DERIVED.</td>
</tr>
<tr>
<td>LTGS</td>
<td>101292</td>
<td>Windimurra. High Fe (70%) and Cr (1000) - greenstone</td>
<td>The pisoliths are round but slightly chipped with a yellow-brown cutan and deep red or black cores. The cores are complex, consisting of islands of cracked and fragmented hematite, surrounded by goethite. This has been, in turn, cracked and penetrated with grains of quartz and gothic clay. This merges with the cutans (2%) that consist of delicately banded goethite and gothic clay. GREENSTONE DERIVED.</td>
</tr>
<tr>
<td>?</td>
<td>101425_1</td>
<td>Ka,qz,gt,hm</td>
<td>Edge of breakaway. 'Old' pisoliths, high position The pisoliths are round, yellow-brown and partly worn, revealing their cores. The core consists of fragments of subangular quartz and numerous clay glaebules moderately closely packed in goethite-stained clay and permeated by very thin veinlets of hematite. The very thin (<2%) discontinuous cutans consist of weakly Fe oxide-stained clay and a few very fine, angular grains of quartz. FROM A DEEPLY WEATHERED TERRAIN</td>
</tr>
<tr>
<td>LTGS</td>
<td>101612</td>
<td>Yarndee. Greenstone-derived Cr 1100 ppm</td>
<td>These red-brown pisoliths are quite round, with largely intact cutans. The cores consist of hematitic clay, containing fragments of fretted quartz and hematite, and a few voids lined with delicately banded goethite and hematite. The cutan is thin (<2%) and consists of goethite-stained clay with a few included chips of hematite. and possibly some stained clay glaebules. PROBABLY MAFIC</td>
</tr>
<tr>
<td>Code</td>
<td>Image ID</td>
<td>Description</td>
<td>Notes</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>LTGS</td>
<td>101768</td>
<td>Another example from greenstone</td>
<td>The pisoliths are yellow-brown and smooth, with intact but cracked cutans. The core consists of small lozenges and fragments of hematite, quartz and goethite, set loosely in a porous, goethite and hematite stained clay. This has cracked and is thinly veined with hematite. The clay matrix also contains fragments of brecciated clay. The hematite of the outer part of the clay pisolith has been hydrated to goethite. The cutan is thin (2%) and consists of layers of goethite clay with a few small chips of hematite. PROBABLY MAFIC.</td>
</tr>
<tr>
<td>CV</td>
<td>101862</td>
<td>CV below breakaway 70% Fe, 3% Ti Close to 101862_1</td>
<td>The pisoliths are round but many are worn and vary in colour from deep red-brown to yellow-brown. The cores are complex and consist of internally banded goethite ooliths and fragments of subround to fretted quartz, loosely packed in goethitic clay. Some ooliths contain internal ooliths, indicating a complex, multi-cyclic environment. Although cutans are largely absent, there are a few remnants of adhering patches of a young generation of goethitic clay and goethite. PROBABLY MAFIC.</td>
</tr>
<tr>
<td>LT</td>
<td>101862_1</td>
<td>LT above breakaway 37% Fe and 0.4% Ti Close to 101862</td>
<td>The pisoliths are yellow, mottled with red and round. The core consists of shary quartz loosely packed in goethitic clay. This has been veined with a second generation of goethitic clay. One pisolith is very goethite-rich and retains a fingerprint fabric indicating degraded kaolinitic saprolite. The cutan (2%) is a delicately banded ferruginous argillan. The saprolitic pisolith has no cutan. The mixture of saprolitic and pedolithic materials suggests a mixed provenance and some transport of the lateritic residuum. PROBABLY IN PART FELIC.</td>
</tr>
<tr>
<td>CVGS</td>
<td>102062</td>
<td>Ka, gl, hm, qz Colluvium. Slight rise. Mt Gibson</td>
<td>The nodules are subround to subangular, are yellow-brown, mottled with red and show little development of cutans. Two of the three pisoliths have goethitic cores with fingerprint fabrics containing books and stacks of phyllosilicates (probably kaolinite and hydromuscovite). Both are spongy and the voids in one are infilled with crystalline carbonate. One has a very thin, discontinuous cutan of ferruginous clay; the other has adhering patches of ferruginous clay. PROBABLY MAFIC.</td>
</tr>
<tr>
<td>CVGS</td>
<td>102062_1</td>
<td>Colluvium – see photos. Mt Gibson</td>
<td>The pisoliths are round, yellow-brown mottled with red and have slightly chipped and cracked but well-developed cutans. The pisoliths are complex, containing internal pisoliths of hematite-stained spongy clay. Many have either thin cutans, or a gradational goethite-stained rim. Many of these small pisoliths, in turn, contain clay balls and glaebules. All these are set in ferruginous spongy clay, set with small clay granules and chips of quartz. The pisoliths have a discontinuous, thin (2%) cutan of unstructured ferruginous clay. One pisolith has a core of hematite- and goethite-stained clay with a remnant fingerprint fabric after saprolitic clays. GREENSTONE DERIVED BUT OF MIXED REGOLITH PROVENANCE.</td>
</tr>
<tr>
<td>LTGR</td>
<td>101768</td>
<td>LT. Fretting seems to be restricted to those pisoliths on surface. See photos.</td>
<td>There are two pisolith types: i) round, yellow-brown, smooth with cutans mottled with red and ii) dark brown, rough cores lacking cutans. The cores of both types are similar and consist of moderately closely packed angular to shary quartz and a clay glaebules set in a matrix of hematite-stained clay. Some voids are lined with a deep brown, banded aluminosilicate cement. The pisoliths have a gradationally goethite-stained rim. The cutan, where present, is a thin (1%), layered, goethite-stained argillan. GRANITIC TERRAIN.</td>
</tr>
<tr>
<td>Code</td>
<td>Survey</td>
<td>Rock Type</td>
<td>Statistic</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>LTGR</td>
<td>102270</td>
<td>ka, qz, gt</td>
<td>lt. 1.</td>
</tr>
<tr>
<td>LTGR</td>
<td>102351</td>
<td>ka, qz, gt</td>
<td>lt. 1.</td>
</tr>
<tr>
<td>LTGR</td>
<td>102651</td>
<td>ka, qz, gt</td>
<td>lt. 1.</td>
</tr>
<tr>
<td>LTGR</td>
<td>102690</td>
<td>ka, qz</td>
<td>lt. 1.</td>
</tr>
<tr>
<td>LTGR</td>
<td>102784</td>
<td>ka, qz, gt, hm</td>
<td>lt. 1.</td>
</tr>
<tr>
<td>LT</td>
<td>102862</td>
<td>ka, qz, gt, hm</td>
<td>lt. 1.</td>
</tr>
<tr>
<td>LT</td>
<td>104183</td>
<td>Ka, qz, gt, hm</td>
<td>LT. Mature forest near Collie. High S, Al, Darling Range</td>
</tr>
<tr>
<td>LTGR</td>
<td>104457</td>
<td>On granite. Rasp cutan. ‘Old’ pisoliths from topo high.</td>
<td>The pisoliths are yellow-brown and rough, with cutan remnants. The pisoliths have cores of coarse, subangular polycrystalline strained quartz, packed tightly in fine, angular to shary quartz and a minimum of goethite-stained clay. In places, the matrix has been removed and replaced by yellow-brown, weakly banded aluminosilicate. A poorly structured cutan of clay and quartz is discontinuously developed but, where it is absent, quartz grains protrude from the pisolith margins. GRANITE.</td>
</tr>
<tr>
<td>LTGR</td>
<td>104481</td>
<td>Ka, qz, gt</td>
<td>LT. Quartz in nodules. ‘Old’ pisoliths from topo high. Dumbleyung.</td>
</tr>
<tr>
<td>LT</td>
<td>104610</td>
<td>Qz, ru, hm</td>
<td>LT. High alkaline. North of Fitzgerald River</td>
</tr>
<tr>
<td>LT</td>
<td>104661</td>
<td>Qz, ka, ru, fs</td>
<td>LT. Gravel pit. High alkaline (Mg, Ca, Na) content.</td>
</tr>
<tr>
<td>LT</td>
<td>104663</td>
<td>Ka, qz</td>
<td>LT. Gravel pit. High alkaline.</td>
</tr>
</tbody>
</table>

ka = Kaolinite; qz = quartz; fs = Feldspar; gt = Goethite; ru = rutile; hm = hematite
POLISHED BLOCKS
Thin and Polished Sections

Abbreviations:
txppl = Transmitted plain polarized light
nrf = Normally reflected light
MAP APPENDIX
Tectonic and structural provinces
after Cassidy et al (in press)
Cd (ppm)
- 0.025
- 0.1
- 0.25
- 0.5

Probability of exceeding 99th percentile (0.0795 ppm)

Detection limit 0.05 ppm