INTRODUCTION
The Broken Hill region is host to a single known supergiant Pb-Zn-Ag orebody and numerous smaller Pb-Zn-Ag, Cu-Au, Sn, W and U deposits, which occur in the Paleo- to Neoproterozoic basement outcrop regions of the Barrier, Olary and Flinders Ranges. Those areas of exposed basement have undergone mineral exploration for more than 100 years, yet additional significant mineral discoveries have been limited.

The Barrier, Olary and Flinders Ranges form the arcuate eastern, southern and western margins, respectively, of the Callabonna Sub-basin (Figure 1). The highly prospective Proterozoic basement is ~90% concealed by a blanket of Tertiary sediments and Quaternary soils up to 200 m thick. Traditional mineral exploration methods used in areas of outcrop face challenges when applied to areas of transported cover, especially where it is greater than a few meters thick, and new exploration tools are needed. Hydrogeochemistry could be one of these novel tools, and in this contribution we demonstrate its potential through the application of S, Sr and Pb isotopes.

METHODS
We have collected about 300 groundwater samples from the Broken Hill region (Caritat et al. 2001, 2002, Kirste & Caritat 2002). These samples originate from both areas of outcrop in the ranges and areas of cover in the surrounding basins, which are the Callabonna Sub-basin, the Great Australian Basin (GAB), the Murray Basin and the Bancannia Trough. These samples have been analysed for a comprehensive suite of major, minor and trace elements as well as for several stable and radiogenic isotopes. Here, we will focus on a subset of these samples, for which we have obtained S, Sr and Pb isotope data.

The S isotopic composition of dissolved SO_4^{2-} was obtained from 164 samples of BaSO_4 precipitate. Results are reported in permil (‰) $\delta^{34}\text{S}$ relative to V-CDT standard. The Sr isotopic composition was obtained from 38 samples analysed by multicollector ICP-MS (some also by TIMS). Results are reported as $^{87}\text{Sr}/^{86}\text{Sr}$ ratios. The Pb isotopic composition of dissolved Pb was obtained from 29 samples collected as for Sr isotopes. The Pb
was concentrated by ion exchange, then measured by TIMS. Results are reported as $^{206}\text{Pb}/^{204}\text{Pb}$, $^{207}\text{Pb}/^{204}\text{Pb}$ and $^{208}\text{Pb}/^{204}\text{Pb}$ ratios.

RESULTS
The isotopic compositions of the groundwaters are summarised in Table 1. Maps and scatter plots (Figs 2 and 3) illustrate the distribution of the results.

Table 1: Summary statistics of SO_4^{2-}, Sr and Pb concentrations in groundwater and S, Sr and Pb isotopic compositions

<table>
<thead>
<tr>
<th>SO$_4^{2-}$</th>
<th>Sr</th>
<th>Pb</th>
<th>δ^{34}S</th>
<th>δ^{87}Sr /86Sr</th>
<th>206Pb /204Pb</th>
<th>207Pb /204Pb</th>
<th>208Pb /204Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>mg/L</td>
<td>mg/L</td>
<td>mg/L</td>
<td>%o (V-CDT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>164</td>
<td>149</td>
<td>164</td>
<td>159</td>
<td>29</td>
<td>29</td>
<td>29</td>
</tr>
<tr>
<td>Min</td>
<td><0.05</td>
<td>0.064236</td>
<td>0.0005</td>
<td>2.29</td>
<td>0.70797</td>
<td>16.213</td>
<td>15.406</td>
</tr>
<tr>
<td>Median</td>
<td>864</td>
<td>3.624919</td>
<td>0.0005</td>
<td>12.71</td>
<td>0.71949</td>
<td>17.212</td>
<td>15.538</td>
</tr>
<tr>
<td>Max</td>
<td>4150</td>
<td>22.04512</td>
<td>0.013055</td>
<td>23.53</td>
<td>0.73709</td>
<td>18.576</td>
<td>15.840</td>
</tr>
</tbody>
</table>

Figure 2: Geochemical point-source maps showing the distribution of groundwater S, Sr and Pb isotope compositions. Symbol key as per inset boxplots. Locations (top right figure) are BH: Broken Hill; FR: Flinders Ranges; OR: Olary Ranges; BR: Barrier Ranges; CSB: Callabonna Sub-basin; MB: Murray Basin; SA/NSW: South Australia-New South Wales state border. Grid 50 x 50 km; contour 200 m elevation.

DISCUSSION AND CONCLUSIONS
The S isotopic composition of groundwater SO$_4^{2-}$ is influenced by the composition of rainfall (~ +12.5 to +14.5 %o in the area) and the potential contribution from oxidation of sulfide minerals along the flowpath. The δ^{34}S of Broken Hill type Pb-Zn mineralisation clusters around 0 %o in the Barrier Ranges and later vein mineralisation around +4 to +7 %o in the Olary Domain (Bierlein et al. 1996a). Figure 3a shows a plot of δ^{34}S vs ‘Relative S excess’ (Rel S$_{XS}$), defined as the fraction of the S concentration due neither to evaporation nor to mixing with connate water. Several groundwater samples, particularly from the ranges, have both anomalous S concentrations (Rel S$_{XS} > 0$) and low δ^{34}S compositions.
Diagenetic pyrite in GAB sediments can have a δ^{34}S value as low as -40 ‰ (Chivas et al. 1991) and thus must be considered as a potential contributor of 34S-depleted SO_4^{2-} to the groundwater. There are, however, strong indications that diagenetic pyrite does not significantly influence the S-isotopic composition of the groundwaters. These include: 1) absence of trend in Figure 3a toward an end-member of composition -40 ‰ (at Rel SXS = 1); 2) absence of trend in the δ^{18}O(SO_4^{2-}) vs δ^{34}S(SO_4^{2-}) diagram (not shown, but see Kirste et al. 2002) towards a diagenetic pyrite end-member; 3) the southern limit of the Bulldog Shale, a prominent formation with 34S-depleted diagenetic pyrite, is at the northern limit of the study area; and 4) lack of reports of abundant (if any) diagenetic pyrite (or black mudstone) in the Callabonna Sub-basin sediments. This suggests that the addition of 34S-depleted S we recognise in many of the groundwaters is very likely to be derived from mineralisation in the basement.

The Sr isotope results show a wide range in 87Sr/86Sr ratios (nearly 0.0300). The majority of the values are much higher than the 87Sr/86Sr composition of seawater during or since the Proterozoic (0.702 – 0.709; Veizer 1989). This indicates an input of radiogenic Sr through water-rock interaction dominantly through silicate hydrolysis. A plot of 207Pb/204Pb vs 206Pb/204Pb (ore types and growth curve from Carr & Sun 1996, Parr et al. 2003) shows that these correspond broadly to areas in the eastern, central, and southeastern regions, which roughly correlate to the interpreted basement geology and sediments derived therefrom. The less radiogenic Adelaidean rocks of the Flinders Ranges (Foden et al. 2001) and the more...
radiogenic Willyama Supergroup rocks of the Olary and southern Barrier Ranges (Pidgeon 1967) are clearly reflected in the groundwater Sr isotopic composition.

The Pb isotope results plot along the growth curve that extends from the Broken Hill ore signature to the average background Pb signature (Fig. 3c). Those samples with the lower $^{206}\text{Pb}^{204}\text{Pb}$ ratios may either represent a mixing between Broken Hill type (Broken Hill Line of Lode, Pinnacles) and background signatures, or represent various other local ore types recognised in the Broken Hill district (Rupee, Sentinel, Silver King, Thackaringa, see Gulson et al. 1985, Bierlein et al. 1996b, Parr et al. 2003). Figure 3d shows that the samples with a low $\delta^{34}\text{S}$ can have a wide range of $^{206}\text{Pb}^{204}\text{Pb}$ values (~16-18.5). All of the recharge samples with $\delta^{34}\text{S} < 10$ ‰ on Figure 3d have Rel S$_{\text{XS}} > 0$, suggesting possible interaction with a range of different sulfide mineralisation styles as suggested by the Pb isotopic variability.

REFERENCES

Acknowledgments: This work was funded through a Cooperative Research Centre grant and the Department of Mineral Resources New South Wales. We thank our colleagues and students for assistance with fieldwork and discussions. Landholders and mineral exploration companies granted access to the land to conduct groundwater sampling. Patrice de Caritat publishes with permission from the Chief Executive Officer, Geoscience Australia.